A. S. Ackleh, K. Deng, K. Ito, and J. Thibodeaux, A structured erythropoiesis model with nonlinear cell maturation velocity and hormone decay rate, Math. Bios, vol.204, pp.21-48, 2006.

M. Adimy, F. Crauste, and S. Ruan, Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases, Bull. Math. Biol, vol.68, issue.8, pp.2321-2351, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00376087

G. R. Aispuru, M. V. Aguirre, J. A. Aquino-esperanza, C. N. Lettieri, J. A. Juaristi et al., Erythroid expansion and survival in response to acute anemia stress: the role of EPO receptor, GATA-1, Bcl-xL and caspase-3, Cell Biol. Int, vol.32, issue.8, pp.966-78, 2008.

T. Alarcon, Modelling tumour-induced angiogenesis: A review of individualbased models and multiscale approaches, The Mathematics of Cancer and Developmental Biology, vol.492, pp.45-74, 2009.

R. Apostu and M. C. Mackey, Understanding cyclical thrombocytopenia: A mathematical modeling approach, J. Theor. Biol, vol.251, pp.297-316, 2008.

H. T. Banks, C. E. Cole, P. M. Schlosser, and T. Hien, Modelling and Optimal Regulation of Erythropoiesis Subject to Benzene Intoxication, Math. Biosci. Eng, vol.1, issue.1, pp.15-48, 2004.

A. Bauer, F. Tronche, O. Wessely, C. Kellendonk, H. M. Reichardt et al., The glucocorticoid receptor is required for stress erythropoiesis, Genes Dev, vol.13, issue.22, pp.2996-3002, 1999.

J. Bélair, M. C. Mackey, and J. M. Mahaffy, Age-structured and two-delay models for erythropoiesis, Math. Biosci, vol.128, pp.317-346, 1995.

S. Bernard, J. Bélair, and M. C. Mackey, Oscillations in cyclical neutropenia: New evidence based on mathematical modeling, J. Theor. Biol, vol.223, pp.283-298, 2003.

S. Bernard, J. Bélair, and M. C. Mackey, Bifurcations in a white-blood-cell production model, C. R. Biologies, vol.327, pp.201-210, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00542530

N. Bessonov, N. Eymard, O. Gandrillon, M. Koury, P. Kurbatova et al.,

N. Bessonov, F. Crauste, S. Fischer, P. Kurbatova, and V. Volpert, Application of Hybrid Models to Blood Cell Production in the Bone Marrow, Math. Model. Nat. Phenom, vol.6, issue.7, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649217

N. Bessonov, P. Kurbatova, and V. Volpert, Particle dynamics modeling of cell populations, Math. Model. Nat. Phenom, vol.5, issue.7, pp.42-47, 2010.

D. Chappell, P. A. Tilbrook, T. Bittorf, S. M. Colley, G. T. Meyer et al., Prevention of apoptosis in J2E erythroid cells by erythropoietin: involvement of JAK2 but not MAP kinases, Cell Death Differ, vol.4, pp.105-113, 1997.

S. H. Chapel, P. Veng-pedersen, R. L. Schmidt, and J. A. Widness, A pharmacodynamic analysis of erythropoietin-stimulated reticulocyte response in phlebotomized sheep, The Journal of Pharmacology and Experimental Therapeutics, vol.296, pp.346-351, 2000.

J. A. Chasis and N. Mohandas, Erythroblastic islands: niches for erythropoiesis, Blood, vol.112, issue.3, pp.470-478, 2008.

C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis -I. Periodic chronic myelogenous leukemia, J. Theor. Biol, vol.237, pp.117-132, 2005.

C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis -II. Cyclical neutropenia, J. Theor. Biol, vol.237, pp.133-146, 2005.

F. Crauste, L. Pujo-menjouet, S. Génieys, C. Molina, and O. Gandrillon, Adding Self-Renewal in Committed Erythroid Progenitors Improves the Biological Relevance of a Mathematical Model of Erythropoiesis, J. Theor. Biol, vol.250, pp.322-338, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00194422

F. Crauste, I. Demin, O. Gandrillon, and V. Volpert, Mathematical study of feedback control roles and relevance in stress erythropoiesis, J. Theor. Biol, vol.263, pp.303-316, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00542457

S. Dazy, F. Damiola, N. Parisey, H. Beug, and O. Gandrillon, The MEK-1/ERKs signaling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells, Oncogene, vol.22, pp.9205-9216, 2003.

I. Demin, F. Crauste, O. Gandrillon, and V. Volpert, A multi-scale model of erythropoiesis, Journal of Biological Dynamics, vol.4, pp.59-70, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00542669

R. De-maria, U. Testa, L. Luchetti, A. Zeuner, G. Stassi et al., Apoptotic Role of Fas/Fas Ligand System in the Regulation of Erythropoiesis, Blood, vol.93, pp.796-803, 1999.

J. Eller, I. Gyori, M. Zollei, and F. Krizsa, Modelling Thrombopoiesis Regulation -I Model description and simulation results, Comput. Math. Appli, vol.14, pp.841-848, 1987.

J. Foo, M. W. Drummond, B. Clarkson, T. Holyoake, and F. Michor, Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib, PLoS Comput. Biol, vol.5, issue.9, p.1000503, 2009.

K. J. Freise, J. A. Widness, R. L. Schmidt, and P. Veng-pedersen, Modeling time variant distributions of cellular lifespans: increases in circulating reticulocyte lifespans following double phlebotomies in sheep, J. Pharmacokinet. Pharmacodyn, vol.35, pp.285-323, 2008.

O. Gandrillon, Assessing its differentiation-blocking ability using normal chicken erythrocytic progenitor cells, Methods Mol. Biol, vol.202, pp.91-107, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00194297

O. Gandrillon and J. Samarut, Role of the different RAR isoforms in controlling the erythrocytic differentiation sequence. Interference with the v-erbA and p135gag-mybets nuclear oncogenes, Oncogene, vol.16, pp.563-574, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00194313

O. Gandrillon, U. Schmidt, H. Beug, and J. Samarut, TGF-beta cooperates with TGF-alpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism, Embo J, vol.18, pp.2764-2781, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00194310

A. Golubev, Random discrete competing events vs. dynamic bistable switches in cell proliferation in differentiation, J. Theor. Biol, vol.267, issue.3, pp.341-354, 2010.

C. Haurie, D. C. Dale, and M. C. Mackey, Cyclical neutropenia and other periodic hematological diseases: A review of mechanisms and mathematical models, Blood, vol.92, pp.2629-2640, 1998.

S. Hoehme and D. Drasdo, A cell-based simulation software for multi-cellular systems, Bioinformatics, vol.26, issue.20, pp.2641-2642, 2010.

W. Jelkmann, Molecular biology of erythropoietin, Intern Med, vol.43, pp.649-659, 2004.

J. Jeon, V. Quaranta, and P. T. Cummings, An Off-Lattice Hybrid DiscreteContinuum Model of Tumor Growth and Invasion, Biophys. J, vol.98, issue.1, pp.37-47, 2010.

M. J. Koury and M. C. Bondurant, Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells, Science, vol.248, pp.378-381, 1990.

M. C. Mackey, Unified hypothesis of the origin of aplastic anaemia and periodic hematopoïesis, Blood, vol.51, pp.941-956, 1978.

M. C. Mackey, Dynamic hematological disorders of stem cell origin, Biophysical and Biochemical Information Transfer in Recognition, pp.373-409, 1979.

M. C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol, vol.33, pp.89-109, 1994.

M. C. Mackey and R. Rudnicki, A new criterion for the global stability of simultaneous cell replication and maturation processes, J. Math. Biol, vol.38, pp.195-219, 1999.

J. M. Mahaffy, J. Belair, and M. C. Mackey, Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis, J. Theor. Biol, vol.190, pp.135-146, 1998.

F. Michor, T. P. Hughes, Y. Iwasa, S. Branford, N. P. Shah et al., Dynamics of chronic myeloid leukaemia, Nature, vol.435, issue.7046, pp.1267-1270, 2005.

F. Michor, Quantitative approaches to analyzing imatinib-treated chronic myeloid leukemia, Trends Pharmacol. Sci, vol.28, issue.5, pp.197-199, 2007.

F. Michor, Mathematical models of cancer stem cells, J. Clin. Oncol, vol.26, issue.17, pp.2854-1861, 2008.

Y. Nagata, N. Takahashi, R. J. Davis, and K. Todokoro, Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation, Blood, vol.92, pp.1859-1869, 1998.

J. M. Osborne, A. Walter, S. K. Kershaw, G. R. Mirams, A. G. Fletcher et al., A hybrid approach to multi-scale modeling of cancer, Phil. Trans R. Soc. A, vol.368, pp.5013-5028, 2010.

B. Pain, C. M. Woods, J. Saez, T. Flickinger, M. Raines et al., EGF-R as a hemopoietic growth factor receptor: The c-erbB product is present in normal chicken erythrocytic progenitor cells and controls their self-renewal, Cell, vol.65, pp.37-46, 1991.

A. A. Patel, E. T. Gawlinsky, S. K. Lemieux, and R. A. Gatenby, A Cellular Automaton Model of Early Tumor Growth and Invasion: The Effects of Native Tissue Vascularity and Increased Anaerobic Tumor Metabolism, J. Theor. Biol, vol.213, pp.315-331, 2001.

I. Ramis-conde, M. A. Chaplain, A. R. Anderson, and D. Drasdo, Multi-scale modeling of cancer cell intravasation: the role of cadherins in metastasis, Phys. Biol, vol.6, issue.1, p.16008, 2009.

D. A. Rew, G. D. Wilson, I. Taylor, and P. C. Weaver, Proliferation characteristics of human colorectal carcinomas measured in vivo, Br. J. Surg, vol.78, pp.60-66, 1991.

M. M. Rhodes, P. Kopsombut, M. C. Bondurant, J. O. Price, and M. J. Koury, Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin, Blood, vol.111, pp.1700-1708, 2008.

I. Roeder, Quantitative stem cell biology: computational studies in the hematopoietic system, Curr. Opin. Hematol, vol.13, pp.222-228, 2006.

C. Rubiolo, D. Piazzolla, K. Meissl, H. Beug, J. C. Huber et al., A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation, Blood, vol.108, pp.152-159, 2006.

Y. Sadahira, T. Yasuda, T. Yoshino, T. Manabe, T. Takeishi et al., Impaired splenic erythropoiesis in phlebotomized mice injected with CL2MDP-liposome: an experimental model for studying the role of stromal macrophages in erythropoiesis, J Leukoc Biol, vol.68, pp.464-470, 2000.

I. Salazar-ciudad and J. Jernvall, A computational model of teeth and the developmental origins of morphological variation, Nature, vol.464, issue.7288, pp.583-589, 2010.

M. Santillan, J. M. Mahaffy, J. Belair, and M. C. Mackey, Regulation of platelet production: The normal response to perturbation and cyclical platelet disease, J. Theor. Biol, vol.206, pp.585-603, 2000.

N. J. Savill, W. Chadwick, and S. E. Reece, Quantitative Analysis of Mechanisms That Govern Red Blood Cell Age Structure and Dynamics during Anaemia, PLoS Comput. Biol, vol.5, issue.6, p.1000416, 2009.

S. T. Sawyer and S. M. Jacobs-helber, Unraveling distinct intracellular signals that promote survival and proliferation: study of erythropoietin, stem cell factor, and constitutive signaling in leukemic cells, J. Hematother. Stem Cell Res, vol.9, pp.21-29, 2000.

P. Secchiero, E. Melloni, M. Heikinheimo, S. Mannisto, R. Di-pietro et al., TRAIL regulates normal erythroid maturation through an ERKdependent pathway, Blood, vol.103, pp.517-522, 2004.

S. L. Spencer, R. A. Gerety, K. J. Pienta, and S. Forrest, Modeling somatic evolution in tumorigenesis, PLoS Comput. Biol, vol.2, issue.8, p.108, 2006.

J. L. Spivak, T. Pham, M. Isaacs, and W. D. Hankins, Erythropoietin is both a mitogen and a survival factor, Blood, vol.77, pp.1228-1233, 1991.

M. Scholz, C. Engel, and M. Loeffler, Modelling human granulopoiesis under polychemotherapy with G-CSF support, J. Math. Biol, vol.50, issue.4, pp.397-439, 2005.

M. Scholz, A. Gross, and M. Loeffler, A biomathematical model of human thrombopoiesis under chemotherapy, J. Theor. Biol, vol.264, issue.2, pp.287-300, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00585789

M. Socolovsky, Molecular insights into stress erythropoiesis, Current opinion in hematology, vol.14, pp.215-224, 2007.

X. Sui, S. B. Krantz, and Z. J. Zhao, Stem cell factor and erythropoietin inhibit apoptosis of human erythroid progenitor cells through different signalling pathways, Br. J. Haematol, vol.110, pp.63-70, 2000.

A. S. Tsiftsoglou, I. S. Vizirianakis, and J. Strouboulis, Erythropoiesis: model systems, molecular regulators, and developmental programs, IUBMB Life, vol.61, issue.8, pp.800-830, 2009.

P. Veng-pedersen, S. Chapel, R. L. Schmidt, N. H. Al-huniti, R. T. Cook et al., An integrated pharmacodynamic analysis of erythropoietin, reticulocyte, and hemoglobin responses in acute anemia, Pharm. Res, vol.19, pp.1630-1635, 2002.

H. E. Wichmann, M. D. Gerhardts, H. Spechtmeyer, and R. Gross, A mathematical model of thrombopoiesis in rats, Cell Tissue Kinet, vol.12, pp.551-567, 1979.

H. E. Wichman and M. Loeffler, Mathematical Modeling of Cell Proliferation, 1985.

H. E. Wichmann, M. Loeffler, and S. Schmitz, A concept of hemopoietic regulation and its biomathematical realisation, Blood Cells, vol.14, pp.411-429, 1985.

H. E. Wichmann, M. Loeffler, K. Pantel, and H. Wulff, A mathematical model of erythropoiesis in mice and rats. Part 2. Stimulated erythropoiesis, Cell Tissue Kinet, vol.22, pp.31-49, 1989.

S. Woo, W. Krzyzanski, and W. J. Jusko, Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats, J. Pharmacol. Exp. Ther, vol.319, pp.1297-1306, 2006.

S. Woo, W. Krzyzanski, and W. J. Jusko, Pharmacodynamic model for chemotherapy-induced anemia in rats, Cancer Chemother. Pharmacol, vol.62, pp.123-133, 2008.

H. Wulff, H. E. Wichmann, M. Loeffler, and K. Pantel, A mathematical model of erythropoiesis in mice and rats. Part 3. Suppressed erythropoiesis, Cell Tissue Kinet, vol.22, pp.51-61, 1989.