N

N

Regularized Gradient Algorithm for Non-Negative
Independent Component Analysis
Wendyam S. B. Ouedraogo, Mériem Jaidane, Antoine Souloumiac, Christian
Jutten

» To cite this version:

Wendyam S. B. Ouedraogo, Mériem Jaidane, Antoine Souloumiac, Christian Jutten. Regularized
Gradient Algorithm for Non-Negative Independent Component Analysis. ICASSP 2011 - IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, May 2011, Prague, Czech Republic.
pp-2524-2527. hal-00596772

HAL Id: hal-00596772
https://hal.science/hal-00596772
Submitted on 30 May 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00596772
https://hal.archives-ouvertes.fr

REGULARIZED GRADIENT ALGORITHM FOR
NON-NEGATIVE INDEPENDENT COMPONENT ANALYSIS

W. S. B. Ouedraogo*??>

M. Jaidane ?

A. Souloumiac ! C. Jutten®

ICEA, LIST, Laboratoire d’Outils pour I’ Analyse de Données, Gif-sur-Y vette, F-91191, France ;
2Unité Signaux et Systémes, National School of Engineers of Tunis, BP 37, 1002 Tunis, Tunisia
3GIPSA-lab, UMR 5216 CNRS, University of Grenoble, 961 rue de la Houille Blanche BP 46
F-38402 Grenoble Cedex, France

ABSTRACT

Independent Component Analysis (ICA) is a well-known technique
for solving blind source separation (BSS) problem. However “classi-
cal” ICA algorithms seem not suited for non-negative sources. This
paper proposes a gradient descent approach for solving the Non-
Negative Independent Component Analysis problem (NNICA).
NNICA original separation criterion contains the discontinuous
stgn function whose minimization may lead to ill convergence (lo-
cal minima) especially for sparse sources. Replacing the discontinu-
ous function by a continuous one tanh, we propose a more accurate
regularized Gradient algorithm called “Exact” Regularized Gradient
(ERG) for NNICA. Experiments on synthetic data with different
sparsity degrees illustrate the efficiency of the proposed method and
a comparison shows that the proposed ERG outperforms existing
methods.

Index Terms— Non-negativity, Independent Components Anal-
ysis, Gradient descent, Sparsity, Convergence Algorithms, Well-
grounded sources

1. INTRODUCTION

Independent Component Analysis is a well-known technique for
solving blind source separation problem [1][2]. Restricted to the
noiseless linear instantaneous square mixture, the ICA model is
given by:

X =AS5 (1

nxp nxnnxp
where n is the number of sources and p the number of samples.
S are the n hidden independent sources, A is the unkown mixing
matrix and X are the observations.
ICA aims at estimating the sources .S and the mixing matrix A when
only the observations X are given.
Many effective ICA algorithms [1][3][4][5] were proposed for solv-
ing (1). However “classical” ICA algorithms seem not suited for
non-negative sources. Under non-negativity constraints on S and A,
Non-negative Matrix Factorization (NMF) [6][7][8] was proposed
for solving (1) where the estimated sources and the mixing matrix
are all constrained to be non-negative. But NMF techniques still
suffer from initialization problem and the non-negativity alone is not
sufficient to guarantee uniqueness of the solution as shown in [9].
Another approach uses a Bayesian method [10] for solving (1) under
the non-negativity constraint of S and/or A, but this approach can be
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computationally complex and time-consuming especially for large
scale problems. By taking into account both non-negativity and mu-
tual independence, Non-Negative Independent Component Analysis
(NNICA) has been introduced for solving (1) under non-negativity
constraint on S, A being positive or of mixed sign. NNICA was
first introduced for independent and “well-grounded” sources [11].
Zheng et al. proposed an extension to non well-grounded sources
using Neurals Network and the minimization of the mutual informa-
tion [12].

This paper considers the NNICA problem for well-grounded sources.
In the next section we summarize the NNICA problem and list the
main approaches used for solving it. Section 3 describes the pro-
posed “Exact” Regularized Gradient (ERG) algorithm. Since ERG
will be applied to real mass spectra data, simulations are performed
on synthetic data with different sparsity degrees and results are
presented in section 4. In fact, mass spectra are sparse data then
verifying the well-grounded constraint. One may note that sparse
data are more sensitive to ill convergence problem due to disconti-
nuity. We also compare ERG to existing NNICA methods. Section
5 presents the conclusions and future works.

2. NNICA PROBLEM AND EXISTING APPROACH

Let consider the model given by (1) and suppose that the hidden
sources S = [ s1 82 -+ s, | are non-negative (Pr(s; < 0) =
0,V 1 < i < n), independent (Pr(s1,s2,++ ,8n) = [[ Pr(s:)),
and well grounded (V § > 0, Pr(s; < 4) >0,V 1 <i<mn).

The unkown mixing matrix A being assumed to be positive or of
mixed sign, the aim of NNICA is to estimate the sources given only
the observations X.

Under the previous assumptions, it has been shown that the sources
can be correctly estimated by first whitening the observations and
second rotating the whitened data to fit them on the positive orthant
[11]. Let Z = VX be the whitened observations and the output
Y = W Z be the rotated data (V' being a whitening matrix and W a
rotating one).

The performance index to minimize is blindly defined as [13]:

To(W) = % |12 - WTWHi = Iv |3 @

where [Y+]Z'j = max((),Yij) and [Y_]ij = min(O, )/”) NNICA
reduces to solving the following optimization problem:

W™ = i Jo(W 3
argwgqlg(n) o(W) )

where SO(n) is the special orthogonal group (the group of orthog-
onal matrices of determinant 1).
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The main approaches for solving (3) include Non-negative PCA
(NNPCA) [14][15], Axis Pair Rotation (APR) [13][16], Geodesic
search (GEO) [17] and Projected Gradient (PG) [18].

3. “EXACT” REGULARIZED GRADIENT METHOD FOR
NNICA

To deal with the optimization problem (3) in one step (and thus
avoiding a “projection” step), we slightly modify the original cri-
terion Jy by adding a penalty term which penalyzes the deviation to
orthogonality [15]. The new criterion is given by :

1 —2
sy =2y @
and the optimization problem to solve becomes:
W™ = arg Wnelﬁn J(W) (5)

where M., is the set of square dimension n matrix.

For solving (4), we propose to use the gradient descent defined by

the iterative algorithm:
W = W* — 1 [V ]y (6)

But when developing the criterion, one may note that (due to

HY’ 2 term) it contains the discontinuous function sign as shown

I
in the following expression:

(o

i=1 j=1

J(W) =

When computing the gradient, this leads to Dirac distributions which
are neglected in [18] giving an “approximate gradient expression”.
This approximation may lead to ill convergence (local minima) in the
context of blind source separation because of the neglected terms.
For a more accurate expression, we propose to approximate the dis-
continuous function sign by a continuous one tanh for “exact cal-
culation”. We then introduce the criterion .J given by:

ZZ( 91 —tanh(AYZJ)))Q

=1 j=1

where the parameter A controls the accuracy of the sign function
approximation: the larger is A, the better is the approximation since
one may note that Jy — J as A — 4-00.

So the gradient expression is given by:

+ 4’yEWiz (Z WiiWe — 51;’) )

=1 t=1
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where 8 = — tanh(\Yi,) — AYi [1 — tanh®(AY;,)]. The obtained
iterative algorithm is given by :

WET = W — n[Vw i, (10)
where p is a small positive update step.

Comparing to gradient expression computed from Jy criterion in
[18], if we replace sign by tanh we get :

1 <~ Vi, (1 — tanh(AY;,))
A 2 :
[Vwdoli; =5 = 2

(I+1)Z; A1

We note that the term S in the first right-side part of equation (9) is
replaced by 1 in equation (11). One may expect better convergence
of algorithm (10) because when converging, the estimated sources
become well-grounded (since the original sources are assumed to be
well-grounded) and the term 3 becomes non negligible as illustrated
on Figure 1.
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Fig. 1. 8 term vs Y value for A = 10*°

4. SIMULATION RESULTS

The proposed algorithm has been evaluated on synthetic data and
compared to existing ones.
The non-negative sources matrix has been generated by the Mat-
lab “‘sparse uniformly distributed random matrix generator” (sprand
function) which uses three parameters: the number of rows (number
of sources n), the number of columns (number p of samples for each
source) and the sparsity degree spar, which determines the non-zero
element ratio in the source S matrix (0 < spar < 1).
The mixing matrix A has been generated using the Matlab “normaly
distributed random generator” (randn function).
Three performance measures are used for evaluation:
e The reconstruction error defined by the equation (12). It is
a blind performance index measuring the negativeness of the
output, it corresponds to the original criterion to minimize.

12)

1 _
Bre=

e The separation error defined by the equation (13). It is a non
blind performance index measuring the separation quality, it

is similar to an inter-symbol interference ratio.
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e The CPU time evaluates the time to convergence using In-
tel(R) Core(TM) 2 Duo CPU P8400 computer.

In all the simulations, we set the source number n = 10 and the
sample number p = 1000. Three different sparsity degrees were
considered:

e case 1: spar = 1 corresponding to 100% of non-zero entries
in the source matrix.

e case 2: spar = 0.1 corresponding to 10% of non-zero entries
in the source matrix.

e case 3: spar = 0.01 corresponding to 1% of non-zero entries
in the source matrix, this situation corresponds to our future
condition for mass spectra data.

A theoretical analysis of the influence of the parameter A will be
consider later, nevertheless as mentionned in section 3, A must be
setted to large value for good approximation of the sign function by
the tanh one.

The algorithm parameters A\, ;1 and v were experimentally tuned
for optimal convergence according to the separation error. We set
p =05 v =+, A= 10" in all the simulations and W initial
value W was setted to identity matrix (W° = I,,).

Figure 2 shows the average performance index obtained with
50 Monte Carlo runs for the different sparsity degrees. We can
see that the proposed ERG algorithm seems slightly slower than
others method but it always presents the smallest reconstruction and
separation errors. The same results (not shown) are observed when
modifying the number of sources n and/or the number of samples p.

Figure 3 shows the ERG separation ability, we can see that the
sources are successfully recovered.

Figure 4 shows the reconstruction error E.... and the separation error
Esep versus the iterations number for one run of the case 3. This
figure shows that the proposed ERG converge to better solution than
other methods.

5. CONCLUSIONS AND FUTURE WORKS

This paper considers the Non-negative Independent Component
Analysis problem for well-grounded sources. By slightly modi-
fying the separation criterion, we rewrite the original constrained
optimization problem as a non constrained one. For more accurate
calculation, we approximate the discontinuous function sign used
in the criterion by a continuous one tanh. This lead to an “Exact”
Regularized Gradient algorithm improving the algorithm conver-
gence. Simulations on synthetic data with different sparsity degrees
highligth the fact that proposed ERG outperforms existing methods.
For future work, a theoretical convergence analysis will be consid-
ered to determine the algorithm optimal parameters. Incorporating
sparsity “a priori” in the method can be an interesting approach since
ERG will be applied to real mass spectra data. Considering noisy
mixtures can also be a good chalenge for evaluating the algorithm
robustness. Finally a quasi Newton approach can be investigated in
order to develop a faster algorithm.
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