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Abstract

We propose in this paper a new Dantzig-Wolfe master model based on Lagrangian
decomposition. We establish the relationship with classical Dantzig-Wolfe decom-
position master problem and propose an alternative proof of the dominance of La-
grangian decomposition on Lagrangian relaxation dual bound. As illustration, we
give the corresponding models and numerical results for two standard mathematical
programs: the 0−1 bidimensional knapsack problem and the generalized assignment
problem.
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1 Introduction

An integer linear program where constraints are partitioned in two subsets
can be formulated as follows:

(P )







































max ctx

s.c. Ax = a

Bx = b

x ∈ X

where c ∈ Rn, A is a m× n matrix, B is a p× n matrix, a ∈ Rm, b ∈ Rp and
X ⊆ Nn.

These problems are generally NP-hard and bounds are needed to solve them
in generic branch and bound like schemes. To improve the bound based on
the continuous relaxation of (P ), Lagrangian methods, like Lagrangian Re-
laxation (LR) [2], Lagrangian Decomposition (LD) [5,6,11,13,12], Lagrangian
substitution [14] and Surrogate Relaxation (SR) [4], are well-known techniques
for obtaining bounds in Integer Linear Programming (ILP).

This work recalls the existing link between LR and classical Dantzig-Wolfe
Decomposition (DWD) [1] and establishes the relationship between LD and
DWD to derive a new DW master model.

The equivalence between DWD and LR is well known [9]. Solving a linear
program by Column Generation (CG), using DWD, is the same as solving the
Lagrangian dual by Kelley’s cutting plane method [7]. This work recalls the
previous result and extends it to LD, which can be viewed as a specific DWD,
to prove the superiority of the new bound obtained.

The paper is organized as follows. Section 2 deals with LR, LD and DWD
principles. Section 3 shows the relationship between LD and DWD, and gives
a new proof on the LD bound dominance over the LR one. In Section 4 we
illustrate with two DW master models on the 0-1 Bi-dimensional Knapsack
Problem (0-1 BKP) and the Generalized Assignment Problem (GAP). In sec-
tion 5 we present some computational results on the two previous problems.

2 Lagrangian duals and Dantzig-Wolfe decomposition

These approaches can be used in the pre-treatment phase of an exact or heuris-
tic method in order to compute better bounds than linear relaxation. In this
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section, we recall the principle of Lagrangian duality and its link with DWD
and Column Generation (CG).

2.1 Dual Lagrangian relaxation

LR consists in omitting some complicating constraints (Ax = a) and in incor-
porating them in the objective function using a Lagrangian multiplier π ∈ Rm.
We obtain the following relaxation:

(LR(π))



























max ctx+ πt(a− Ax)

s. c. Bx = b

x ∈ X.

For any π ∈ Rm, the value of (LR(π)) is an upper bound on v(P ). The best
one is given by the LR dual:

(LRD) ≡ minπ∈Rm (LR(π))

≡ minπ∈Rm max{x∈X,Bx=b} ctx+ πt(a− Ax).

Let be XB = {x ∈ X|Bx = b} and Conv(XB) its convex hull (boundary of the
convex polygon), supposed bounded. We denoted by x(k), k ∈ {1, . . . , K} the
extreme points of Conv(XB). Hence, (LRD) can be reformulated as follows:

(LRD) ≡ minπ∈Rm maxk=1,...,K ctx(k) + πt(a− Ax(k))

≡



























min z

s.t. z + πt(Ax(k) − a) ≥ ctx(k), k = 1, . . . , K

π ∈ Rm, z ∈ R.

This new formulation potentially contains an exponential number of con-
straints, equal to K. Kelley’s cutting plans method [7] considers a reduced
set of these constraints that handle a restricted problem. Cuts (constraints)
are added at each iteration until the optimum reached.
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2.2 Lagrangian decomposition dual

It is well-known that the efficiency of branch and bound like scheme depends
on the quality of the bounds. To improve those provided by LR, Guignard and
Kim [5,6] have proposed to use LD. In such an approach, copy constraints are
added to the formulation (P ) to build an equivalent problem:























































max ctx

s. c. Ax = a

By = b

x = y

x ∈ X, y ∈ Y, with Y ⊇ X

where the copy variables permits to split the initial problem in two indepen-
dent sub-problems after applying LR on the copy constraints x = y:

(LD(w))







































max ctx+ wt(y − x)

s. c. Ay = a

Bx = b

x ∈ X, y ∈ Y,

where w ∈ Rn are dual variables associated to the copy constraints. We obtain
the two following independent sub-problems:

(LDy(w))



























max wty

s. c. Ay = a

y ∈ Y

and (LDx(w))



























max (c− w)tx

s. c. Bx = b

x ∈ X

The LD dual is given by

(LDD) min
w∈Rn

v(LD(w))

where

v(LD(w)) = max{wty|y ∈ YA}+max{(c− w)tx|x ∈ XB}

with

YA = {y | Ay = a, y ∈ Y } XB = {x | Bx = b, x ∈ X}.
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This dual can be rewritten as :

(LDD)











min max(c− w)tx + maxwty

w ∈ Rn x ∈ XB y ∈ YA.

We assume that the convex hull of the sets YA andXB are bounded. We denote
by x(k), k ∈ {1, . . . , K} the extreme points of XB and by y(l), l ∈ {1, . . . , L}
those of YA. We obtain the following formulation:

(LDD)











min max(c− w)tx(k) + maxwty(l)

w ∈ Rn k = 1, . . . , K l = 1, . . . , L

which can be expressed in this equivalent linear form:

(LDD)







































min z1 + z2

z1 ≥ (c− w)tx(k), k = 1, . . . , K

z2 ≥ wty(l), l = 1, . . . , L

w ∈ Rn, z1, z2 ∈ R.

The following theorem give the well-known dominance relationship between
(P ), (LRD), (LDD) and (LP ) which is the linear relaxation of (P ).

Theorem 1 [5,6] v(P ) ≤ v(LDD) ≤ v(LRD) ≤ v(LP ).

2.3 Dantzig-Wolfe decomposition and column generation

The key idea of DWD [1] is to reformulate the problem by substituting the
original variables with a convex combination of the extreme points of the
polyhedron corresponding to a substructure of the formulation.

We know that

∀x ∈ Conv(XB), x =
K
∑

k=1

λkx
(k)

with
∑K

k=1 λk = 1, λk ≥ 0, ∀k ∈ 1, . . . , K.
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By substituting in (P ) we obtain the master problem of DWD:

(MP )







































max
∑K

k=1(c
tx(k))λk

s.c.
∑K

k=1(Ax
(k))λk = a

∑K
k=1 λk = 1

λk ≥ 0, k = 1, . . . , K.

(MP ) contains m+1 constraints and (potentially) a huge number of variables
(i.e. the number K of extreme points of Conv(XB)).

Remark 1 Due to the fact that (LRD) is a dual of (MP ), v(LRD) = v(MP ) [9].

CG consists in generating iteratively a subset of the extreme points of XB to
determine an optimal solution of (MP ) by solving alternatively:

• a Restricted Master Problem of DWD on a subset K of {1, . . . , K}:

(RMP )







































max
∑

k∈K(c
tx(k))λk

s.c.
∑

k∈K(Ax
(k))λk = a

∑

k∈K λk = 1

λk ≥ 0 , k ∈ K

• a pricing problem:

(SP )



























max ctx− πtAx− π0

s. c. Bx = b

x ∈ X

where (π, π0) ∈ Rm ×R are the dual variables provided by the resolution of
(RMP ). The solution of (SP ) is incorporated (as a column) in (RMP ) if
its value is non negative.

This process ends when there is no more variables in {1, . . . , K}\K with a
positive reduced cost.

3 Lagrangian and Dantzig-Wolfe decompositions

This section is dedicated to Lagrangian decomposition duality. We establish
the relationship between LD, DWD and CG. We consider the following DW
master problem :
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(MPD)























































max
∑K

k=1(cx
(k))λk

∑K
k=1 x

(k)λk −
∑L

l=1 y
(l)γl = 0

∑K
k=1 λk = 1

∑L
l=1 γl = 1

λk ≥ 0, k = 1, . . . , K, γl ≥ 0, l = 1, . . . , L

where x(k), k ∈ {1, . . . , K} the extreme points of XB and by y(l), l ∈ {1, . . . , L}
those of YA.

Lemma 1 The value of this master problem (MPD) provides a better upper
bound on v(P ) than the value of the classical DWD (MP ).

Proof:

v(MPD) =























































max
∑K

k=1(cx
(k))λk

∑K
k=1 x

(k)λk −
∑L

l=1 y
(l)γl = 0

∑K
k=1 λk = 1

∑L
l=1 γl = 1

λk ≥ 0, k = 1, . . . , K, γl ≥ 0, l = 1, . . . , L.

By duality

v(MPD) =







































min z1 + z2

z1 + wtx(k) ≥ cxk, k = 1, . . . , K (1)

z2 − wty(l) ≥ 0, l = 1, . . . , L (2)

w ∈ Rn, z1, z2 ∈ R

If we consider only a subset of the multipliers w ∈ Rn such that wt = πtA,
where π is a vector of Rm, and substitute in (1) and (2) we obtain the following
problem:







































min z1 + z2

z1 + πtAx(k) ≥ cxk, k = 1, . . . , K

z2 − πtAy(l) ≥ 0, l = 1, . . . , L

w ∈ Rn, z1, z2 ∈ R
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for which the dual is:























































max
∑K

k=1(cx
(k))λk

∑K
k=1 Ax

(k)λk −
∑L

l=1 Ay
(l)γl = 0

∑K
k=1 λk = 1

∑L
l=1 γl = 1

λk ≥ 0, k = 1, . . . , K, γl ≥ 0, l = 1, . . . , L.

As y(l), l ∈ {1, . . . , L} are the extreme points of YA, we have Ay
(l) = a, and by

∑

l γl = 1, we obtain the problem (MP ). Thus v(MPD) ≤ v(MP ) �

Remark 2 If n > m, the set {πtA, π ∈ Rm} ( Rn and then v(MPD) can be
stricly better than v(MP ).

Remark 3 As (LDD) (resp. (LRD)) is the dual of (MPD) (resp. (MP )),
we can state that

v(MPD) = v(LDD) = min
w∈Rn

v(LD(w)) ≤ min
πt∈Rm

v(LD(πtA))

and

min
πt∈Rm

v(LD(πtA)) = min
π∈Rm

v(LR(π)) = v(LRD) = v(MP ).

This approach supply an alternative proof to the dominance of LD over LR.

4 Decomposition models

This section is devoted to an illustration of this new DWD model on two clas-
sical combinatorial optimization problems : the 0-1 bi-dimensional knapsack
problem and the generalized assignment problem.

4.1 The 0-1 bi-dimensional knapsack problem

This problem consists in selecting a subset of given objects (or items) in such
a way that the total profit of the selected objects is maximized while two
knapsack constraints are satisfied. The formulation of this problem is given
by :
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(0− 1 BKP )







































max
∑n

i=1 cixi

s. c.
∑n

i=1 aixi ≤ A
∑n

i=1 bixi ≤ B

xi ∈ {0, 1}, i = 1, . . . , n

where n is the number of objects (or items), the coefficients ai (i = 1, . . . , n),
bi (i = 1, . . . , n) and ci (i = 1, . . . , n) are positive integers and A and B are
integers such that max{ai : i = 1, . . . , n} ≤ A <

∑

i=1,...,n ai and max{bi : i =
1, . . . , n} ≤ B <

∑

i=1,...,n bi.

The classical Dantzig-Wolfe master problem is given by:







































max
∑K

k=1(
∑n

i=1 cix
(k)
i )λk

s.c.
∑K

k=1(
∑n

i=1 aix
(k)
i )λk ≤ A

∑K
k=1 λk = 1

λk ≥ 0, k = 1, . . . , K.

where x(k), k = 1, . . . , K, are the extreme points of Conv({xi ∈ {0, 1}|
∑n

i=1 bixi ≤
B, i = 1, . . . , n}); and the pricing problem is:



























min
∑n

i=1(ci − πai)xi − πA

s. c.
∑n

i=1 bixi ≤ B

xi ∈ {0, 1}, i = 1, . . . , n.

The master problem associated to Lagrangian decomposition is given by:























































max
∑K

k=1(
∑n

i=1 cix
(k)
i )λk

∑K
k=1(

∑n
i=1 x

(k)
i )λk −

∑L
l=1(

∑n
i=1 y

(l)
i )γl = 0

∑K
k=1 λk = 1

∑L
l=1 γl = 1

λk ≥ 0, k = 1, . . . , K, γl ≥ 0, l = 1, . . . , L

where x(k), k = 1, . . . , K (resp. y(l), l = 1, . . . , L), are the extreme points
of Conv({xi ∈ {0, 1}, i = 1, . . . , n|

∑n
i=1 bixi ≤ B, i = 1, . . . , n}) (resp.

Conv({yi ∈ {0, 1}, i = 1, . . . , n|
∑n

i=1 aiyi ≤ A}));
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and the pricing problems are:



























min
∑n

i=1 uiyi

s. c.
∑n

i=1 aiyi ≤ A

yi ∈ {0, 1}, i = 1, . . . , n

and


























min
∑n

i=1(ci − ui)xi

s. c.
∑n

i=1 bixi ≤ B

xi ∈ {0, 1}, i = 1, . . . , n.

where xi, i = 1, . . . , n and yi, i = 1, . . . , n are equal to 1 if object i is filled
in the knapsack.

4.2 The generalized assignment problem

It consists of finding a maximum profit assignment of T jobs to I agents such
that each job is assigned to precisely one agent subject to capacity restric-
tions on the agents [10]. The standard integer programming formulation is the
following:







































max
∑

i

∑

t citxit

s. c.
∑

i xit = 1, t = 1, . . . , T
∑

t ritxit ≤ bi, i = 1, . . . , I

xit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T

Two classical Dantzig-Wolfe decompositions can be made, by relaxing the
assignment constraints or the capacity constraints.

The first classical Dantzig-Wolfe master problem is given by:







































max
∑K

k=1(
∑

i

∑

t citx
(k)
it )λk

s.c.
∑K

k=1(
∑

i x
(k)
it )λk = 1, t = 1, . . . , T

∑K
k=1 λk = 1

λk ≥ 0, k = 1, . . . , K
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where x(k), k = 1, . . . , K, are the extreme points of Conv({xit ∈ {0, 1}|
∑

t ritxit ≤
bi, i = 1, . . . , I}); and the associated pricing problem is:



























min
∑

i

∑

t(cit − πt)xit −
∑

t πt

s. c.
∑

t ritxit ≤ bi, i = 1, . . . , I

xit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T.

The second classical Dantzig-Wolfe master problem is given by:







































max
∑L

l=1(
∑

i

∑

t city
(l)
it )γl

s.c.
∑L

l=1(
∑

t rity
(l)
it )γl ≤ bi, i = 1, . . . , I

∑L
l=1 γl = 1

γl ≥ 0, l = 1, . . . , L

where y(l), l = 1, . . . , L are the extreme points of Conv({yit ∈ {0, 1}|
∑

i yit =
1, t = 1, . . . , T}); and the associated pricing problem is:



























min
∑

i

∑

t(cit − πi)yit −
∑

i πi

s. c.
∑

i yit = 1, t = 1, . . . , T

yit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T

The master problem associated to Lagrangian decomposition is given by:























































max
∑K

k=1(
∑

i

∑

t citx
(k)
it )λk

∑K
k=1(

∑

i

∑

t x
(k)
it )λk −

∑L
l=1(

∑

i

∑

t y
(l)
it )γl = 0

∑K
k=1 λk = 1

∑L
l=1 γl = 1

λk ≥ 0, k = 1, . . . , K, γl ≥ 0, l = 1, . . . , L

where x(k), k = 1, . . . , K (resp. y(l), l = 1, . . . , L), are the extreme points of
Conv({xit ∈ {0, 1}|

∑

t ritxit ≤ bi, i = 1, . . . , I}) (resp. Conv({yit ∈ {0, 1}|
∑

i yit =
1, t = 1, . . . , T}));
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and the pricing problems are:



























min
∑

i

∑

t uityit

s. c.
∑

i yit = 1, t = 1, . . . , T

yit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T

and


























min
∑

i

∑

t(cit − uit)xit

s. c.
∑

t ritxit ≤ bi, i = 1, . . . , I

xit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T.

where xit, i = 1, . . . , I, t = 1, . . . , T and yit, i = 1, . . . , I, t = 1, . . . , T are
equal to 1 if job t is assigned to agent i.

5 Numerical experiments

This section is devoted to an experimental comparative study between LD
and LR when solved by the CG algorithm. We consider the two optimization
problems defined in the previous section : the 0-1 bidimensional knapsack
problem and the generalized assignment problem.

We consider in our tests 6 instances of the 0-1 bi-dimensional knapsack prob-
lem from the OR-Library. Table 1 presents a comparative study between CG
resolution of LD and LR formulations (denoted CG LD and CG LR respec-
tively). The master and pricing problems are solved by CPLEX11.2 solver.

Table 1
Lagrangian relaxation and Lagrangian decomposition for (0-1 BKP)

WEING1 WEING2

vR %vE Iter tG tSP tMP vR %vE Iter tG tSP tMP

CG LR 141 388.50 0.1 6 0.12 0.12 0.00 130 883.00 0.0 1 0.01 0.01 0.00

CG LD 141 383.00 0.1 136 9.55 8.72 0.24 130 883.00 0.0 157 13.61 12.56 0.40

WEING3 WEING4

vR %vE Iter tG tSP tMP vR %vE Iter tG tSP tMP

CG LR 97 613.92 2.0 5 0.13 0.11 0.00 122 321.58 2.5 7 0.08 0.06 0.01

CG LD 95 677.00 0.0 142 11.42 10.64 0.25 119 337.00 0.0 156 12.68 11.54 0.33

WEING5 WEING6

vR %vE Iter tG tSP tMP vR %vE Iter tG tSP tMP

CG LR 98 796.00 0.0 1 0.01 0.00 0.01 130 697.80 0.1 6 0.05 0.05 0.00

CG LD 98 796.00 0.0 77 3.51 2.99 0.16 130 623.00 0.0 162 12.47 11.51 0.33

vR: the relaxation value.
%vE: the gap between relaxation and optimal values.
Iter: number of iterations.
tG: the global resolution time (s).
tSP: the global resolution time of pricing problems (s).
tM: cumulated master problems resolution time (s).
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CG LR and CG LD optimality are reached for all instances. As expected,
LD gives better upper bounds then LR. On average on instances WEINGi,
i = 1, . . . , 6, %vE associated to LD (resp. RL) is 0.02 (resp. 0.78), but we
observe that the average resolution time of CG LR (0.07 s) is very small
compared to CG LD computation time (10.54 s), this is due to the fact that
the computational effort of each CG LD iteration is greater than the CG LR
one and to the slow convergence of CG LD compared to CG LR.

We consider also in our tests 6 instances of the GAP from the OR-Library.
All instances gapi, i = 1, . . . , 6 have the same size, 5 agents and 15 jobs. The
master and pricing problems are solved by CPLEX11.2 solver. Table 2 shows a
comparison between LR and LD algorithms performances, when we apply for
LR the second classical Dantzig-Wolfe decomposition, by relaxing the capacity
constraints (cf section 4.2).

Table 2
Lagrangian relaxation and Lagrangian decomposition for (GAP)

gap1 gap2

vR %vE Iter tG tSP tMP vR %vE Iter tG tSP tMP

CG LR 343.59 2.3 33 0.27 0.16 0.03 339.38 3.8 26 0.22 0.17 0.00

CG LD 337.00 0,3 1169 383.13 343.61 29.37 327.00 0,0 894 258.41 234.55 15.78

gap3 gap4

vR %vE Iter tG tSP tMP vR %vE Iter tG tSP tMP

CG LR 349.68 3.2 33 0.22 0.14 0.01 350.40 2.8 31 0.25 0.17 0.00

CG LD 339.50 0.1 945 273.18 245.89 19.01 341.00 0.0 878 282.25 258.89 15.74

gap5 gap6

vR %vE Iter tG tSP tMP vR %vE Iter tG tSP tMP

CG LR 335.76 3.0 35 0.28 0.17 0.05 351.82 2.0 30 0.22 0.12 0.08

CG LD 327.25 0.4 595 163.86 149.73 9.05 345.00 0.0 1115 334.65 301.99 23.93

vR: the relaxation value.
%vE: the gap between relaxation and optimal values.
Iter: number of iterations.
tG: the global resolution time (s).
tSP: the global resolution time of pricing problems (s).
tM: cumulated master problems resolution time (s).

As before, CG LR and CG LD optimality are reached for all instances. LD
gives better upper bounds then LR. On average on instances gapi, i = 1, . . . , 6,
%vE associated to LD (resp. RL) is 0.13 (resp. 2.85), but we observe that the
average resolution time of CG LR (0.24 s) is still very small compared to
CG LD computation time (282.58 s).

The first classical Dantzig-Wolfe decomposition for LR, by relaxing the assign-
ment constraints (cf section 4.2), has been also tested on the same instances,
the results show that the bounds are tighter (but they are not better then those
obtained by LD) and the column generation algorithm takes more iterations
and time to converge.
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6 Conclusion

This paper focused on Dantzig-Wolfe Decomposition principle. We propose a
new Dantzig-Wolfe master problem for integer linear programming, which al-
lows to propose an alternative dominance proof of Lagrangian Decomposition
bound over Lagrangian Relaxation bound. As illustration, we have given the
two Dantzig-Wolfe decomposition models for the 0-1 Bi-dimensional Knap-
sack Problem and the Generalized Assignment Problem. The obtained exper-
imental results demonstrate the superiority of the Lagrangian Decomposition
bound, but the gain on bound quality impose an additional computation ef-
fort. In fact, at each iteration of the column generation algorithm for the
Lagrangian decomposition, two pricing problems (generally integer problems)
have to be solved. Through this experimental study, we conclude that column
generation resolution of Lagrangian decomposition can be useful if we want
to obtain a good initial bound, as for example at the root node of a branch
and bound or a branch and price scheme.
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