Tiled top-down pyramids and segmentation of large histological images

Romain Goffe 1 Luc Brun 2 Guillaume Damiand 3, 4
1 SIC
XLIM - XLIM, Université de Poitiers
2 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
3 M2DisCo - Geometry Processing and Constrained Optimization
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
4 SIC
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : Recent microscopic imaging systems such as whole slide scanners provide very large (up to 18GB) high resolution images. Such amounts of memory raise major issues that prevent usual image representation models from being used. Moreover, using such high resolution images, global image features, such as tissues, do not clearly appear at full resolution. Such images contain thus different hierarchical information at different resolutions. This paper presents the model of tiled top-down pyramids which provides a framework to handle such images. This model encodes a hierarchy of partitions of large images defined at different resolutions. We also propose a generic construction scheme of such pyramids whose validity is evaluated on an histological image application.
Type de document :
Communication dans un congrès
Springer. In 8th IAPR - TC-15 Workshop on Graph-based Representations in Pattern Recognition (GBR'11), May 2011, Munster, Germany. 6658, pp.255-264, 2011, Lecture Notes in Computer Science
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00596703
Contributeur : Romain Goffe <>
Soumis le : dimanche 29 mai 2011 - 12:55:05
Dernière modification le : jeudi 7 février 2019 - 17:45:50
Document(s) archivé(s) le : vendredi 9 novembre 2012 - 13:51:19

Identifiants

  • HAL Id : hal-00596703, version 1

Citation

Romain Goffe, Luc Brun, Guillaume Damiand. Tiled top-down pyramids and segmentation of large histological images. Springer. In 8th IAPR - TC-15 Workshop on Graph-based Representations in Pattern Recognition (GBR'11), May 2011, Munster, Germany. 6658, pp.255-264, 2011, Lecture Notes in Computer Science. 〈hal-00596703〉

Partager

Métriques

Consultations de la notice

642

Téléchargements de fichiers

220