Derivation of dissipative Boussinesq equations using the Dirichlet-to-Neumann operator approach

Abstract : The water wave theory traditionally assumes the fluid to be perfect, thus neglecting all effects of the viscosity. However, the explanation of several experimental data sets requires the explicit inclusion of dissipative effects. In order to meet these practical problems, the theory of visco-potential flows has been developed (see P.-F. Liu & A. Orfila (2004) and D. Dutykh & F. Dias (2007)). Then, usually this formulation is further simplified by developing the potential in an entire series in the vertical coordinate and by introducing thus, the long wave approximation. In the present study we propose a derivation of dissipative Boussinesq equations which is based on asymptotic expansions of the Dirichlet-to-Neumann (D2N) operator. Both employed methods yield the same system by different ways.
Liste complète des métadonnées

Littérature citée [65 références]  Voir  Masquer  Télécharger
Contributeur : Denys Dutykh <>
Soumis le : lundi 13 mai 2013 - 01:29:21
Dernière modification le : mercredi 18 mai 2016 - 10:42:46
Document(s) archivé(s) le : mercredi 14 août 2013 - 04:07:46


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License




Denys Dutykh, Olivier Goubet. Derivation of dissipative Boussinesq equations using the Dirichlet-to-Neumann operator approach. Mathematics and Computers in Simulation, Elsevier, 2016, Special Issue: Nonlinear Waves: Computation and Theory-IX, 127, pp.80-93. 〈〉. 〈10.1016/j.matcom.2013.12.008〉. 〈hal-00596804v3〉



Consultations de
la notice


Téléchargements du document