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ABSTRACT

This paper introduces a novel and versatile group sparsity

prior for denoising and to regularize inverse problems. The

sparsity is enforced through arbitrary block-localization op-

erators, such as for instance smooth localized partition func-

tions. The resulting blocks can have an arbitrary overlap,

which is important to reduce visual artifacts thanks to the

increased translation invariance of the prior. They are more-

over not necessarily binary, and allow for non-integer block

sizes. We develop two schemes, one primal and another

primal-dual, originating from the non-smooth convex opti-

mization realm, to efficiently solve a wide class of inverse

problems regularized using this overlapping group sparsity

prior. This scheme is flexible enough to handle both penal-

ized and constrained versions of the optimization problems at

hand. Numerical results on denoising and compressed sens-

ing are reported and show the improvement brought by the

overlap and the smooth partition functions with respect to

classical group sparsity.

1. INTRODUCTION

Sparsity for denoising and inverse problems. Sparsity is

a key concept used to solve various image processing prob-

lems. One of its earliest manifestations is through the semi-

nal work by Donoho and Johnstone on thresholding operators

in orthogonal bases for denoising [19]. Sparsity in orthogo-

nal and redundant dictionaries, such as wavelets, has then

been extensively used to attack a variety of inverse problems,

by solving a wisely penalized least-squares problem, where

the penalty is chosen to enforce the sparsity of the coeffi-

cients. In its simplest form, the prior penalty is the ℓ1 norm

of the coefficients. We refer to [27] for an overview of the

methods and theoretical results pertaining to sparse regular-

ization of inverse problems.

Non-overlapping group sparsity. It turns out that term-

by-term sparsity is usually not enough to obtain state-of-

the-art results both for denoising and inverse problems in-

volving natural images. Indeed, wavelet coefficients of im-

ages are not only sparse, they typically exhibit local depen-

dencies among neighboring coefficients. Geometric features

(edges, textures) are poorly sparsified by isotropic multi-

scale decompositions and create such dependencies. Block

thresholding operators group coefficients in non-overlapping

blocks to take into account these dependencies and improve

the performances both theoretically and in practice, see e.g.

[5, 9, 30, 12] for denoising, and [13] for deconvolution. Con-

vex block sparsity priors have also been used in machine

learning, e.g. group-Lasso in [31, 1], as well as for in-

verse problems such as compressed sensing recovery, see [2]

among others.

Overlapping group sparsity. To further improve the de-

noising performance, [6] proposed to take into account the

energy of overlapping blocks to threshold non-overlapping

groups of coefficients. Sparse group convex priors have been

studied with overlapping blocks that have a chain structure in

[29] or a tree structure in [25, 32]. These constrained struc-

tures lead to interesting properties of the patterns of non-zero

coefficients and lead to efficient algorithms. Generic arbi-

trary overlapping blocks have been recently considered in

[23] using a synthesis formulation (see (6) hereafter for more

details). Similarly, [11] consider arbitrary blocks, but use an

analysis formulation.

Convex optimization for sparse regularization. Sparse

regularization requires solving challenging non-smooth con-

vex optimization problems. The structure of variational prob-

lems with convex sparsity penalties, that are mostly varia-

tions around the ℓ1 penalty, favors the use of proximal split-

ting schemes, see [15, 4] for review chapters. For instance,

problems involving a smooth fidelity term and an ℓ1 penalty,

the one-step forward-backward (see e.g. [16, 17]), or its

multi-step accelerated versions [3, 28] are excellent candi-

dates. For overlapping block sparsity, one needs to use more

sophisticated splitting schemes. Among them, we can think

of the (primal) Douglas-Rachford (DR) algorithm [26, 14]),

the dual scheme of the alternating direction method of multi-

pliers [22], or primal-dual schemes such as [10, 8] and others.

The choice of the minimization algorithm is conditioned by

the structure of the objective functional at hand. In Section 3,

we shall discuss two different algorithms.

Contributions. Our work is closely related to the analysis

overlapping block sparsity prior [11], and extend it in sev-

eral crucial aspects. (i) We introduce a novel generic prior

for overlapping group sparsity, which can use smoothly over-

lapping partition functions. (ii) We develop two efficient al-

gorithms (one primal and one primal-dual) that are flexible

enough to solve exactly, and without any smoothing of the

objective functional, a wide class of linear inverse optimiza-

tion problems involving our group sparsity prior. (iii) We

report a numerical study to outline the importance of group

sparsity with smoothly overlapping partition functions for

image denoising and linear inverse problem regularization.

2. SMOOTHLY OVERLAPPING GROUP SPARSITY

Inverse problem regularization. This paper aims at study-

ing regularization schemes to solve the ill-posed linear in-



verse problem that consists in recovering x0 from y = Ax0 +w

where A : R
N → R

P is a bounded linear operator, x0 ∈ R
N is

the (unknown) signal/image to recover, and w ∈ R
P is an ad-

ditive noise. The classical regularization approach performs

the recovery by solving

min
x∈RN

1

2
||y−Ax||2 +λJ(x), (1)

where J(x) is some penalty functional that reflects the prior

information about the signal to recover, and λ > 0 is a reg-

ularization parameter that should be adapted to the noise

level. We assume in the sequel that J(x) is a convex

lower-semicontinuous (lsc) and proper function on R
N , with

A(dom(J)) 6= /0 and J is coercive if ker(A) 6= {0}. The latter

conditions ensure properness of the objective and existence

of a minimizer. Note by the way that other data fidelity terms

could be used instead of the quadratic term 1
2
||y− Ax||2 to

reflect some statistical knowledge about the noise w. We re-

strict our attention to this fidelity for simplicity of the expo-

sition. The penalized (1) has an equivalent constrained form,

in the sense that ∃ε(λ ) > 0 such that the minimizer of (1) is

also a solution to

min
x∈RN , ||y−Ax||6ε(λ )

J(x) . (2)

In the noiseless case, both formulations (1)-(2) reduce to

min
x∈RN , Ax=y

J(x) . (3)

Group sparsity. We consider a family of priors that mea-

sures the sparsity of the signal x using a countable collection

of localization operators Bi : R
N → R

Ni for i ∈ I. In prac-

tice, Bi(x) depends only on a few values x(t) of the signal.

Thus, our group sparsity prior extends the classical ℓ1-norm

sparsity by considering

J(x) = ∑
i∈I

ϕi(Bix) = Φ(Bx) (4)

where each ϕi : R
Ni → R

+ is a proper, lsc convex function,

and we have used the shorthand notations

Bx = (Bix)i∈I ∈ Ω = ∏
i∈I

R
Ni

∀u = (ui)i ∈ Ω, Φ(u) = ∑
i∈I

ϕi(ui).

It is sufficient to require that ∀i, ϕi is coercive and B is in-

jective, and the objective is proper to ensure minimizer exis-

tence for (1)-(3).

Examples. A classical group sparsity regularization that

have been considered in the literature uses the intra-block ℓp

norm, for p > 1,

ϕi(v) =

(

Ni−1

∑
k=0

|v(k)|p

)1/p

,

with the classical modification for p = +∞. Note that one

should have p > 1 to promote block sparsity. The choice

p = 1 yields the classical, non-grouped, ℓ1 sparsity.

To perform block regularization, we propose to define

the (diagonal) localization operators Bi through the partition

functions bi(t) > 0

Bix = (bi(t)x(t))t∈Si
(5)

where the support of bi(t) is Si = {t \ bi(t) 6= 0} of size

|Si| = Ni. To regularize all the coefficients, we require that

∑i bi(t) > 0 for all t, and therefore ker(B) = {0}. Note that

the group-Lasso regularization is obtained by specializing bi

to binary functions bi(t) ∈ {0,1}, with non-overlapping sup-

ports and
⋃

i∈I Si = {0, . . . ,N −1}.

Analysis vs. synthesis for block sparsity. A family of

overlapping block sparsity priors has been introduced in [23]

for binary blocks. It extends trivially to our setting as follows

Jsynth(x) = min
u∈Ω,B∗u=x

Φ(u). (6)

where B∗ is the adjoint of the blocking operator B. Note that

using this prior, the recovery problem (1) can be written as

computing x = B∗u where u solves

min
u∈Ω

1

2
||y−AB∗u||2 +λΦ(u).

This corresponds to a “synthesis” formulation using a redun-

dant dictionary Φ∗, as defined by [20], whereas (4) can be

seen as an “analysis” formulation.

Note that since the blocks overlap, the analysis prior (4)

and the synthesis prior (6) are expected to produce differ-

ent results. It is however beyond the scope of this paper to

provide a detailed analysis of the performances of these two

classes of methods.

3. MINIMIZATION ALGORITHMS

All minimization problems considered in this paper can

be written as

min
x∈RN

Ψ(Ax)+λΦ(Bx) (7)

where ∀g ∈ R
P, Ψ(g) =







1
2λ
||y−g||2 for (1),

i||y−·||6ε(g) for (2),
iy=·(g) for (3)

where iC is the indicator of the closed convex set C, so

that iC(g) = 0 if g ∈ C and iC(g) = +∞ otherwise. We of

course suppose that ∃x ∈ R
N such that Ax ∈ dom(Ψ) and

Bx ∈ dom(Φ).
Sections (3.3) and (3.2) describe respectively a primal

and a primal-dual approach to solve (7). It will turn out that

the primal approach is quite efficient on the practical side,

but is confined to problems where A∗A can be diagonalized

efficiently. The primal-dual does not have such a restriction.

Having said that, it is beyond the scope of this paper to delve

into a detailed comparison of convergence rates of existing

methods to solve (7).

3.1 Proximity Operators

We assume that beside above assumptions on the ϕi’s,

these functions are also ”almost” simple, meaning that the as-

sociated proximity operators can be computed either exactly



in closed-form or approximately with a rapidly converging

optimization scheme. Recall that the proximity operator (or

proximal mapping) of a proper lsc and convex function ϕi is

defined as

∀v ∈ R
Ni , proxγϕi

(v) = argmin
w∈R

Ni

1

2
||v−w||2 + γϕi(w),

see for instance the review papers [15, 4]. The proximity

operator enjoys a whole calculus framework among which

Moreau identity that will be useful in the sequel. Let ϕ∗
i be

the Legendre-Fenchel conjugate of ϕi, then

proxγϕ∗
i
(v) = v− γ proxϕi/γ(v/γ) . (8)

The ℓ1 and ℓ2 norms are simple functions, since

proxγ||·||1
(v) =

(

max

(

0,1−
γ

v(k)

)

v(k)

)

k

,

proxγ||·||2
(v) = max

(

0,1−
γ

||v||2

)

v.

For the other ℓp norms (as well as for any 1-homogeneous

function), it can be computed by invoking conjugacy argu-

ments and Moreau Identity (8), which yields

proxγ||·||p(v) = v− γ Proj||·||q61(v/γ)

where Proj||·||q61 is the orthogonal projector on the dual ℓq

ball (i.e. 1/p + 1/q = 1). For p = ∞, this can be computed

using the projection on the ℓ1 ball (see for instance [21]),

and for the other values, the projector on the ℓq ball can be

computed using a few Newton iterations [24].

Owing to separability of Φ, its proximal mapping is sim-

ply the concatenation of those of the ϕi’s,

∀u = (ui)i∈I ∈ Ω, proxγΦ(u) =
(

proxγϕi
(ui)
)

i∈I
. (9)

3.2 Primal Algorithm

In order to apply the DR splitting scheme [26] (see

also [14] and the review paper [15]), we re-write the op-

timization problem (7) by introducing an auxiliary variable

u ∈ Ω and the linear constraint u = B(x)

min
z=(x,u)∈RN×Ω

H(z)+ iC (z)

where H(x,u) = Ψ(A(x))+λΦ(u). Note that in this section,

z = (x,u) ∈ R
N ×Ω actually denotes a couple of variables so

we write indifferently H(z) and H(x,u). The linear constraint

is defined by C = {(x,u) \ u = Bx}, i.e. z ∈ ker([−B Id]).
The proximal mapping of H is easily accessible as

proxγH(x,u) =
(

proxγΨ◦A(x),proxγλΦ(u)
)

where

proxγΨ◦A(x)=

{
(

IdN + γ
λ

A∗A
)−1 (

x+ γ
λ

A∗y
)

for (1),
x+A∗(AA∗)−1(y−Ax) for (3),

and the proximity operator of Φ is defined in (9). It is thus

possible to compute efficiently this proximity operator if A∗A

can be efficiently diagonalized. Note also that there is no

closed-form expression of proxΨ◦A in the case (2) unless A is

a tight frame.

The orthogonal projector onto C is such that

proxiC
(x,u) = ProjC (x,u) =

(

x̃,Bx̃
)

where x̃ = (IdN + B∗B)−1(B∗u + x). In the specific case of

a diagonal block operator B of the form (5), this projection

can be computed in O(N) operation since the operator B∗B

is diagonal. Indeed,

B∗B = diag
(

∑
t∈Si

bi(t)
2
)

t
.

Given some z̃(0) = (x(0),u(0)), the DR algorithm is then

summarized as follows:

z̃(n+1) =
(

1−
µ

2

)

z̃(n) +
µ

2
rPoxiC (rProxγH(z̃(n)))

z(n+1) = ProxγH(z̃(n+1))

for µ ∈]0,2[ and γ > 0, where have use the following short-

hand notation

rProxγH(z) = 2ProxγH(z)− z,

see for instance [14]. It can be shown that the sequence

z(n) → z⋆ = (x⋆,u⋆) as n → +∞, where x⋆ is a (global) mini-

mizer of (7).

3.3 Primal Dual Algorithm

Both the penalized (1) and constrained (2)-(3) problems

can be cast as the minimization of F(Kx) where ∀(g,u) ∈
R

P ×Ω,

F(g,u) = Ψ(g)+λΦ(u) and Kx = (Ax,Bx) ∈ R
P ×Ω.

By separability, we have proxγF(g,u) = (g̃,proxγΦ(u)) with

g̃ =











g+λγy

1+λγ
for (1),

y+ ε u−y

max(ε,||u−y||) for (2),

y for (3).

Since F has an explicit proximal operator and K is a bounded

linear operator, our functionals can be minimized efficiently

using a primal-dual scheme such as the one proposed in [8]

(anoother potential candidate is e.g. [10]).

Given x(0) = x̄(0) ∈ R
N and β (0) ∈ R

P × Ω, define the

sequence of iterates:

β (n+1) = proxσF∗

(

β (n) +σKx̄(n)
)

x(n+1) = x(n) − τK∗β (n+1)

x̄(n+1) = x(n+1) +θ(x(n+1) − x(n)) .

With the proviso that 0 < θ 6 1 and τσ ||K||2 < 1. For θ = 1,

it is shown in [8] that x(n) → x⋆ as n → +∞, where x⋆ is a

(global) minimizer of F(Kx).



4. NUMERICAL ILLUSTRATIONS

In the numerical examples, we consider a natural image

f0 of N = n×n pixels, where n = 256, that is normalized so

that || f0||∞ = 1. We implement our method using overlapping

smooth partition functions as defined in (5). For simplicity

we use a translation invariant collection of 2-D Gaussian par-

tition functions, where each bi(t) is centered around pixel

i = (i1, i2) and has a variance s2

∀ t = (t1, t2)∈{0, . . . ,n−1}2, bi(t) = e
−

||t−i||2

s2 1Si
(t) , (10)

where 1Si
restricts the support of bi to

Si = {[i1 −3s], . . . [i1 +3s]}×{[i2 −3s], . . . [i2 +3s]}

where [·] is the nearest integer rounding operator.

We bench the efficiency of our approach for a varying

value of s > 0, which parameterizes the effective width of

the overlapping partition functions. We also compare these

results with the classical block sparsity prior without over-

lapping, which corresponds to using bi(t) = 1Si
(t) where the

Si’s are blocks of size w×w

Si = {i1w, . . .(i1 +1)w−1}×{i2w, . . .(i2 +1)w−1}. (11)

4.1 Denoising

In the denoising experiment, we observe a noisy image

f0 + w̃ where f0 ∈ R
N is the (unknown) clean image and

w̃ ∼ N (0,σ2). We use a bi-orthogonal 7-9 wavelet trans-

form W to compute the coefficients y = W ( f0 + w̃) = x0 +w

where x0 = W ( f0) are the (unknown) coefficients to estimate

and w remains N (0,σ2). The denoised coefficients x are es-

timated by solving (1), and the denoised image is recovered

as f = W−1(x). We tested different values of λ > 0 so as to

maximize the PSNR( f0, f ) = −10log10(|| f − f0||
2/N).
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Figure 1: Evolution of the PSNR as a function of λ/σ ,

for sparse regularization with non-overlaping blocks (dashed

lines, the different curves correspond to different block sizes

w) and overlapping smooth partition functions (solid lines,

the different curves correspond to different widths s of the

Gaussian).

Figure 1 shows the evolution of the PSNR with the regu-

larization parameter λ , for the boat image, displayed on Fig-

ure 2. The best block size for non-overlapping regularization

is w = 4. The best partition width s for overlapping regular-

ization is s = 0.8. The PSNR gain is about 0.3dB, which is

a modest improvement, but is consistent across a wide range

of natural images.

Original f Original, zoom

No overlap (27.5dB) Overlap (27.8dB)

Figure 2: Comparison of denoising using non-overlapping

blocks (11) and overlapping partition functions (10).

4.2 Compressed Sensing

We consider a noiseless compressed sensing recovery

problem, where a small number P < N of measurements y =
M f0 are collected with a linear sensing operator M ∈ R

P×N ,

which is a realization from a random matrix ensemble. This

corresponds to a stylized and idealized compressed sens-

ing acquisition scenario, as proposed by Candès, Romberg

and Tao and [7] and Donoho [18] to jointly sample and

compress sparse signals. We consider here P = N/8, and

M f = (P2 ◦ D ◦ P1( f )) ↓P, where P1,P2 are realizations of

random permutations of {0, . . . ,N − 1}, D is an orthogo-

nal discrete cosine transform, and ↓P selects the P first en-

tries of a vector. This operator M is both random (thus en-

abling a provably efficient recovery from a small number of

measurements), and can be computed in O(N log(N)) opera-

tions. The coefficients x of the recovered signal f = W−1(x)
are obtained by solving the constrained formulation (3) with

A = MW−1.

Figure 3 shows the evolution of the PSNR as a function

of the partition function width s. Its optimal value on this

example is s = 1. The gain with respect to non-overlapping

blocks of optimal size w = 4 is roughly 0.45dB. Figure 4

shows a visual comparison of the two priors.

Conclusion

This paper has introduced a novel group sparsity prior to

regularize inverse problems together with accompanying op-

timization algorithms. This allows to use structured group

sparsity with smoothly overlapping partition functions. We

believe that this prior is a serious option to consider and will
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Figure 3: Evolution of the PSNR as a function of of the parti-

tion function width s defined in (10). As a reference for com-

parison, the dashed line corresponds to the PSNR obtained

with non-overlapping blocks (11) using w = 4.

No overlap (23.25dB) Overlap (23.7dB)

Figure 4: Comparison of compressed sensing recovery using

non-overlapping blocks (11) and overlapping smooth parti-

tion functions (10).

be useful for a variety of applications, for instance when bi-

nary blocks are too constrained, and translation invariance

of the regularization is a desirable property. Numerical ex-

periments on natural images show that this brings some im-

provement with respect to classical block sparsity using non-

overlapping blocks.
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