N

N

A minimal dynamical model for tidal synchronization
and orbit circularization
Jozsef Vany6, Bruno Escribano, Julyan H. E. Cartwright, Diego L. Gonzalez,

Oreste Piro, Tamas Tél

» To cite this version:

Jézsef Vanyd, Bruno Escribano, Julyan H. E. Cartwright, Diego L. Gonzalez, Oreste Piro, et al.. A
minimal dynamical model for tidal synchronization and orbit circularization. Celestial Mechanics and
Dynamical Astronomy, 2010, 109 (2), pp.181-200. 10.1007/s10569-010-9322-2 . hal-00595948

HAL Id: hal-00595948
https://hal.science/hal-00595948

Submitted on 26 May 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00595948
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

A minimal dynamical model for tidal synchronization and
orbit circularization

Jozsef Vany! - Bruno Escribano? -
Julyan H. E. Cartwright 2 Diego L. GonzleZ
Oreste Piro* - Tamas Telt

Received: date / Accepted: date

Abstract We study tidal synchronization and orbit circularizatiorai minimal model that
takes into account only the essential ingredients of tigébination and dissipation in the
secondary body. In previous work we introduced the modeHgile we investigate in depth
the complex dynamics that can arise from this simplest mofitdial synchronization and
orbit circularization. We model an extended secondary lafdgassm by two point masses
of massm/2 connected with a damped spring. This composite body maovéei gravita-
tional field of a primary of massl > mlocated at the origin. In this simplest case oscillation
and rotation of the secondary are assumed to take place piahe of the Keplerian orbit.
The gravitational interactions of both point masses withghimary are taken into account,
but that between the point masses is neglected. We perfoaylariexpansion on the exact
equations of motion to isolate and identify the differerfiéefs of tidal interactions. We com-
pare both sets of equations and study the applicabilitye&ffproximations, in the presence
of chaos. We introduce the resonance function as a resauiderttify resonant states. The
approximate equations of motion can account for both symghation into the 1:1 spin-
orbit resonance and the circularization of the orbit as thig true asymptotic attractors,
together with the existence of relatively long-lived médifiée orbits with the secondary in
p:g (p andq being co-prime integers) synchronous rotation.

Keywords tidal friction - locking - resonance spin—orbit coupling

1 Introduction

Ever since Darwin [4] models have been constructed of thed Sginchronization of the
Moon and other celestial bodies [14, 9, 8, 20, 18, 1, 3, 5, 228,

These models have become more quantitatively accurategtlibe same time more
complex. Here we take the opposite approach: we strip thagmoof tidal synchronization
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to its bare bones with a minimal model that captures just tiditgtive dynamical aspects
of the problem.

To our knowledge there are only two approaches modellire) tideraction as a few-
body problem. Hut [11] investigates a close binary systereretfthe primary is modelled
by three gravitationally interacting point masses (theoedary is point like). Equilibrium
tides are described, and the effect of weak friction is takém account by means of the
introduction of a constant time lag. In the approach of Hutfand Greenberg [10] the
primary is modelled as a sphere coupled to two point massedarnped springs which do
not keep their straight shape but can become curved. Thée-fg@msecondary can move
along a spherical orbit only and the primary is assumed to @piformly.

Although our model has a secondary consisting of two poirgses only bound with a
damped spring, no specific restrictions are applied. We lwas $tudy dynamical tides, the
nonuniform rotation of the secondary, resonances betwaation and orbital motion, and
the effect of circularization. This simple model fundanadiyt differs from others where
the secondary is described as a spatially extended objbkettwWwo-point-mass feature is
nevertheless similar in spirit to restricting those modelthel = 2 normal mode, as done
e.g. in Mardling [15], [16] and Witte et al [24]. It is perhagge to this feature that we find
chaotic dynamics as Mardling [15] did although, owing to presence of dissipation, in
our case chaos is unavoidably of a transient character. Aewbiat related problem is that
of tethered satellite systems [13, 22] but dissipationscsily ignored in this approach.

Our minimal model also enables us to investigate the nafuresonances in detail. We
introduce a new definition of resonant states based on aaaserfunction which distin-
guishes resonances. p and 1: 1, and characterizes the different types of tempeiadhb-
iour. A necessary condition for the existence of a resonanfmemulated: the energy of the
secondary should be constant on average. The responsedyfithmnics of the secondary to
the temporal change of orbital elements can be monitored.

The model is well-defined and easy to treat numerically imitginal form [7]. Never-
theless, we carry out a large distance Taylor expandien i) over the exact equations of
motion. The approximate equations enable us to identifyiswmidte the different effects of
tidal interactions. Special attention is paid to chaotsasawhere the applicability of the ex-
pansion method is nontrivial. Our finding is, that the exaet approximate equations might
lead to different resonances (quasi-attractors) owingtwsisivity to the initial conditions,
but if the two solutions reach the same asymptotic statey #e=second-order approxima-
tion provides a rather accurate description of the dynamves long times. We can also
obtain insight into apapsis precession and the temporaigehaf orbital elements via the
approximate equations.

The paper is organized as follows. The model is introduc&eiction 2. The succeeding
Section is devoted to a discussion of resonant and chaati&ssiand contains the definition
of the novel resonance function. The energy condition feonant states is also given there.
The approximate equations of motion are derived, and thpgili@ation to the energy con-
dition is worked out in Section 4. The change of orbital elate@nd the comparison of the
exact and approximate equations are the subjects of th@ioly two sections. Finally, a
discussion follows that also summarizes the results whieleapected to be valid beyond
the particular model. Technical details are relegatededppendix.



B

Bapasis

Fig. 1 (a) Instantaneous configuration of the system given by thergdized coordinatesf, |, . The rela-
tive anglea = @ — B is indicated. (b) Schematic diagram illustratiBghapsis(t)

2 The model

We model an extended secondary body of nrads/ two point masses of mass/2 con-
nected with a damped spring; see Fig. 1(a). The spring angelaon dashpot are in parallel
in a Kelvin—Voigt configuration [17].

This composite body moves in the gravitational field of a @riynof massM > m
located at the origin. In this simplest case oscillation eotdtion of the secondary are as-
sumed to take place in the plane of the Keplerian orbit. Wepadar coordinates, 8 for
the centre of mass of the secondary, wWiths the instantaneous length of the spring @nd
as the rotational angle characterizing the orientatiomefsecondary. Both angl@sand ¢
are measured from theaxis in an inertial reference frame. The gravitationatiattions of
both point masses with the primary are taken into accounthlatibetween the point masses
is neglected.

To describe the conservative part of the dynamics we cartseridimensionless La-
grangian, with the initial semi-major axis as the unit ofgémand the corresponding Kep-
lerian period as the unit of time, in terms of the generalizedrdinates) = (r, 3,1, ¢):

2 B2 12 12¢2 11 P )
=gt et s tata, gl )
wherer; = (r2+12/4+ (=1)"*1rl cos(¢ — B))l/z, i = 1,2, is the distance of thi¢gh compo-
nent of the secondary to the primary ands the vibrational frequency of the spring. After
including dissipation proportional fothe equations of motion are

= rf?~ R, — 2R cos(g—B) )
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wherey is the dissipation constant and the shorthand notation
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has been used.

The set of generalized coordinates can be split into twospaite first subsystem is
related to the orbital motiorr () and the second subsystem describes the internal dynamics
(rotation, vibration) of the secondarly, ().

In order to understand the temporal evolution of the fulltsgswe can study the en-
ergy and angular momentum transfer between the degreeseafdm and subsystems. The
angular momenta of the first and second subsystems are dafined

Ny =r2B and Np = %Iz(b, @)

respectively. The angular momentum is transferred betwleertwo subsystems but the
sum is conserved as we only have central foréés{ N, = N = congt.). Becausé < r,

in practiceN; =~ N = congt. The total energyK) is split into a centre-of-mass energy
(energy of the first subsystem), a vibrational endfgy; and a rotational energsq:

E. - % (7 +0B?) - % ®)
i = g (124621 ~10?), ©
Erot:%lz(pz—%(%'F%)-l-%. (10)

With the above equations we can monitor how the energy isfeared from the centre-of-
mass orbit to vibration and rotation and how the total enelegreases through dissipation.
We also define the energy of the secondary as

Esec = Evibr + Erot~ (ll)

The instantaneous angular momentum and the energy traasfegiven by the time
derivatives of these quantitie& (N).

In order to follow the orbital elements in continuous time;, kecall some formulae from
the Keplerian problem. The instantaneous dimensionlesssajor axis and the eccentric-
ity can be expressed as

2
a(t) = _ZEi(t)’ £(t) = /14 2E5()NZ() = ¢ |1— 'il(g). (12)

respectively. According to (12) the changeEf plays an important role in the change of
the semi-major axis and eccentricity. The anglbetween the vector pointing to the centre
of mass of the secondary and the semi-major axis of the oapitbe obtained from the
Keplerian formr = p/(1— £cosw) as

w(t) = arccosl_’\lf((# (13)

becausep = NZ. So the angle of apapsis — see Fig. 1(b) — is
Bapapsis(t) = B(t) - W(t)~ (14)

In this articlet; denote the instants when the secondary is at the apapsiss(apas-
sages). If a quantityf() is followed over such a long time that the change of the afbit



elements is significant, we plot the quantity only at theansdt;. In such cases we use the
notationf (t;). To study the long term behaviour 6f we use the time average of the time
derivative off over a suitable time period. The choice of the suitable tiewog depends
on the state of the secondary. Generally, it is one peqed 1) but if the systemisin@:q
resonance, the average is taken ayperiods.

titg

f(t)dt. (15)

<f>q=
i+q — U i

3 Resonant and chaotic states

In dissipative casesy(> 0) there is only one attractor, the 1:1 resonance, and alaircu
orbit [7]. The approach towards the attractor typicallywsahrough a series of resonances.
Because of the change of orbital elements we introduce tleniog resonance functions

tip1
p(i)ER(ti):l—&—i/(xdt, i=1,23.... (16)
2

fi
The integral term yields the overall rotational angle of $eeondary between timgsand
ti;+1 relative to the axis in units of 21, see Fig. 1(a). The unit term express the fact that the
radius has carried out approximately one rotation. Becafidee small apapsis precession,
R or p differ slightly from the entire rotational angle of the sadary (in units of 2i).
The resonance function is thus a characteristic of theiootaifter eliminating the apapsis
precession. If the system is ing q resonance, functiop is periodic ini, its period isq
and

q
_Zip(i) =p. 17

The reason for the definition of the functioRsis that they are more convenient to plot
thanp(i). In the presence of constant apapsis precesBiovguld be periodic. Because of
the time dependence of the orbital elements in our probkes not strictly periodic but is
almost so. In g:qg resonance, during orbital periods the rotation of the secondary relative
to ther axis is p— g and the average of the relative rotation(js— q)/qg. According to
Eq. (16) the relative rotation during one periodRs- 1. Generally, the relative rotation is
not exactly equal to the average of the relative rotatiorabubst soR— 1~ (p—q)/g. The
average oRis thereforep/q and it typically takes on different values around the average.
To understand better the featuresptonsider two examples. In a 3:2 resonance, during
two orbital periods the relative rotation of the secondargrie. During one of the periods
the relative rotation is a little smaller tharf2and during the other it is a little larger than
1/2. Thusin the first case < 0.5+ 1 = 1.5 and in the second caBe> 1.5. When plottindR
versug, if the points are quite dense, we can see two lines near tealbe 15. The other
example is a 2:2 resonant state (see right side of Fig. 2@}temid part of Fig. 2(b)),
which is different from 1:1 resonance. In the former during rbital periods the relative
rotation of the secondary is two. During one of the periodsrehative rotation is a little less
than 0 (negative) and during the other the relative rotaganlittle greater than O (positive).
Thus in the first periodk < 1 and in the secon® > 1. In a 1:1 resonand® = 1. Although
the average oR is the same in both caseR £ 1), in a 1:1 resonance the position and the
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Fig. 2 (a) Resonance functidR(tj), £(ti) (upper continuous line). Parameters and initial conditions- 10,
y=1,lp=10"3; & = 0.4, ¢(0) = 0, p(0) = 5. The series of resonances is 5:1, 4:2, 4:1, 2:2. (b) Resenan
function R(ti), Ec(ti) (upper continuous line). Parameters and initial conditieas= 10, y = 5, lo = 1073

& = 0.4, (0) =0, ¢(0) = 5. The series of resonances is 2:1, 1:1, 2:2, 1:1.

angular velocity relative to theaxis are always the same at apapsis. The 1:1 resonant state
and the 2:2 should thus be distinguished from each otheuBedhey have quite different
features; for example, the amplitude of the libration igéarand the changes of orbital
elements are faster in a 2:2 resonance. In this article the pe q resonant state will be

used for resonances different from 1 : 1 only.

Fig. 2(a) shows an example of the time-dependent resonamotidn where we also
plot the temporal change of eccentricity. It is easy to saeathe different regimes in the
figure. During the first regime (t=0-300000) the rotation leé secondary is chaotic. The
orbital motion drives the secondary. Depending on the arblements the driving can cause
chaotic rotation. The orbital elements are changing andyihe of rotation caused by the
driving is also changing. By ~ 300000 the driving cannot cause chaotic rotation and the
chaotic regime ends.

The second regime is a resonance. If the system ispn g resonance the temporal
behaviour of the secondary is periodic, thus the averags efiergy and the dissipation are
constantsx Ege >q= 0 and

titg

<E>q¢= L / (f%yfz) dt = Cp,q = congt < 0. (18)

A constant energy of the secondary can only be maintaindtisystem pumps the dissi-
pated energy from the orbit to the secondary which means

< Ec >q=< E >q — < Esec >¢=Cpyq- (19)

This is an energy condition for the existence ob aq resonant state. The subscript q
expresses the fact that the valuefs determined mainly by the type of resonant state.
Of courseC also depends on the parameters - e.glperand on the orbital elements. The
resonant state ends - because of the change of orbital elememen the system cannot
pump enough energy to the secondary. If the energy conditi®nis not valid, the resonant
state loses its stability.

The third regime (near ~ 750000) is quite short. At the beginning of this regime a
couple of stable resonant states are present. Accordingrtgimulations they behave as



Fig. 3 Lifetime distribution over a piece of the@, @ plane withl = 0. The initial value ofl is chosen as
| = lo/(w? — @?). Parameters are» = 10, y = 10, lg = 107, £ = 0.1 (The secondary is at the apapsis).
Lifetimes are given in units of orbital periods. The filameptstructure is a manifestation of transient chaos.

quasi-attractors with fractal basin boundaries. If theest# the secondary is close to a
boundary between the basins of quasi-attractors, the @abiexhibit long-time chaos.

The fourth regime is also a resonance. This time the meameofishe disappearance of
the resonance is not the same as in the second regime. Thie sjogsi-attractor changes
into a strange (chaotic) quasi-attractor as a consequdnte @hange of the orbital ele-
ments.

Since all quasi-attractors are simple resonances, anydfypieaos present in such dis-
sipative systems can only be of transient type. As is knowmfthe theory of transient
chaos [19], [23] the chaotic set is in such cases a non-tttgeset, called a chaotic saddle.
Orbits initiated close to the stable manifold of the saddieverge towards the chaotic set,
stay a long time around it, and will be led eventually to a dladéisactor along the unstable
manifold of the saddle. The presence of a chaotic saddle eaeimonstrated by plotting a
lifetime distribution over the set of initial conditionshik is done in Fig. 3 where a clear
fractal filamentation of the longlived regions can be sedthdugh this set of points is sim-
ilar in appearance to a chaotic attractor, which is an utetaianifold, we emphasize that
what we see here is the stable manifold of a chaotic saddleha¥e to distinguish two
types of transient chaotic regimes. The first (second) typs evithout (with) a change of
the orbital elements. In Fig. 2(a) the second and fourth tthaegimes (the short ones) are
of the first type and the first and the third chaotic regimes lpihger ones) are of the second
type.

The typical behaviour of the eccentricity is a decrease tdwaro. In every regime but
the 1: 1 resonance the function of eccentricity is pieceewisncave (see Appendix 8.1).
The semi-major axis also decreases and approaches a givenag determined by the
initial conditions (see Appendix 8.2). The further evabutiof the system in this case is
that it falls into 1 : 1 resonance around- 1.1 x 107, and the eccentricity tends to zero
exponentially as the orbit circularizes. Fig. 2(b) showsthar example illustrating that the
1: 1 resonance can lose stability if the eccentricity is mamall. A similar loss of stability
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Fig. 5 FunctionR(t) for elastic secondary with no dissipation, with ¢a)= 5 and (b)w = 10. Weaker springs
show more resonant states and these remain stable for a langer t

can be found in a recent paper [22]. Although the authorsysiumbnservative model, a loss
of stability of the 1:1 resonance has been found due to theedse of the eccentricity. In
that model the dynamics of the secondary is three-dimeakad the point masses of the
secondary are unequal, but because the orbital elemenist déhange, the loss of stability
is not the result of a temporal evolution as in our case. Thediglso shows the centre-of-
mass energ¥:; our numerical experience is that the chang&gfs exponential only in a
1:1 resonance [7]. In other resonant states the temporagehiakE is approximately linear
(for an explanation see Eq. (19)). Another important feailiustrated in Fig. 2(b) is that
the decrease of the centre-of-mass energy is, in generad, imense in higher resonances
thanin1: 1 resonance.

In conservative casey & 0), we do not have any attractor, but the system can still syn-
chronize in several metastable resonances. The spring el@mough for the secondary to
interact with its orbit and temporarily store energy in tloenii of rotation and vibration.
Eventually the energy will go back to the orbit and the systeéthreturn close to its initial
state. In Fig. 4(a) we show how the energy is transferred fodbit to rotation and back.
Stronger springs (highep) behave more like rigid bodies and hence produce fewer reso-
nances. Weaker springs show a wide variety of synchrooizatihat can last from a few
orbital periods to thousands of orbital periods. A very étasecondary can easily synchro-
nize in rarer resonances. For instance, we can have ressaith rotation velocity slower



than the orbital velocity, or retrograde rotation: withaton in the opposite sense to the
orbit. Fig. 5(b) compares the varying resonances that avdumed with different springs
usingR(t) defined in Eq. (16). We can note how a more elastic secondanpig often
synchronized and its resonances remain stable for longesti

4 Approximate equations of motion

To calculate the approximate equations of motion we Taykpaad the Lagrangian up to
4th order inl /(2r):

g1 r2+r2[32+'3+f¢2 sz(M )2
=2 474 8 0

1
+= .
r

1+ (%) i P (cosa) + (er)4P4(cosa)

The Taylor-expanded equations of motion can be writteinag® +§® +§@ +... where
g=(,B,l,9) and

: 1
r/32—.r—2
B
e I N (20)
1¢” — w?(1 —lo) — 2/
_ole
I
0 312
0 8r43(|12—3co§ a)
0= | L (1-acoga) | 47=| Ghsnm @D
31 .
—Eﬁsmm 0

Another form of the Taylor-expanded equations of motion is

Oth order 1t order 2nd order
. 1 312
r_rB _r2 +§rj(l—3coga)
. iB 312
B 7—2T +§E5|n20

=12 — w?(I —lg) — 2yl —r|—3 (1-3coga)

. lp 31 .
(pf—zl— —Er—gsta

In general, theth order approximation contains thth power ofl /r in the equations of
i, rB,1 andl @ (accelerations).
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In the Oth order approximatiorj (= §(9) the system of equations splits into two parts.
The first pair of equations (3) forms the equations of motion of the pure Keplerian problem
and the second paif,) describes the problem of two rotating point masses coeteny
a frictional spring.

It is worth emphasizing that in the 1st-order approximaiigr= §© + §V) the sec-
ondary has no feedback on the centre-of-mass motion at fadit i5 why the first order
approximation has important qualitative differences fritva exact model: (i) The orbital
elements are not changing; there is no circularizatioplt(is a driven nonlinear system in
which the drive is not changing in time. Depending on thetatt@lements the attractor(s)
can be simple or strange ones. Of course in the case of a stadmgctor the dynamics of
the secondary is permanently chaotic and in the case of siatphctors the dynamics can
be either regular or transiently chaotic depending on tit&lrconditions. (iii) The orbit
pumps energy into the secondary but the orbital energy rsyainstant. (iv) The total an-
gular momentum is not constant. (v) The dimension of the @lsasce of this problem is
only 5. In spite of these differences, it is important to ddasthis approximation because a
couple of its features are reflected in the exact model.

We can also define approximations 1la and 2a. Approximatiois ilze 1st-order ap-
proximation without the terrq(;) =—I/r3 (17 3cog a), i.e., an equation corresponding to
rigid-body rotation of the secondary, providee: const. In this approximation the action
of the primary on the spring is neglected. Approximationtoe 2nd-order approximation
without the terrrq(zz) =3/812/r5sin2a in the equation oﬁ. The term kept in the equation
of  describes a central force perturbation proportiona/td provided anda are constant.
The force is then 8I2/r# (1—3cog a) and an analytic expression (Eq. (32)) exists for the
apapsis precession.

In general, the trajectories calculated by the approximat exact equations deviate
from each other because of the chaoticity of the dynamicsyat cases we expect only the
statistical behaviour to be the same. On the other handgifrtbtion is regular — as in a
resonance — then the approximate equations are expectedather accurate.

The Taylor-expanded equations give us a facility to undexthe response of the sec-
ondary to the changes of orbital elements. By using the skooter approximate equations

Ec=r ('r'+ r—z) +riB2+r2Bp = iq? +r?Bqy (22)

and the time average of the change of the centre-of-masgyecan be written as

titg
<Ee >q= tiyg—t; / (';q<12) +r23q(22))dt =
13 B
13 T2 B r2a
T i/ <r4 [12(1-3coda)] + 3 L SIHZU]) dt (23)

We use for illustrative purposes a 5 : 2 resonance and thaliedcentricity is OL. Fig. 6(a)
[(b)] shows the first (the fraction) and the second (expoessi square bracket) factors of
the first [second] term in the integral over two orbital pddaat different eccentricities.
The amplitudes of the two first factors are directly propgoél to the eccentricity because
the eccentricity and the change of the semi-major axis da¢ively small. Because of the
energy condition, the integral has to be constant. Theseflanctiona (t) has to change.
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Fig. 6 (a) Temporal change of the factors of the first term in the irale(®3) over two orbital periods at

different eccentricities. The secondary is at apapsis=a0. The line styles correspond to the eccentricities:

0.9 (heavy continuous), 0.8 (thin continuous), 0.7 (thietaad), 0.65 (thin dotted) and 0.63 (heavy dashed).

(b) Temporal change of the factors of the second term in tiegiat (23).

5 10
t

Fig. 7 The shift of functiona (t) with eccentricity. The line styles mark the eccentricityues as in Fig. 6.

Fig. 7 shows the functionr (t) ate = 0.9, 0.8, 0.7, 0.65, and 063. As the figure displays,
the response of the secondary is a shifta@f). The shift becomes faster as the end of the
resonance is approaching.

5 Temporal evolution of the orbital elements

In order to obtain a continuous-time estimate of the orlgitainents we use equations for

. 1, . -

€= E(ECNf+2ECN1N1)7 (24)
11. .

a= = E.=2a°E. 25

These equations appear in several models which treat tbeday as a spatially extended
object, see e.g. [24]. The point is tHas andN; cannot be expressed lsyanda only, and
the set of equations is thus not closed. Special approxifoateulas forE; and N; are
typically needed obtain closure. We are not forced to do soesthe numerical values of
these quantities easily follow from (2)-(5) and (7), (8)fdict we consider (24), (25) only as
diagnostic equations investigated along with the numksiglaition of our model.



12

For later purposes we also write down an equation3ggpss, used in the same diag-
nostic sense. By taking the time derivative of (14), (13) asithg (7) and (12) we find:
€ (3r2fB2 + 2r3BB) +£ (1 - r3BZ>
fe\/a(l—€2) '

The leading-order behaviour of these guantities followsifthe second-order approxi-
mate equations. Substituting

Bapapsis =B+ (26)

Ny = 2rf B+ r2f ~ gy, (27)

and Eq. (22) into (24) and (25), we obtain
. 1y, -
E=- [(rqf) + rﬁzq(zz)) NZ + ZECNlrzq(zz)] , (28)

a=2a%(fq)” +r2Bay)). (29)
In a similar way, one finds from (26)
2r3B£q<22) - (r3B2 - 1) £

Povaoss = % el 7)

(30)

5.1 Apapsis precession

The apapsis precessidf is obtained by muItipIyingﬁapapsis by the instantaneous period
T(t) = 2ma(t)¥2

AB(t) = 21/ @3(t) Bapapsis(t)- (31)

This equation provides the instantaneous tendency folyging a given apapsis precession.
This can, in certain phases of the motion, be of opposite tsign after a full period, i.e.,
than the average df3(t) over a period. A well-known result [12] fak 3 in the presence of
a dimensionless perturbative force of the type/r®, k < 1 yields

ABpen(t) = 2n|\’l}(zt)) (32)

wherek (t) = %Iz(t) (1—3coga(t)), under the assumption thaft) changes slowly.

In a time independent naive approximation wheh) is considered to be constant with
a~0and =lg,N;=N ,

ABnajve = 3?7-[%

In order to test the accuracy of the naive and the pertubapproximations of the apapsis
precession we compare the numerical results in the caseedfithplest, 1:1 resonance.
Fig. 8(a) showsABnaive from Eg. (33), the measuredf3 (measurement has been made
after a period but the value is represented by a continuoe$, & Bpert (t) from Eq. (32),
its average, and the time averageZ8(t) from Eq. (31) all evaluated in approximation
2a. Our conclusion is that the naive and the perturbativecaqapations can only estimate
the magnitude of the apapsis precession; they are not Ruitalgive the exact value. The

(33)
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AB(2nd order)
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t t

Fig. 8 (a) Comparison of the different methods for the calculationthef apapsis precession in the case
of a 1:1 resonance in approximation 2a: numerically measAf@dheavy continuous), average Af3(t)
from Eq. (31) (thin continuous, running very close to thevyeiine), ABpert (t) from Eq. (32) (thin dashed,
oscillating), average af Bpert (t) (heavy dashed)) Bnaive from Eq. (33) (heavy dotted). Parameters and initial
conditions:w =10,y =1,1p = 10°3, & = 0.1, 9(0) = 0, (0) = 5. (b) Comparison of the apapsis precession
obtained by means of the different approximate equationsnideesured exact and the exa@(t) averaged
coincide with the measurefif in 2nd order (heavy continuous line). The exag(t) coincides with 2nd
orderAB(t) (heavy dashed line). Parameters and initial conditians: 10, y =1, lp = 1073, g =0.1,
9(0) =0, ¢(0) =5.

value of the time-averagefif(t) is practically the same as that of the measuti¢dd The
difference between the averages\@(t) andA Byt (t) may be becauseis also oscillating
with an amplitude which is about one fifth of its average valllgerefore, the perturbative
result based on the slow variationofs an educated guess only.

Fig. 8(b) shows that the apapsis precession, Eq. (31), &emlwith the 2nd order ap-
proximation and the exact equations coincide (heavy coatis line). This means that the
equations of the 2nd order approximation are sufficientétewdating the apapsis precession
to high accuracy. The figure also shows the funciig#t) - exact and 2nd order approxima-
tion (heavy dashed), 2a order approximation (heavy dottedyl the numerically measured
apapsis precession in approximation 2a (thin continuag).liThe result is about one half
of the measured apapsis precession of the 2nd order ap@atiaimand of the exact simula-
tion. This implies that the contribution of the perturbati®/812/r* sin2a in the equation
of B to the apapsis precession is practically as important asvéieknown central force
contribution, Eq. (32), of approximation 2a.

Here we have concentrated on the case of the 1:1 resonanicesoschles when the sys-
tem is still far away from the circularized attractor. Sirihe interesting time dependencies
all die out in the long-time limit, the approximate equatare expected to work even bet-
ter for later times. The behaviour of the approximation sebd@round other resonances is
also similar. Altogether, the 2nd-order approximate eignatseem to provide a rather accu-
rate description of the entire dynamics, provided that #s®mnant state under investigation
is the same as that predicted by the exact equation. Thewaltieer that the approximate
equations lead in some cases to different resonances sigra attractors’ on intermediate
time scales appears to be a consequence of the fact thatrtheniys between resonances
is chaotic and the errors attributable to using a pertushatixpansion become drastically
amplified.

We can study the influence that the different parametgre;lo, € - have on the apapsis
precessiom Bapapss- Looking at Eq. (30), we can see thlBapapss does not depend on
directly. Numerical results indicate that an indirect degence cannot be found either for
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Fig. 9 Numerical data (dots) and fits (continuous lines) for the ajgaprecession as a function of spring
frequency (a) and eccentricity (b). (a) Parametersyasel, lo = 10~3; & = 0.05, and the fitted parameters
of (34) arec; = 9.85,c, = 8.11. (b) Parameters ate= 10,y = 1, lg = 10-3. The form of the fitted function
is ag? 4 b. The result of the fiti® = 3.78- 1075, b= 1.13-107°
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Fig. 10 (a) Average angular velocity with the exact equationsidhitonditions:gg = 0.1 and((pb,(h)) is
an element of the grid determined by the valges {0,1,2,3,4,5,6}, @ € {4.98,4.99,5.0,5.01,5.02}. We
used this set of initial conditions for every averaged pidhis article. (b)p(t) in the 2th order approximation
(dark, red) and with the exact (grey, yellow) equations ofiorotParameters and initial conditions:= 10,
y=1,lo=1073; & =0.1, p(0) = 0, ¢(0) = 5.

a wide range ofy (y < 2). Bapapsis (30) depends om(lz) (throughe¢) and qéz), and thel-
dependence of both terms is quadraticBggpsis ~ I2. Using the approximation fdr(Eq.
(43) of the Appendix 8.3) we expect that theandw dependencies can be written as

I 2
ABapapsis =C (ﬁ) , (34)

wherec; and c, are fitting parameters. Numerical fits confirm this conjezturhelo-
dependence is perfectly quadratic and Fig. 9(a) shows #tpaession (34) as a function
of wis perfectly consistent with the measured data. Fig. 9(byvstthat the eccentricity de-
pendence is basically also quadratic, but as 0, the apapsis precession seems to converge
to a nonzero value.

6 Comparison of approximations in chaotic cases

To produce Fig. 10(a), the exact equations of motion hava igegrated with 35 different
initial conditions and the time averages of the angularcigtdiave been calculated in every
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Fig. 11 Comparison of the average behaviour of the different appraté equations. Initial eccentricity is
(@)gp =0.1; (b)gg =0.2; (c) & =0.3.

period. The initial eccentricities of all 35 integrationeme the sameg(= 0.1). Fig. 10(a)
shows the average of the angular velocities versus timereTisea plateau at the end of
the curve, since all 35 cases are in resonance. The heighé glateau is 1 implying that
all the cases are in a 1:1 resonance. We integrated the axd¢ha 2nd-order equations
of motion with the same initial conditions. Angular velgcip versus time can be seen in
Fig. 10(b). Here and even in the case of the highest-ordemappation the trajectories
deviate from each other in the transient chaotic regitme 800). Based on a study of a
couple of similar cases we conclude that the 2nd-order (égitehorder) approximations
have the same characteristic features as the exact equafiomtion.

We have also studied the statistical behaviour of the diffeapproximations. The same
type of plot as Fig. 10(a) has been made to all orders of theoappations in Fig. 11(a).
We conclude that all approximations other than 1a exhilgitsdime statistical behaviour as
the exact case. From the graphs the characteristic tinegeded to reach a 1:1 resonance
can be estimated. This state is not yet the circularizeddtr sincee ~ & after such short
period of time. It takes typically a much longer time — dembt®y 1 in [7] — for the
attractor, where = 0, to be reached:; in this exampie ~ 2000 andr ~ 10°. The plateau
of the green, 4th-order curve is slightly higher than 1. Téason is that one of the 4th-
order cases is in a 5:2 resonance and not in 1:1. Among therdst-simulations there were
two in a 5:2 resonance, which is why the yellow curve is higihan the green one. It is
hardly observable but the dark blue, 3rd-order curve is higher than 1; this is owing to
the presence of a 5:4 resonance. Fig. 11(b) and (c) show aarmop of the exact and the
approximate cases with different initial eccentricitiBased on these, we conclude that the
higher the eccentricity the greater the time In Fig. 11(c) the asymptotic value is not 1,
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Fig. 12 (a) Comparison of eccentricities with the different appnoaie equations. Parameters and initial
conditions:w =10,y = 1,lg = 1073; gy = 0.1, 9(0) = 0, ¢(0) = 5. (b) Comparison of the averaged eccen-
tricities with the different approximate equations. Pararseand initial conditionsw = 10,y = 1,1 = 10~3;

& =0.1.

which suggests that a 1:1 resonance has not yet been reackieeldnd of the integration;
the curve is not smooth because most of the trajectoriescdtia resonance.

Fig. 12 shows the time dependence of the eccentriityin the different approximate
equations. In all cases a 1:1 resonance has been reachted BY00. In the first order
approximation there is no feedback of the secondary on thekian problem, therefore
£(t) = g = congt. The asymptotic slopes of the other curves show the rate okdese of
eccentricity. These rates are the same in all cases withxiteppgon of approximation 2a
which indicates that the contribution of the terf832/r sin 2o missing from the equation
for B is important.

Fig. 12(b) shows the eccentricity averaged over 35 diffeneitial conditions in the
different approximate equations. It is a general obseymatiat in resonances different from
1:1 the eccentricity decays much faster. This is the readoy iw cases in which there
are also other resonances than 1:1 in the ensemble (the 8rdtarorder) the averaged
eccentricities decrease faster. If we average only theekdnance cases than we obtain the
light and the dark blue curves. As expected, the curves oifteand 3rd order are close
to each other, and close to the curves of the 4th order andetextict numerical solution
which practically coincide. Fig. 12(b) indicates that ircegtional cases even the 4th-order
approximation can lead to a resonance — a ‘transient adttaet different from the exact
one. The good agreement between the approximate and exattets only holds under
the condition that the same resonance has been reached.

7 Discussion

Spin-orbit resonances between a large primary body and Besre@condary body are gen-
erally studied using models designed for quantitative yaislof a specific instance or a
particular part of the problem [14, 9, 8, 20, 18, 1, 3, 5, 2,8, Zhe complexity of these
models tends to obscure the fundamental physical prirgipi®lved in this interaction. We
have instead taken a qualitative dynamical-systems apbresing a minimalistic model
that takes into account only the essential ingredientsdafl tleformation and dissipation
in the secondary body. Despite its simplicity, the model aacount for both synchroniza-
tion into the 1:1 spin-orbit resonance and the circulaiiradf the orbit as the only true
asymptotic attractors. Apart from its applicability todldsynchronization and orbit circu-
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larization of celestial bodies, our model is also relevarthe problem of the dynamics of
tethered satellites, which has recently provoked muchésteand a number of space mis-
sions [13, 22].

One interesting open question is whether a pseudo-energyerengy-like — approach
would provide new insight into the problem. In this case weeheompletely defined the
gravitational and mechanical energies — the centre of miassrptation and vibration of
the secondary — and thus the dissipated energy can be absimply by subtraction from
the initial energy; the same is true for the evolution betwaeo arbitrary states. As the
dissipation is strictly passive the total energy is neagsaalecaying function, reaching a
constant value only in a situation in which the dissipatemt vanishes along the trajectory.
In the approach of Sarasola et al. [21], energy dissipas@ssociated with a local change
in phase space volume and on this basis they define a paffededitial equation that an
energy-like function must satisfy. The same depends ontzopéne decomposition of the
vector velocity field; the divergence free or rotationaltparcontrast with the part that
carries the whole divergence. Onkkis obtained we can calculate the energy derivative
along a trajectory of the system which is due to the part aagryhe divergence of the
vector field. Probably this is the unique new informationt tten be obtained in our case:
an analytical expression instead of the indirect caloofaliy subtraction of the mechanical
plus gravitational energy. Nonetheless the pseudo-erggpgyoach is of interest and we
intend to pursue it in future work.

The main conclusions that may be drawn from the presenttiget®ns are: The 1:1
resonance is the only stable attractor. Dissipation dikiessystem towards this synchro-
nization and circularizes the orbit. All other resonanaesraetastable, or transient attrac-
tors, and dissipate energy at a faster pace, and the appoyeatus the circular orbit is also
faster.

If we look to our solar system, we find that all large moons aekéd in 1:1 spin—
orbit resonance with their planets. Of the planets, howewely Mercury is locked into
spin—orbit resonance with the Sun, and this is a 3:2 spiit-t¥gbonance [3]. The presence
or absence of locking can be explained in our model througtsttength of the coupling
[7], which is largest for the moons, and smaller for the ptanef which Mercury has the
strongest coupling. Within our minimal model, in which 1slte only asymptotic attractor,
such a 3:2 resonance is metastable, and Mercury would eBntiecay into 1:1 spin—orbit
resonance. On the other hand, it may be possible to staBilzeesonance in our model by
adding to it interactions with further bodies (the othemglts); three-dimensionality (non-
coplanarity of spin and orbit); and post-Newtonian effects

Isolating the dominant interactions between the degreégefiom in terms of a Taylor
expansion allows us to to study them separately. In gertbeagecond-order approximation
is sufficient to reproduce the typical behaviour of the catgimodel, as long as we are
in the 1:1 resonance. This has been studied for apapsissgieng chaotic regimes and
eccentricity evolution.

Finally, we summarize features of our model which are exgedtd remain valid in
more general cases as well. Even if the expression<fét >q can, in general, be quite
complex, the energy condition (19) for resonant statesshioldny case. The mechanism of
the response of the secondary to the change of the orbitakels should remain similar to
in our model. Of course, we have to use the general formul)av(/ﬂﬁreq(lz) andq<22) can be
rather complicated.
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8 Appendix
8.1 Temporal change of the eccentricity
As we saw there are two typical temporal behaviourg&gflinear and exponential. From

Eq. (12) and considering that the approximate equdtios N is valid we can estimate the
temporal change of eccentricity.

a. Exponential temporal behaviour of E; Assuming the function oE.(t;) to be in the form
Ec(ti) = Eco + AgceEcli we obtain an exponential function for the eccentricity

£(t) & /14 2(Ecen + Apce et N2 = \/2Ac e M NZ (35)

where we used thay' 1+ 2E..N? = &, = 0. The eccentricity thus also decays exponentially
and its exponent is the half of the exponent of the funcgfti) (As = Agc/2).

b. Linear temporal behaviour of E; In p: g resonant states the temporal behaviougofs
linear with the negative slop@yq SOEq(ti) = Cp,ti + Eco whereE; o = Ec(to). The eccen-

tricity at the instantg is
&=¢&(g) =4/1+ ZEC’()NZ. (36)

Using this we obtain the temporal change of the eccentricity

which is always a concave function.

8.2 Radius of the circularized orbit

Consider a circular orbit in a 1:1 resonanag:=r = cond, Bm = condt, gax, =cond, l, =
congt, o = 0 andl = 0. The parameters of the circularized orbit are determinexh the
condition

Po = Lo (38)

Becausé., < a. from Eq. (12), a good approximation can be obtainedfoif we consider
thatN; ~ Np. By writing down Eg. (12) initially we obtain

NG =1—¢&3. (39)
In the final state,, = 0, 0=1—NZ/a and thus
a0 =1— €. (40)

The larger the initial eccentricityef), the smaller the final radius of the orbd.). It is
important to note thad., is independent of any other parameters iew or lo.
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Fig. 13 Comparison of the measurédcontinuous line) antkq, calculated by Eq. (43) (dashed line). Para-
meters and initial conditionso =10,y =1,lg = 103; & = 0.1, ¢(0) = 0, @(0) = 5.

8.3 Quasistationary behaviour lof
We introducedl =1 — . Its equation of motion in the 2nd order approximation is

. . [

AI:I¢2—w2AI—2yAI—r—3(1—3co§a). (41)
According to numerical resultdl /I < 1 which is why the left side and the third term of
the right side are neglectable. The second term is genaratlyegligible. After writing
Al =1 —1p we obtain
. I
O:I(pszz(lflo)fr—3(173co§a). (42)

This means thdt~ 0, and the spring is almost in equilibrium at each moment. xpaeding
| we obtain
w?lo 1

o= —1o (43)
w?—@?+ % (1-3cofa) 1_% ¢2+r£3(3co§a—1)

where we added the subscrigou. A comparison of (t) andleg(t) is shown in Fig. 13.



