
HAL Id: hal-00597507
https://hal.science/hal-00597507

Submitted on 1 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Topological Maps, Multi-Label Simple
Points, and Minimum-Length Polygons for Efficient

Digital Partition Model
Guillaume Damiand, Alexandre Dupas, Jacques-Olivier Lachaud

To cite this version:
Guillaume Damiand, Alexandre Dupas, Jacques-Olivier Lachaud. Combining Topological Maps,
Multi-Label Simple Points, and Minimum-Length Polygons for Efficient Digital Partition Model.
International Workshop on Combinatorial Image Analysis, May 2011, Madrid, Spain. pp.56-69,
�10.1007/978-3-642-21073-0_8�. �hal-00597507�

https://hal.science/hal-00597507
https://hal.archives-ouvertes.fr


Combining Topological Maps, Multi-Label

Simple Points, and Minimum-Length Polygons

for Efficient Digital Partition Model⋆

Guillaume Damiand1, Alexandre Dupas2, and Jacques-Olivier Lachaud3
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Abstract. Deformable models have shown great potential for image seg-
mentation. They include discrete models whose combinatorial formula-
tion leads to efficient and sometimes optimal minimization algorithms. In
this paper, we propose a new discrete framework to deform any partition
while preserving its topology. We show how to combine the use of multi-
label simple points, topological maps and minimum-length polygons in
order to implement an efficient digital deformable partition model. Our
experimental results illustrate the potential of our framework for seg-
menting images, since it allows the mixing of region-based, contour-based
and regularization energies, while keeping the overall image structure.
Keywords: Topological Map; ML-Simple Point; Minimum-Length Poly-
gon; Deformable Model; Interpixel Boundaries; Multi-Label Image.

1 Introduction

Energy-minimizing techniques are now widely spread approaches for segmenting
images into meaningful regions. They express the problem as a balance between
several energies: (i) fit-to-data: energies that express the consistency of the re-
gions with the data, (ii) regularization: energies that enforce spatial coherence.
Fit-to-data is either region-based (squared error for homogeneity) or contour-
based (strong gradient). Regularization is generally enforced through boundary
length penalization, sometimes curvature penalization or some a priori knowl-
edge on the probability distribution of the partition model.

Energy minimization can be solved in the continuous world with iterative
solving of partial differential equations, leading to snakes and geometric or
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geodesic active contours [13, 3, 4] and Mumford-Shah approximation [19, 25, 20].
Energy minimization can also be expressed in the discrete world, generally as
a graph-cut problem [1, 5] or a Markov Random Field (e.g., see [24]). To sum
up, continuous approaches achieve optimality for specific energies. Discrete ap-
proaches are close to the optimal for a wider set of energies, to the price of
less pertinent regularization energies: for instance, the length of the boundary is
approximated as its staircase length.

As noted by Meltzer et al. [17] or Szeliski et al. [24], appropriate energies are
more important than optimality for good segmentation results. In this paper, we
therefore focus on defining an energy-minimizing framework for image segmen-
tation that is as versatile as possible to define energies and relations between re-
gions. We propose a purely discrete framework, which encodes both the topology
and the geometry of an image partition. This digital partition is “deformable”
in the sense that pixels may change their label during the minimization. The
deformation is controlled so that the partition may not change topology during
the deformation. This property is desirable in many image analysis applications,
like segmentation with a priori knowledge on the output topology (as often in
biomedical image segmentation) or atlas matching. This aspect has even been
recognized by the level-set community: although the level-set principle allows
arbitrary topology changes, several authors have proposed methods to reintro-
duce topology control in the segmentation (e.g., see [22]). This paper extends
the work of [9] because our framework incorporates a new length penalizer with
better regularization properties. Moreover, it combines in a single balance the
energies: on one side, length penalization and alignments of boundaries with
strong gradients define one energy term (in the same spirit as geodesic active
contours [4]), on the other side region homogeneity.

Our objective is to define a digital deformable partition model. To that effect,
several bottlenecks must be solved. First, we need to describe digital contours
as closed paths, eventually intersecting themselves. We use interpixel topology
[14] which allows to have in digital spaces good topological properties similar to
the ones in continuous spaces. Second, we need to control the topology of the
deformable partition. This is achieved thanks to multi-label simple points [11, 9].
Last, during deformations, we need a data structure to manage various queries
like access to image statistics in region, estimation of the length of boundaries,
etc. We use topological maps [8] to describe all the cells composing the deformable
partition, and all the incidence and adjacency relations between these cells. Then,
we use the minimum length polygon [18, 23, 21] criteria in order to estimate the
length or evolving regions.

The paper is organized as follows. We recall the main notions of these papers
in Section 2 (for further details, interested readers must refer to the original
works). Then, we present the deformable process and the energies in Section 3.
Illustrative experiments are given in Section 4. Future works are discussed in
Section 5.
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2 Preliminaries Notions

2.1 Pixels, Image and Regions

A pixel is an element of the discrete space N
2. Two pixels p = (x, y) and p′ =

(x′, y′) are 4-adjacent if |x − x′| + |y − y′| = 1. A 4-path between two pixels
p and p′ is a sequence of pixels (p = p1, . . . , pk = p′) such that each couple of
consecutive pixels are 4-adjacent. A set of pixels S is 4-connected if there is a
4-path between any couple of pixels in S having all its pixels in S.

An image is a set of pixels. In this work, we consider labeled images, i.e.
images in which each pixel is associated with a label (any value). In labeled
images, a region is a maximal set of 4-connected pixels. Thus, regions form a
partition of the image: two different regions are disjoint, and the union of all the
regions is equal to the image. Moreover, we consider a specific region R0, called
the infinite region, which is the complementary of the image. Two regions are
said 4-adjacent if there is a pixel in the first region that is 4-adjacent to a pixel
in the second region.

2.2 Interpixel Topology and Cubical Complexes

In interpixel topology, we consider the cellular decomposition of the euclidean
space R

2 into regular grids. Pixels are elements of dimension 2 (squares) of the
decomposition, linels are elements of dimension 1 (segments) between pixels,
and pointels are elements of dimension 0 (points) between linels. We call i-face
an element of dimension i (see examples in Fig. 1).

For a pixel p, we note linels(p) the set of the four linels between p and its
four 4-neighbors, and pointels(p) the set of the four pointels around p. For a linel
l, we note pointels(l) the set of the two pointels around l. These notations are
directly extended to set of elements. For example, we note pointels(L), L being
a set of linels, the union of pointels(l) for all l ∈ L.

A cubical complex C is a set of pointels, linels, surfels, glued together by
adjacency and incidence relations. A free pair in C is a couple (c, c′) with c ∈ C
being an i-face (0 ≤ i ≤ 1), c′ ∈ C being an (i+ 1)-face incident to c′, and such
that there is no other (i + 1)-face in C distinct from c′ incident to c. In such a
case, (c, c′) can be removed from C without modifying its topology. This is the
basic operation used to deform a cubical complex while preserving its topology
called the elementary collapse.

A cubical complex C collapses onto a second cubical complex C ′ if there
is a sequence of elementary collapse transforming C into C ′. We say that a
complex Y is simple for X if Y can be “removed” from X without modifying
the topology of X, and symmetrically, a complex Y ′ is add-simple for X ′ if Y ′

can be “added” intoX ′ without modifying the topology ofX ′. These two notions
can be defined thanks to the collapse operation (see [6] for precise definitions,
and some examples in Fig. 1).
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Fig. 1. Example of interpixel topology, cubical complex and collapse. (a) A cubical
complex C. Pointels are black disks (for example 1 and 5), linels are black segments
(for example 2 and 4) and pixels are gray squares (for example 3 and 6). Pointel 1 is
incident to linel 2 and to pixel 3. Linel 2 is incident to pixel 3. Pointels 1 and 5 are
adjacent. Linels 2 and 4 are adjacent. Couple (2, 3) is a free pair. (b) Cubical complex
obtained from C by the elementary collapse of free pair (2, 3). (c) A cubical complex
C′ such that C collapses onto C′. (d) A cubical complex C′′ such that C′′ is simple
for C. “Removing” C′′ from C gives C′. Symmetrically, C′′ is add-simple for C′ and
“adding” C′′ in C′ gives C.

2.3 Multi-label Simple Points

Given a pixel x belonging to region X, and a region R, we note l(x,R) the linels
around x that “touch” R: l(x,R) = {linels l|l ∈ linels(x) and the second pixel
around l belongs to R}. Similarly we note p(x,R) = {pointels p|p ∈ pointels(x)
and the three pixels around p distinct from x belong to R}. The contour of
x touching R, called c(x,R) is the composition of these two sets: c(x,R) =
(p(x,R), l(x,R)). We note c−(x,R) = (p−(x,R), l(x,R)), with p−(x,R) the set
of pointels touching a linel in l(x,R), i.e. p−(x,R) = pointels(l(x,R)).

The frontier between two regions X and R is noted f(X,R). This is the set
of all the linels between one pixel in X and one pixel in R, denoted l(X,R), plus
all the pointels touching these linels p(X,R) = pointels(l(X,R)).

Definition 1 of multi-label simple points is based on the interpixel topol-
ogy and the simple and add-simple notions (see examples in Fig. 2). A pixel
x belonging to region X is ML-simple for region R if the flip of x in R does
not modify the topology of region R (first condition of the definition), does not
modify the topology of region X (second condition of the definition), and if it
does not modify the different frontiers around x (last condition of the definition).
For the two first conditions, a cubical complex C is said homotopic to a 1-disk
if it can be collapsed onto a complex that is composed only by one linel. For the
last condition, intuitively it means that two regions adjacent along one frontier
before the flip are still adjacent after the flip (i.e. the frontier still exists) and
that two regions not adjacent before the flip are still not adjacent after.

Definition 1 (ML-simple points). A pixel x, belonging to region X, is ML-

simple for region R if:

1. c(x,R) is homotopic to a 1-disk;

2. c(x,X) is homotopic to a 1-disk;
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3. for each region O 4-adjacent to x, distinct from X and R: c−(x,O) is simple

for f(X,O); and add-simple for f(R,O).
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Fig. 2. Examples of ML-simple points and non ML-simple points. (a) x is ML-simple
for R. c(x,R) = ({}, {d}) and c(x,X) = ({}, {g}) are homotopic to 1-disks. c−(x,A) =
({2, 3, 4}, {b, c}) is simple for f(X,A) = ({1, 2, 3, 4}, {a, b, c}); and add-simple for
f(R,A) = ({4, 7}, {f}). (b) Partition obtained from (a) after the flip of x in R.
f(X,R) = ({2, 5, 6}, {e, g}), f(X,A) = ({1, 2}, {a}), f(R,A) = ({2, 3, 4, 7}, {b, c, f}).
(c) x is not a ML-simple point for R because c(x,R) = ({}, {a, b}) is not homotopic to
a 1-disk. Flipping x in R modifies the topology of R. (d) x is not a ML-simple point for
R because c−(x,A) = ({1, 2}, {a}) is not add-simple for f(R,A) = ({}, {}). Flipping x
in R modifies the adjacency between regions.

The main operation used during the deformation algorithm is the flip of a
pixel x ∈ X into a given region R. This operation consists in removing x from its
initial region X and adding it to region R. It has been proved in [11] that if the
pixel x is ML-simple point for region R, it can be flipped into region R without
modifying the topology of the partition. This operation modifies regions R and
X, but also some frontiers. Since pointels are deduced from linels by definition
of frontiers, modifications only concern the linels of the frontiers (see example
in Fig. 2):

– l(X,R)← l(X,R) \ l(x,R) ∪ l(x,X);
– For any region O with O 6= X, O 6= R: l(X,O)← l(X,O) \ l(x,O);
– For any region O with O 6= X, O 6= R: l(R,O)← l(R,O) ∪ l(x,O);

2.4 Minimum Length Polygon

The Minimum Length Polygon (MLP) is a classical polygonalization method
of digital contours [18, 23]. Assuming that the digital contour is the boundary
of some digital object, it is the polygon with shortest perimeter, whose interior
contains the centers of the pixels of the object and whose exterior contains the
centers of the pixels of the background. One may also see it at the shortest closed
polygonal line which stays within the strip formed by the minkowski sum of the
digital contour and a centered unit square while making one loop inside it (see
Fig. 3). It has been proved recently that the MLP is a good regularizer for digital
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Fig. 4. Example of topological map. (a) Combinatorial map
describing the topology of frontiers. (b) Interpixel matrix
describing the geometry of frontiers.

active contours [10]: for instance, it is a kind of convex energy in a digital space.
We use the combinatorial MLP in our experiments, since it is one of the fastest
method for computing it [21].

2.5 Topological Map

Several works have proposed data structures to describe image partitions [12, 2].
The common goal is to represent regions of a given partition and all the incidence
and adjacency relations between regions. Structures based on combinatorial maps

[15] have several advantages justifying their use: they represent all the cells of
the subdivision (vertices, edges and faces) and all the incidence and adjacency
relations between these cells; they are defined based on a unique element called
dart, simplifying their use; and they are defined in any dimension which allows
extensions of this work in higher dimension.

Topological maps are an extension of combinatorial maps created to describe
the whole topology of image partitions [8]. A topological map is composed of
a combinatorial map that describes the cells of the partition and the incidence
and adjacency relations between these cells (e.g. Fig. 4(a)), plus an interpixel
matrix that describes the geometry of regions (e.g. Fig. 4(b)).

The combinatorial map describes each adjacency relation between two regions
by an edge composed of two darts linked together. Thus, a dart can be seen as
an half-edge (for example darts 1 and 2 in Fig. 4(a)). A cycle of successive
darts describes a contour of a given region (for example (1, 3) or (2, 5)). In the
interpixel matrix, each linel belonging to one frontier between two regions is
switched on, and each pointel touching more than two linels is switched on.
Other elements are switched off. Each dart knows its region, and each region
knows one dart of its external contour. Moreover, each dart d is associated with
a pair (pointel, linel) such that pointel corresponds to the origin of dart d, and
linel is the first linel of the frontier associated with d (for example dart 1 is
associated with pair (p, l)).
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3 Deformable Model Process

To propose a new digital deformable partition model, we start by presenting
the energies used and their computation algorithms. Then, we detail the main
operations which are the test if a pixel is ML-simple, and the flip of a pixel. We
study how to update the energies during the flip, trying to keep modifications
as local as possible. Last, we give the global algorithm regrouping all these tools
to minimize the energy of the digital deformable partition model.

3.1 Energies

We define the global energy of the partition as the weighted sum of two energies:
Ed for the energy attached to data, and Ep for the energy attached to the
deformable partition. In this work, we use the two following energies: contour(C)
is the MLP length of contour C weighted by the pixel gradient; mse(R) is the
minimum square error of region R.

These two energies can be directly computed from the topological map. For
contour(C), we run through all the darts of the given contour, and for each dart
we run through all its linels, providing the geometry of the contour. The corre-
sponding MLP can be computed from this geometry in time linear in the number
of linels [21]. Then, we project each linel of the contour on the corresponding edge
of the MLP. We compute the length of this projection, and multiply it by one
minus the absolute difference between the two pixels around the current linel.
This difference is divided by the maximal difference of the image, giving a num-
ber between 0 and 1. The value of contour(C) is simply the sum of these values
for each linel of the contour. If the image is uniform, contour(C) is equal to the
length of the MLP. Otherwise, contour(C) becomes smaller when it separates
more contrasted pixels.

For mse(R), we run through each pixel of the image that belongs to the given
region, and compute the number of pixels M0(R), the sum of the pixel values
M1(R) and the sum of the pixel squared values M2(R). With these three values,

we can directly estimate mse(R) = 1
M0(R) (M2(R)− M1(R)

M0(R) ).

To avoid several re-computation of these values, we store them in additional
elements associated with the topological map. The value of contour(C) is stored
for each contour, and M0(R), M1(R) and M2(R) are stored for each region.

The two energies Ed and Ep are computed by summing up the basic energies
on each element of the topological map: Ed = wR ×

∑
region R

mse(R) and

Ep = wC ×
∑

contour C contour(c). The weights wR, wC associated to both
energies allow us to change the balance between the two energies.

3.2 Operations

The two main operations of the deformable process are the test if a pixel is
ML-simple, and the flip of a pixel. Algorithm 1 allows to test if a given pixel is
ML-simple. This algorithm follows directly Definition 1 (see [9] for more details).
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Algorithm 1: isSimple(x,R)

Data: pixel x ∈ X; region R.
Result: true iff x is an ML-simple point for R.
if not isDisk(c(x,R)) then return false;
if not isDisk(c(x,X)) then return false;
foreach region O 4-adjacent to x, O 6= X, O 6= R do

P1 ← {l ∈ p(x,O)|l ∈ pointels(l(X,O) \ l(x,O))};
if not collapse(c(x,O), P1) then return false;
P2 ← {l ∈ p(x,O)|l ∈ f(R,O)};
if not collapse(c(x,O)), P2) then return false;

return true;

The two first lines of Algo. 1 correspond to the two first tests of Definition 1.
Function isDisk, not given here, is simple to write since c(x,R) is restricted to
a small number of cases. Indeed, c(x,R) can be empty, a cycle (i.e. a 2-disk), or
made of several connected components: in these cases it is not a disk. The only
other possible case is the case of the disk.

The “foreach” loop of Algo. 1 corresponds to the last condition of Definition 1;
we only detail the two conditions add-simple and simple by using the definitions
given in [6]. The main principle of these definitions is to test if the given set
can be collapsed onto a specific set. This is the role of function collapse not
given here. In our case, the first set is c(x,O) which is bounded by the linels and
pointels incident to the given pixel x. Thus, the collapse function is restricted to
a small number of cases which can easily be tested.

The complexity of Algo. 1 is O(1) since each test is restricted to pointels and
linels around the considered pixel, and these numbers are both bounded by 4.

Algorithm 2: flip(x,R)

Data: a pixel x ∈ X ML-simple for R.
Result: flip x into region R.
switch off linels in l(x,R);
switch on linels in l(x,X);
foreach dart d touching x do

if pointel(d) ∈ c−(x,R) then update pair(d);

The second main operation is the flip which consists in removing the given
pixel x from its original region X, and add it into its new region R. To be valid,
this operation requires that x is a ML-simple pixel for region R. Algorithm 2 is
made of three steps. First we switch off the linels in l(x,R). Second we switch
on the linels in l(x,X). Since x is flip in region R, the linels in l(x,R) become
“inner linels”, i.e. inside region R, while linels in l(x,X) become frontier linels
between region R and X. The last step consists to update associations between
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darts and pairs. This updating is required when the pointel associated with a
dart belongs to c−(x,R) (as in the case shown in Fig. 2(a)). In this case, the flip
of x in R involves modifications of the extremities of some frontiers (in Fig. 2(a)
f(X,A) = ({1, 2, 3, 4}, {a, b, c}) before the flip, and f(X,A) = ({1, 2}, {a}) after:
one extremity has moved).

The complexity of Algo. 2 is also in O(1). Indeed the number of linels in
l(x,R) and in l(x,X) is at most 4, and the number of darts touching pixel x is
at most 12 (3 darts for each pointel around x).

3.3 Update Energies for Flip

The main operation performed during the energy minimization process consists
in flipping a pixel into a given region, and then to update the different energies
accordingly. A first solution is to re-compute all the energies as explained in
Sect. 3.1. But this involves a considerable computation time since the flip oper-
ation is called many times. A better solution consists in updating incrementally
the energies.

For mse, we know that only region X and region R are modified. Thanks to
the moments stored in each region, we can directly (i.e. in O(1)) update M0, M1

and M2 for these two regions and thus the two mse. This modification can be
made in constant time without additional cost for the flip algorithm. However,
the problem is more complex for contour since there is no algorithm yet able
to update a MLP after the modification of one of its pixels. Thus, contour is
re-computed for the two contours around the flipped pixel by using the same
algorithm than for the initialization step. The improvement of this particular
point is one of our future goals.

The global energy of the partition can thus be updated by subtracting original
values of each energy which will be modified, and by adding the updated energy
values after the flip.

3.4 Energy Minimization Algorithm

We present in Algo. 3 the global minimization algorithm taking a topological
map as input, and minimizing its energy by flipping ML-simple points. The
algorithm starts by an initialization step, first to compute all the energies by
using the principles given in Sect. 3.1. Then, each region X is considered to find
a possible flip. This is the role of the possibleFlip(X) function, which is as
follows. The function runs through each linel l describing a contour of X. Linel
l separates two pixels: x in X, and a second pixel in another region R. If x is
ML-simple for R, then flipping x into R is a possible candidate. Then, we flip
x into R and compute the difference δ between the old energy (before the flip)
and the new one (after the flip). Finally, we apply the reverse flip to retrieve
the initial configuration and proceed to the next linel. If δ is negative, the flip
of x into R decreases the global energy. In this case, this flip (x,R) is stored
in region X into a variable called candidate(X), and function possibleFlip
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returns true. Otherwise, we continue to run over the linels of the contours of X.
If no flip decreasing the energy is found, possibleFlip returns false.

Algorithm 3: Digital partition minimization

Data: a topological map M ; an image I.
Result: minimize the energy of the digital partition.
initialize all the energies of M ; S ← ∅;
foreach region X do

if possibleFlip(X) then S ← S ∪ {X};

while S is not empty do

X ← a region in S; S ← S \X;
(x,R)← candidate(X);
flip(x,R);
if possibleFlip(X) then S ← S ∪ {X};
foreach region O 4-adjacent to X do

S ← S \O;
if possibleFlip(O) then S ← S ∪ {O};

At the end of the initialization loop, S contains all regions having a flip that
decreases the energy. In the main loop of the algorithm, we choose a region in
the set, and flip the corresponding pixel. This operation changes the geometry
and the energy values of the regions X and R. Stored flips for X, R, and their
adjacent regions can be invalid (for example the considered pixel is not a simple
point anymore, or the flip increases the energy) and should be updated using
the possibleFlip algorithm. We can then proceed with an other region of S.

The main loop finishes when the set of candidate becomes empty. In this
case, the minimization process is terminated: there is no possible flip decreasing
the global energy.

4 Experiments

In this section, we first give some deformation results on artificial image using
various weights wR and wC . Then, we show how the digital deformable partition
model is used to fit an initial partition with two pictures from the Berkeley
Segmentation Dataset [16]. In the following, weight values wR and wC are written
as the ratio wR/wC .

In Fig. 5, we deform the initial partition (Fig. 5(b)) of an image contain-
ing two regions (Fig. 5(a)). Different weights are used to illustrate how their
values modify the resulting partition. If the weight of the contour energy is
low (wR/wC < 1/103 as for example in Fig. 5(c)), the value of the region en-
ergy is greater than the value of the contour energy: the contour energy does not
change the resulting partition. As the weight of the contour energy increases, the
curve separating the two regions becomes straighter (Fig. 5(d)). If the weight of
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(a) Image (b) Partition (c) 1 / 1 (d) 1 / 105 (e) 0 / 1

Fig. 5. Experimentation on an artificial image with two simple regions.

the region energy is set to zero, the obtained contour is nearly a straight line
(Fig. 5(e)). It does not exactly match the frontiers of the initial partition: where
the border crosses the curve, the gradient part of the contour energy slightly
alter the shape of the border and produces some irregularities.

(a) Image (b) Partition (c) 1 / 1 (d) 1 / 104 (e) Two
steps

(f) 0 / 1

Fig. 6. Deformation of an artificial image with five regions.

In Fig. 6, we use the deformation process on an artificial image with five
regions (Fig. 6(a)). The frontiers of the initial partition, presented in Fig. 6(b),
are not aligned with the border of the different shape in the original image.
The deformation process is applied with two different ratio between the energy
weights. When the ratio between wR and wC is high (Fig. 6(c)), the region energy
is privileged and borders follow correctly the image data. But we see that there
is some artifact around the disk region: they are caused by the starting point of
the different edges which do not move during the deformation process. When the
ratio is lower, for instance 1/104, some of the borders move correctly. However the
edge separating the two darker gray region is not positioned correctly (Fig. 6(d)):
the energy cost of having a curved border outweighs the gain in the region mse.
Thus, the border is not able to move toward the separation of the two regions.
To solve this issue, we applied a two step deformation with first a 1/1 ratio
and then a 1/104 ratio: the produced segmentation fits correctly the image data
without artifact (Fig. 6(e)). Figure 6(f) presents the partition obtained using the
contour energy alone: some parts of the disk are retrieved thanks to the gradient
measure used in the energy. The bottom right side of the disk is straighten to
minimize the length of the contour. If we use a 2D energy based on the number
of linels, similar to the one used in [9], the initial partition has already a minimal
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contour energy. This shows the improvement of the regularization power of the
new contour energy based on the MLP and the gradient.

(a) Image (b) Partition A (c) A 1/104 (d) Partition B (e) B 1/104

Fig. 7. Deformation of different initial partitions of a picture.

The first real image is presented Fig. 7. Using the partition presented in
Fig. 7(b), the deformation produced the partition shown in Fig. 7(c) with a 1/104

weight ratio. We note that the shape of the object approximate the amphora in
the picture but the contours are not perfectly matched. Using the partition
presented in Fig. 7(d), the result (Fig. 7(e)) also fits correctly the amphora but
for instance the curved shape just up from the handles is not correctly matched
due to a high MLP value.

(a) Image (b) Partition (c) 1/104 (d) 1/106

Fig. 8. Deformation of an initial partition of a picture with different weight ratio.

In Fig. 8, we show deformation processes applied on a picture containing
two horses (Fig. 8(a)). With the initial partition, Fig. 8(b), the first deformation
guided by a weight ratio of 1/104 fit the horses shapes (Fig. 8(c)): the legs of the
small horse are segmented with the dark area of grass around. This is caused
by the region energy which decreases when dark area are grouped. In Fig. 8(d),
the weight ratio is 1/106: the smaller horse is poorly segmented and the contour
of the taller horse are approximated. We show that the contours tend to be as
straight as possible: this remove thin parts of the regions.
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5 Conclusion

In this paper, we have presented a new method of deformable digital partition.
Several works have shown the interest of using deformable models for image
segmentation, but to our knowledge, no work has yet be done on deforming
any partition while preserving its topology. To achieve this objective, we used:
(1) topological maps to efficiently compute and store features associated with
the image and the partition; (2) minimum length polygons as estimator tools;
and (3) ML-simple points to guarantee the preservation of the topology.

Our experiments show the interest of this approach to deform an initial par-
tition according to image data. We can, for instance, propose a guided segmen-
tation tool where a user creates an initial partition that is fitted to image data
using the deformation process. We can also foresee the use of the deformable
partition to improve the result of segmentation algorithms according to our en-
ergies.

In future works, we will focus on improving the update of the MLP after a
flip operation. The MLP is currently completely re-computed after flips, involv-
ing important computation time. This can be improved by defining dynamic
MLP capable of incremental update. Another goal is to use other energies to
improve our results. We can, for example, use edge-detector filters (as Canny or
Marr-Hildreth detectors) instead of a simple gradient energy, or add geometrical
energies on regions to take their shapes into account (for example stretching or
compaction). Finally, we could consider the extension of this work in 3D. Since
topological maps and ML-simple points have already been defined in 3D [7, 9],
we need to study the extension of MLP in higher dimension.
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