C. Bishop, Pattern Recognition and Machine Learning, 2006.

A. Black and K. Lenzo, Flite: a small, fast speech synthesis engine, 2005.

B. Bonet, An e-Optimal Grid-based Algorithm for Partially Observable Markov Decision Processes, Proceedings of the Nineteenth International Conference on Machine Learning, 2002.

R. Brafman, A Heuristic Variable Grid Solution Method for POMDPs, AAAI, 1997.

T. Bui, . Poel, J. Nijholt, and . Zwiers, A tractable hybrid DDN???POMDP approach to affective dialogue modeling for probabilistic frame-based dialogue systems, Natural Language Engineering, vol.90, issue.02, 2008.
DOI : 10.1109/89.817450

P. R. Cohen and C. R. Perrault, Elements of a Plan-Based Theory of Speech Acts*, Cognitive Science, vol.v: lxxiii, issue.3, pp.177-212, 1979.
DOI : 10.1207/s15516709cog0303_1

G. Evermann and P. Woodland, Posterior Probability Decoding, Confidence Estimation and System Combination, Proc. Speech Transcription Workshop, 2000.

M. Ga?i´ga?i´c, S. Keizer, B. Thomson, F. Mairesse, J. Schatzmann et al., Training and evaluation of the HIS-POMDP dialogue system in noise, Proc. 9th SIGdial, 2008.

J. Henderson and O. Lemon, Mixture model POMDPs for efficient handling of uncertainty in dialogue management, Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies Short Papers, HLT '08, 2008.
DOI : 10.3115/1557690.1557710

L. Kaelbling, A. Ml-littman, and . Cassandra, Planning and acting in partially observable stochastic domains, Artificial Intelligence, vol.101, issue.1-2, pp.99-134, 1998.
DOI : 10.1016/S0004-3702(98)00023-X

S. Keizer, . Ga?i´ga?i´c, . Mairesse, . Thomson, S. Yu et al., Modelling user behaviour in the HIS-POMDP dialogue manager, 2008 IEEE Spoken Language Technology Workshop, 2008.
DOI : 10.1109/SLT.2008.4777855

E. Levin, W. Pieraccini, and . Eckert, Using Markov Decision Processes For Learning Dialogue Strategies, Proc Int Conf Acoustics, Speech and Signal Processing, 1998.

E. Levin, W. Pieraccini, and . Eckert, A stochastic model of human-machine interaction for learning dialog strategies, IEEE Transactions on Speech and Audio Processing, vol.8, issue.1, pp.11-23, 2000.
DOI : 10.1109/89.817450

M. Littman, The Witness Algorithm: solving partially observable Markov decision processes, 1994.

L. Mangu, A. Brill, and . Stolcke, Finding consensus in speech recognition: word error minimization and other applications of confusion networks, Computer Speech & Language, vol.14, issue.4, pp.373-400, 2000.
DOI : 10.1006/csla.2000.0152

T. Paek and R. Pieraccini, Automating spoken dialogue management design using machine learning: An industry perspective, Speech Communication, vol.50, issue.8-9, pp.716-729, 2008.
DOI : 10.1016/j.specom.2008.03.010

J. Pineau, S. Gordon, and . Thrun, Point-based value iteration: An anytime algorithm for POMDPs, Proc Int Joint Conference on AI (IJCAI), pp.1025-1032, 2003.

N. Roy, S. Pineau, and . Thrun, Spoken dialogue management using probabilistic reasoning, Proceedings of the 38th Annual Meeting on Association for Computational Linguistics , ACL '00, 2000.
DOI : 10.3115/1075218.1075231

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Schatzmann, Statistical User and Error Modelling for Spoken Dialogue Systems, 2008.

J. Schatzmann, S. Georgila, and . Young, Quantitative Evaluation of User Simulation Techniques for Spoken Dialogue Systems, 6th SIGdial Workshop on DISCOURSE and DIALOGUE, 2005.

J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and S. Young, Agendabased user simulation for bootstrapping a POMDP dialogue system, Proc. HLT/NAACL, 2007.

J. Schatzmann, S. Thomson, and . Young, Error simulation for training statistical dialogue systems, 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU), 2007.
DOI : 10.1109/ASRU.2007.4430167

E. Schegloff and H. Sacks, Opening up Closings, Semiotica, vol.8, issue.4, pp.289-327, 1973.
DOI : 10.1515/semi.1973.8.4.289

E. Sondik, The Optimal Control of Partially Observable Markov Decision Processes, 1971.

R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning, 1998.
DOI : 10.1007/978-1-4615-3618-5

B. Thomson, . Ga?i´ga?i´c, . Keizer, . Mairesse, . Schatzmann et al., User study of the Bayesian Update of Dialogue State approach to dialogue management, Interspeech, 2008.

B. Thomson, S. Schatzmann, and . Young, Bayesian update of dialogue state for robust dialogue systems, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008.
DOI : 10.1109/ICASSP.2008.4518765

B. Thomson, . Yu, . Ga?i´ga?i´c, . Keizer, . Mairesse et al., Evaluating Semantic-level Confidence Scores with Multiple Hypotheses, Interspeech, 2008.

D. Traum and . Ward, Computational Models of Grounding in Collaborative Systems Understanding Spontaneous Speech, Working Papers of the AAAI Fall Symposium on Psychological Models of Communication in Collaborative Systems Proc Int Conf Acoustics, Speech and Signal Processing, pp.124-131, 1991.

J. Williams, Using particle filters to track dialogue state, 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU), 2007.
DOI : 10.1109/ASRU.2007.4430163

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Williams, The best of both worlds: Unifying conventional dialog systems and POMDPs, Proc Intl Conf on Speech and Language Processing, 2008.

J. Williams, S. Poupart, and . Young, Factored Partially Observable Markov Decision Processes for Dialogue Management, 4th Workshop on Knowledge and Reasoning in Practical Dialogue Systems, 2005.

J. Williams and S. Young, Partially observable Markov decision processes for spoken dialog systems, Computer Speech & Language, vol.21, issue.2, pp.393-422, 2007.
DOI : 10.1016/j.csl.2006.06.008

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Williams and S. Young, Scaling POMDPs for Spoken Dialog Management, IEEE Transactions on Audio, Speech and Language Processing, vol.15, issue.7, pp.2116-2129, 2007.
DOI : 10.1109/TASL.2007.902050

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Young, Probabilistic methods in spoken-dialogue systems, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.358, issue.1769, pp.1389-1402, 1769.
DOI : 10.1098/rsta.2000.0593

S. Young, Talking to Machines (Statistically Speaking), Int Conf Spoken Language Processing, 2002.

S. Young, ATK: An Application Toolkit for HTK, 2005.

S. Young, USING POMDPS FOR DIALOG MANAGEMENT, 2006 IEEE Spoken Language Technology Workshop, 2006.
DOI : 10.1109/SLT.2006.326785

S. Young, . Schatzmann, H. Weilhammer, and . Ye, The Hidden Information State Approach to Dialog Management, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07, 2007.
DOI : 10.1109/ICASSP.2007.367185

B. Zhang, . Cai, B. Mao, and . Guo, Planning and Acting under Uncertainty: A New Model for Spoken Dialogue System, Proc 17th Conf on Uncertainty in AI, 2001.