Regularized Gradient Algorithm for Non-Negative Independent Component Analysis
Wendyam Ouedraogo, Mériem Jaidane, Antoine Souloumiac, Christian Jutten

To cite this version:

HAL Id: hal-00596772
https://hal.archives-ouvertes.fr/hal-00596772
Submitted on 30 May 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
REGULARIZED GRADIENT ALGORITHM FOR NON-NEGATIVE INDEPENDENT COMPONENT ANALYSIS

W. S. B. Ouedraogo1,2,3 M. Jaidane2 A. Souloumiac1 C. Jutten3

1CEA, LIST, Laboratoire d’Outils pour l’Analyse de Données, Gif-sur-Yvette, F-91191, France ;
2Unité Signaux et Systèmes, National School of Engineers of Tunis, BP 37, 1002 Tunis, Tunisia
3GIPSA-lab, UMR 5216 CNRS, University of Grenoble, 961 rue de la Houille Blanche BP 46
F-38402 Grenoble Cedex, France

ABSTRACT

Independent Component Analysis (ICA) is a well-known technique for solving blind source separation (BSS) problem. However “classical” ICA algorithms seem not suited for non-negative sources. This paper proposes a gradient descent approach for solving the Non-Negative Independent Component Analysis problem (NNICA). NNICA original separation criterion contains the discontinuous sign function whose minimization may lead to ill convergence (local minima) especially for sparse sources. Replacing the discontinuous function by a continuous one (tanh), we propose a more accurate regularized Gradient algorithm called “Exact” Regularized Gradient (ERG) for NNICA. Experiments on synthetic data with different sparsity degrees illustrate the efficiency of the proposed method and a comparison shows that the proposed ERG outperforms existing methods.

Index Terms— Non-negativity, Independent Components Analysis, Gradient descent, Sparsity, Convergence Algorithms, Well-grounded sources

1. INTRODUCTION

Independent Component Analysis is a well-known technique for solving blind source separation problem \[1,2\]. Restricted to the noiseless linear instantaneous square mixture, the ICA model is given by:

\[X = AS \quad \text{(1)} \]

where \(n \) is the number of sources and \(p \) the number of samples. \(S \) are the \(n \) hidden independent sources, \(A \) is the unknown mixing matrix and \(X \) are the observations.

ICA aims at estimating the sources \(S \) and the mixing matrix \(A \) when only the observations \(X \) are given.

Many effective ICA algorithms \[1,3,4,5\] were proposed for solving (1). However “classical” ICA algorithms seem not suited for non-negative sources. Under non-negativity constraints on \(S \) and \(A \), Non-negative Matrix Factorization (NMF) \[6,7,8\] was proposed for solving (1) where the estimated sources and the mixing matrix are all constrained to be non-negative. But NMF techniques still suffer from initialization problem and the non-negativity alone is not sufficient to guarantee uniqueness of the solution as shown in \[9\].

Another approach uses a Bayesian method \[10\] for solving (1) under the non-negativity constraint of \(S \) and/or \(A \), but this approach can be computationally complex and time-consuming especially for large scale problems. By taking into account both non-negativity and mutual independence, Non-Negative Independent Component Analysis (NNICA) has been introduced for solving (1) under non-negativity constraint on \(S \), \(A \) being positive or of mixed sign. NNICA was first introduced for independent and “well-grounded” sources \[11\].

This paper considers the NNICA problem for well-grounded sources. In the next section we summarize the NNICA problem and list the main approaches used for solving it. Section 3 describes the proposed “Exact” Regularized Gradient (ERG) algorithm. Since ERG will be applied to real mass spectra data, simulations are performed on synthetic data with different sparsity degrees and results are presented in section 4. In fact, mass spectra are sparse data then verifying the well-grounded constraint. One may note that sparse data are more sensitive to ill convergence problem due to discontinuity. We also compare ERG to existing NNICA methods. Section 5 presents the conclusions and future works.

2. NNICA PROBLEM AND EXISTING APPROACH

Let consider the model given by (1) and suppose that the hidden sources \(S = [s_1, s_2, \ldots, s_n]^T \) are non-negative \((Pr(s_i < 0) = 0, \forall 1 \leq i \leq n)\), independent \((Pr(s_1, s_2, \ldots, s_n) = \prod Pr(s_i))\), and well grounded \((\forall \delta > 0, Pr(s_i < \delta) > 0, \forall 1 \leq i \leq n)\).

The unknown mixing matrix \(A \) being assumed to be positive or of mixed sign, the aim of NNICA is to estimate the sources given only the observations \(X \).

Under the previous assumptions, it has been shown that the sources can be correctly estimated by first whitening the observations and second rotating the whitened data to fit them on the positive orthant \[11\]. Let \(Z = VX \) be the whitened observations and the output \(Y = WZ \) be the rotated data \((V \text{ being a whitening matrix and } W \text{ a rotating one})\).

The performance index to minimize is blindly defined as \[13\]:

\[J_0(W) = \frac{1}{2} \| Z - W^T Y^+ \|_F^2 = \frac{1}{2} \| Y^- \|_F^2 \quad \text{(2)} \]

where \([Y^+]_{ij} = \max(0, Y_{ij}) \) and \([Y^-]_{ij} = \min(0, Y_{ij}) \). NNICA reduces to solving the following optimization problem:

\[W^* = \arg \min_{W \in SO(n)} J_0(W) \quad \text{(3)} \]

where \(SO(n) \) is the special orthogonal group (the group of orthogonal matrices of determinant 1).
The main approaches for solving (3) include Non-negative PCA (NNPCA) [14][15], Axis Pair Rotation (APR) [13][16], Geodesic search (GEO) [17] and Projected Gradient (PG) [18].

3. “EXACT” REGULARIZED GRADIENT METHOD FOR NNICA

To deal with the optimization problem (3) in one step (and thus avoiding a “projection” step), we slightly modify the original criterion \(J_0 \) by adding a penalty term which penalizes the deviation to orthogonality [15]. The new criterion is given by:

\[
J(W) = \frac{1}{2} \|Y - \| + \gamma \|WTW - I\|_F^2
\]

and the optimization problem to solve becomes:

\[
W^* = \arg \min_{W \in \mathcal{M}_n} J(W)
\]

where \(\mathcal{M}_n \) is the set of square dimension \(n \) matrix.

For solving (4), we propose to use the gradient descent defined by the iterative algorithm:

\[
W^{k+1} = W^k - \mu [\nabla_W J]_{W=W^k}
\]

But when developing the criterion, one may note that (due to \(\|Y\|_F^2 \) term) it contains the discontinuous function \(\text{sign} \) as shown in the following expression:

\[
J(W) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{p} \left(\frac{Y_{ij}}{2} (1 - \text{sign}(Y_{ij})) \right)^2 + \gamma \sum_{k=1}^{n} \sum_{l=1}^{n} \left(\sum_{t=1}^{n} W_{kt}W_{tl} - \delta_{kl} \right)^2
\]

When computing the gradient, this leads to Dirac distributions which are neglected in [18] giving an “approximate gradient expression”. This approximation may lead to ill convergence (local minima) in the context of blind source separation because of the neglected terms.

For a more accurate expression, we propose to approximate the discontinuous function \(\text{sign} \) by a continuous one \(\text{tanh} \) for “exact calculation”. We then introduce the criterion \(J_\lambda \) given by:

\[
J_\lambda(W) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{p} \left(\frac{Y_{ij}}{2} (1 - \text{tanh}(\lambda Y_{ij})) \right)^2 + \gamma \sum_{k=1}^{n} \sum_{l=1}^{n} \left(\sum_{t=1}^{n} W_{kt}W_{tl} - \delta_{kl} \right)^2
\]

where the parameter \(\lambda \) controls the accuracy of the \(\text{sign} \) function approximation: the larger is \(\lambda \), the better is the approximation since one may note that \(J_{\lambda} \to J \) as \(\lambda \to +\infty \).

So the gradient expression is given by:

\[
[\nabla_W J_\lambda]_{ij} = \frac{1}{2} \sum_{r=1}^{p} \frac{Y_{ir} (1 - \text{tanh}(\lambda Y_{ir}))}{2} (1 + \beta) Z_{jr} + 4\gamma \sum_{l=1}^{n} W_{il} \left(\sum_{t=1}^{n} W_{lt}W_{il} - \delta_{il} \right)
\]

where \(\beta = -\text{tanh}(\lambda Y_{ir}) - \lambda Y_{ir} \left[1 - \text{tanh}^2(\lambda Y_{ir}) \right] \).

The obtained iterative algorithm is given by:

\[
W_{ij}^{k+1} = W_{ij}^k - \mu \left[\nabla_W J_\lambda \right]_{ij}
\]

where \(\mu \) is a small positive update step.

Comparing to gradient expression computed from \(J_0 \) criterion in [18], if we replace \(\text{sign} \) by \(\text{tanh} \) we get:

\[
\left[\nabla_W J_0 \right]_{ij} = \frac{1}{2} \sum_{r=1}^{p} Y_{ir} \left(1 - \text{tanh}(\lambda Y_{ir}) \right) (1 + 1) Z_{jr}
\]

We note that the term \(\beta \) in the first right-side part of equation (9) is replaced by 1 in equation (11). One may expect better convergence of algorithm (10) because when converging, the estimated sources become well-grounded (since the original sources are assumed to be well-grounded) and the term \(\beta \) becomes non negligible as illustrated on Figure 1.

4. SIMULATION RESULTS

The proposed algorithm has been evaluated on synthetic data and compared to existing ones.

The non-negative sources matrix has been generated by the Matlab “sparse uniformly distributed random matrix generator” (sprand function) which uses three parameters: the number of rows (number of sources \(n \)), the number of columns (number \(p \) of samples for each source) and the sparsity degree \(\text{spar} \), which determines the non-zero element ratio in the source \(S \) matrix \((0 \leq \text{spar} \leq 1)\).

The mixing matrix \(A \) has been generated using the Matlab “normally distributed random generator” (randn function).

Three performance measures are used for evaluation:

- The reconstruction error defined by the equation (12). It is a blind performance index measuring the negativeness of the output, it corresponds to the original criterion to minimize.

\[
E_{\text{rec}} = \frac{1}{np} \|Y - W \|_F^2
\]

- The separation error defined by the equation (13). It is a non blind performance index measuring the separation quality, it is similar to an inter-symbol interference ratio.

\[
E_{\text{sep}} = \frac{1}{n(n-1)} \sum_i \left(\sum_j \frac{|(WVA)_{ij}|}{\max(|(WVA)_{ij}| - 1)} \right)
\]

\[
+ \frac{1}{n(n-1)} \sum_j \left(\sum_i \frac{|(WVA)_{ij}|}{\max(|(WVA)_{ij}| - 1)} \right)
\]
The CPU time evaluates the time to convergence using Intel(R) Core(TM) 2 Duo CPU P8400 computer.

In all the simulations, we set the source number \(n = 10 \) and the sample number \(p = 1000 \). Three different sparsity degrees were considered:

- case 1: \(\text{sparsity} = 1 \) corresponding to 100% of non-zero entries in the source matrix.
- case 2: \(\text{sparsity} = 0.1 \) corresponding to 10% of non-zero entries in the source matrix.
- case 3: \(\text{sparsity} = 0.01 \) corresponding to 1% of non-zero entries in the source matrix, this situation corresponds to our future condition for mass spectra data.

A theoretical analysis of the influence of the parameter \(\lambda \) will be consider later, nevertheless as mentionned in section 3, \(\lambda \) must be setted to large value for good approximation of the \(\text{sign} \) function by the \(\tanh \) one.

The algorithm parameters \(\lambda, \mu \) and \(\gamma \) were experimentally tuned for optimal convergence according to the separation error. We set \(\mu = 0.5, \gamma = \frac{1}{16}, \lambda = 10^{10} \) in all the simulations and \(W^0 \) initial value \(W^0 = I_n \).

Figure 2 shows the average performance index obtained with 50 Monte Carlo runs for the different sparsity degrees. We can see that the proposed ERG algorithm seems slightly slower than others method but it always presents the smallest reconstruction and separation errors. The same results (not shown) are observed when modifying the number of sources \(n \) and/or the number of samples \(p \).

Figure 3 shows the ERG separation ability, we can see that the sources are successfully recovered.

Figure 4 shows the reconstruction error \(E_{\text{rec}} \) and the separation error \(E_{\text{sep}} \) versus the iterations number for one run of the case 3. This figure shows that the proposed ERG converge to better solution than other methods.

5. CONCLUSIONS AND FUTURE WORKS

This paper considers the Non-negative Independent Component Analysis problem for well-grounded sources. By slightly modifying the separation criterion, we rewrite the original constrained optimization problem as a non constrained one. For more accurate calculation, we approximate the discontinuous function \(\text{sign} \) used in the criterion by a continuous one \(\text{tanh} \). This lead to an “Exact” Regularized Gradient algorithm improving the algorithm convergence. Simulations on synthetic data with different sparsity degrees highlight the fact that proposed ERG outperforms existing methods. For future work, a theoretical convergence analysis will be considered to determine the algorithm optimal parameters. Incorporating sparsity “a priori” in the method can be an interesting approach since ERG will be applied to real mass spectra data. Considering noisy mixtures can also be a good challenge for evaluating the algorithm robustness. Finally a quasi Newton approach can be investigated in order to develop a faster algorithm.

6. REFERENCES

Fig. 3. ERG separation ability ($n = 10, p = 1000, spar = 0.01$)

Fig. 4. Performance vs iteration number ($n = 10, p = 1000, spar = 0.01$)

