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In this paper, we present a dete
tor of transient a
ousti
 signals that 
ombines twopowerful dete
tion tools: A lo
al wavelet analysis and higher-order statisti
al propertiesof the signals. Using both te
hniques makes dete
tion possible in low signal-to-noiseratio 
onditions, when other means of dete
tion are no longer suÆ
ient. The proposedalgorithm uses the adapted wavelet pa
ket transform. It leads to a partition of thesignal whi
h is `optimal' a

ording to a 
riterion that tests the Gaussian nature of thefrequen
y bands. To get a time dependent dete
tion 
urve, we perform a de-noisingpro
edure on the wavelet 
oeÆ
ients: The Gaussian 
oeÆ
ients are set to zero. Wethen apply a 
lassi
al method of dete
tion on the time re
onstru
ted denoised signal.We study the performan
e of the dete
tor in terms of experimental ROC 
urves. Weshow that the dete
tor performs better than de
ompositions using other 
lassi
al split-ting 
riteria. In a last part, we present an appli
ation of the algorithm on real 
owre
ordings of nu
lear plant pipings. The dete
tor indi
ates the presen
e of a missingbody in the piping at some instants not seen with a 
lassi
al energy dete
tor.Nous pr�esentons dans 
et arti
le un nouveau d�ete
teur de signaux transitoires a
ous-tiques. Ce d�ete
teur tire parti de deux te
hniques puissantes utilis�ees en d�ete
tion :une analyse lo
ale par ondelettes 
ombin�ee �a une exploitation des propri�et�es statis-tiques aux ordres sup�erieurs des signaux. Cette appro
he rend possible la d�ete
tiondans des 
onditions de rapport signal sur bruit diÆ
iles alors que les m�ethodes 
las-siques demeurent insuÆsantes. L'algorithme propos�e utilise les paquets d'ondelettesqui r�ealisent un pavage du plan temps-fr�equen
e adapt�e �a l'observation. Il aboutit �a la
onstru
tion d'une base de d�e
omposition qui est \optimale" selon un 
rit�ere qui testela nature gaussienne des bandes fr�equentielles. Pour obtenir une 
ourbe de d�ete
tiontemporelle, on e�e
tue un d�ebruitage du signal par mise �a z�ero des 
oeÆ
ients de ban-des gaussiennes. Une m�ethode 
lassique de d�ete
tion est ensuite appliqu�ee sur le signald�ebruit�e re
onstruit en temps.On �etudie les performan
es du d�ete
teur en terme de 
ourbes COR exp�erimentales.Nous montrons que le d�ete
teur donne de meilleurs r�esultats que les d�e
ompositionsqui utilisent d'autres 
rit�eres 
lassiques de segmentation. Dans une derni�ere partie, uneappli
ation de l'algorithme �a un enregistrement de 
ir
ulation hydraulique dans une
entrale nu
l�eaire est propos�ee. Le d�ete
teur indique la pr�esen
e d'un 
orps errant �ades instants non r�ev�el�es par un d�ete
teur 
lassique d'�energie.Key words: transient dete
tion, wavelet pa
kets, multiresolution analysis, adaptedsegmentation, de-noising, higher-order statisti
s, ROC performan
e 
urves.1 Introdu
tion1.1 Presentation of the problemWavelets and Higher-Order-Statisti
s are two of the most su

essful advan
es in the �eld of signalpro
essing of the twenty last years. Both te
hniques are powerful tools that 
an eÆ
iently be usedfor dete
tion appli
ations. But rare are the appli
ations where resear
hers simultaneously have triedto take advantage of the two approa
hes by 
ombining them. We propose to do so in this paper andshow how su
h a 
ombination 
an improve the quality of dete
tion.The problem addressed here 
on
erns the dete
tion of short time impulsive signals that we 
all2



transient signals. The dete
tion of this kind of signal has many appli
ations. In biologi
al domains,the dete
tion and exa
t lo
alization of transients in ECG or EEG re
ordings is of great importan
e[18,19,5℄. In [1℄, the authors dete
t wide-band transients that are pressure drop signals originatingfrom a developed turbulen
e experiment. In passive sonar problems, the dete
tion of transient a
ous-ti
 signals 
onstitutes an alternative to other 
lassi
al sonar dete
tion means be
ause of the progressrealized in redu
ing a
ousti
 noise generated by naval vessels. Thus the traditional means of dete
tionare insuÆ
iently reliable [6,17℄.In the problem addressed here, the signals are supposed to be embedded in a suÆ
iently strongadditive noise so that phenomena 
annot be visually dete
ted 
onsidering the observed temporalshape. The dete
tor proposed aims to perform better than any energy dete
tor so that false alarmor missed dete
tion situations are mitigated. In addition to severe signal-to-noise ratio 
ontexts, thesignals of interest su�er from a la
k of information: This makes the problem very diÆ
ult to solve.The signals to dete
t are poorly de�ned for the following reasons:{ Their temporal signal shapes are not exa
tly known,{ Their arrival times are not known and generally need to be estimated,{ Their brief existen
e bring redu
ed information for their 
hara
terization.However, we need to de�ne the obje
ts more pre
isely. Many of them have an os
illatory shapeyielding high peaks in their spe
trum. This is espe
ially true for the signals we 
onsidered su
h astransients generated by metalli
 sho
ks, 
ra
ks or slams.Transient signals 
an therefore be des
ribed as models with various parameters. Friedlander andPorat in [7℄ have proposed a theoreti
al solution of the problem assuming the signal was 
omposed ofdamped parameterized sines 
orrupted by a white Gaussian noise. Dete
tors investigated are basedon a 
lass of linear data transforms. A
tually, models are rather far from representing all the variety oftransient signals. So we intentionally 
hose a non parametri
 approa
h to prevent from restri
ting theproblem to a 
lass of parti
ular signals. Transients will then be 
hara
terized through their statisti
alproperties whi
h 
ontrast with the properties of the noise.We dis
uss in the next se
tion how we already proposed a dete
tor based on Malvar wavelets andits working limitations for assumed white Gaussian stationary noise. Wavelet pa
kets are proposedinstead in more realisti
 situations when the noise is 
olored and stationary.1.2 From Malvar wavelets to wavelet pa
ketsIn a previous work, we have shown that Malvar wavelets 
an su

essfully be used when the noiseis stationary white and Gaussian [16℄. The basi
 idea 
onsists in dis
riminating the noise from thetransient signal by segmenting the observation in �ne temporal sli
es when a transient is present andin large ones when there is noise only. The purpose is to get the `best' segmentation whi
h is adaptedto a desired 
riterion. A
tually, the segmentation 
orresponds to sele
ting a basis among the set ofall possible bases whi
h is related to a 
orresponding partition in the time-frequen
y plane.The 
riterion to 
hoose the best basis is based on the Gaussianity 
oeÆ
ients: When two adja
entsegments have Gaussian 
oeÆ
ients, they are merged, otherwise they are kept separated. Determi-nation of the Gaussianity of the wavelet 
oeÆ
ients is done using Higher-Order Statisti
s. When the3



noise is white stationary, the 
oeÆ
ients remain white stationary so that statisti
s 
an be estimatedby repla
ing mathemati
al expe
tations with average 
omputing. When the noise is 
olored, wavelet
oeÆ
ients in the same segment 
annot be 
onsidered stationary so that the estimation is not 
orre
t.For that reason, the `split and merge temporal sli
es' 
riterion that is used for the best basis sear
h,fails to give good results. To 
ir
umvent this problem, we propose to work in the frequen
y domainusing wavelet pa
kets. The best basis is 
hosen in the same way: Merging `Gaussian frequen
y bands'.In this 
ase, the estimation pro
ess is 
orre
t be
ause the 
oeÆ
ients in the same frequen
y band arestationary. This point is des
ribed further in the paper. �g.1The pro
edure used to sear
h for the best basis is s
hemati
ally des
ribed in the �gure 1 for thetwo 
ases des
ribed below. In the �rst 
ase depi
ted in [16℄, the best basis is initialized with a setof Malvar wavelets supported on minimal equally temporal sli
es. The merging 
riterion is appliedon pairs of adja
ent sli
es. It leads to the merging of the sli
es a

ording to the Gaussianity ofthe wavelet 
oeÆ
ients in ea
h sli
e. When merging, 
onsidered wavelets are repla
ed by the samenumber of twi
e longer supported wavelets. In the example of �gure 1, the third sli
e is supposedto have nonGaussian 
oeÆ
ients. The �rst step merges the sli
es 1-2, 5-6 and 7-8. In a se
ond step,the pro
edure leads to the merging of the last two sli
es obtained in the �rst step. The best basis isrea
hed.In the se
ond 
ase (�gure 1b), the pro
ess is exa
tly the same ex
ept the signal is initially seg-mented in equal frequen
y bands. The merging 
riterion is applied to adja
ent frequen
y bands.The time-frequen
y plane evolves a

ording to the frequen
y variable whi
h is \a
tive" in the tiling.Inversely, the time variable passively rea
ts be
ause frequen
y segmentation imposes the tiling in thetemporal domain.Considering the dete
tion problem, the purpose, however, is to get a time dependent dete
tionstatisti
. The obtained time frequen
y plane tiling a
tually 
orresponds to a set of admissible wavelets
onstituting a basis. The signal is proje
ted on ea
h element of this basis produ
ing de
omposition
oeÆ
ients. To return to a single temporal 
urve, a de-noising pro
edure setting Gaussian 
oeÆ
ientsto zero is performed. A denoised signal is re
onstru
ted from the retained 
oeÆ
ients. After that, astandard dete
tion algorithm is applied.The exa
t pro
edure of dete
tion is detailed in se
tion 3. Studies of performan
e are des
ribed.The method is illustrated in se
tion 4 with the dete
tion of a s
rew bolt that has been forgottenin nu
lear plant pipings.In the se
tion hereafter, we brie
y introdu
e wavelet pa
kets de�ned as an extension of the mul-tiresolution analysis prin
iples. We want to explain their 
onstru
tion as well as the 
oeÆ
ient 
ompu-tation. Before that, we give a justi�
ation in the use of adapted wavelets for the problem of transientdete
tion. 4



2 Using Wavelet Pa
kets for dete
tion2.1 Interest of adapted wavelet transformsIn a dete
tion problem, time-frequen
y representations are used to distribute the energy of a signalon the time-frequen
y plane, in su
h a way that relevant information 
an be extra
ted to make agood dete
tion. The results generally depend on the retained parameters and on the method itselfused as a time-frequen
y representation.For example, dis
rete windowed Fourier `bases' tile the time-frequen
y plane in regular 
ells whi
hall have the same un
ertainties. Dis
rete wavelet bases tile the time-frequen
y plane more naturally,a

ording to the evolution velo
ity of phenomena. A low frequen
y needs to be observed on a long timeto be 
orre
tly estimated whereas a high frequen
y 
an rapidly 
hange at any time. Therefore, time-frequen
y lo
alization naturally depends on the `observation s
ale'. However, these de
ompositionsimpose a �xed tiling shape in the time-frequen
y plane, independent of the observation. Moreover,
hoosing the analysis window size or the de
omposition depth is more or less done empiri
ally. Onthe other hand, it is possible, using adapted wavelet transforms, to obtain adapted tilings in thetime-frequen
y plane, automati
ally a

ording to the observation. �g.2In a dete
tion problem, the idea is to adapt the time-frequen
y tiling to the signature of the signalsof interest. Considering �gure 2, the pattern represented on the left 
orresponds to a transient signal ina 
ontinuous short time Fourier representation. An adapted wavelet transform using wavelet pa
ketsas depi
ted in panel (
) allows the time-frequen
y pattern to be insulated with an appropriate tiling.In pra
ti
e, the signal is of 
ourse strongly polluted and seeking for an adapted wavelet transformwill perform a better dete
tion, if a
hievable.The key point is to obtain a tiling showing a `pre-dete
tion' of the events. A time-frequen
y tiling isasso
iated to a retained wavelet basis among all the possible wavelet de
omposition bases. Basi
ally,a basis is 
onstituted by some admissible elements in a set of wavelet pa
kets. Wavelet pa
kets andtheir properties are now presented.
2.2 De�nitions and propertiesWe introdu
e wavelet pa
kets as an extension of the multiresolution analysis (MRA). This math-emati
al formalism has been developed for fast 
omputation of the dis
rete wavelet transform 
o-eÆ
ients [14℄. The MRA is built on two time series �lters hn and gn. The 
onstru
tion of waveletfamilies as well as the 
oeÆ
ient 
omputation rely on these single sequen
es.From hn and gn, we need to de�ne the two operators H and G as �lters on the digital signal xn:(Hx)n = Pk hkxn�k(Gx)n = Pk gkxn�k:5



When x is a fun
tion of the 
ontinuous variable t, we de�ne:(Hx)(t) = Pk hkx(t� k)(Gx)(t) = Pk gkx(t� k):With these 
onventions, the 
lassi
al s
ale and wavelet fun
tions read:� = �H� = �G�:where � is a 
ompression operator applied on a 
ontinuous fun
tion f(t) su
h as: �f(t) = p2f(2t).Wavelet pa
kets are 
reated by further applying the operators either on � or on  . It produ
es thein�nity  0;  1;  2; : : : of wavelets indexed by the arrangement f 2 N de�ned as: 2f = �H f 2f+1 = �G f with  0 = �H 0:Note that  0 = � and  1 =  . The family f f(t�p); p 2 Z; f 2 Ng 
onstitutes an orthonormal basisof L2(R) [20℄ (The sequen
es fhng and fgng are 
alled quadrature mirror �lters).In the frequen
y domain, the family f
 fg, where 
 f (�) stands for the Fourier transform of  f(t),a
ts as a 
olle
tion of subband �lters (see �gure 3b for f = 4). �g.3We now shift and s
ale the  f (t) to obtain multis
ale wavelet pa
kets: s;f;p(t) = 2� s2 f (2�st� p); s; p 2 Z; f 2 N :The operatorsH and G 
an again be used to express wavelet pa
kets from one s
ale to the followingone. We note the de
imation operator as (# x)n = x2n andH/ the operatorH for the inverse sequen
eh�n. The re
ursive expressions are derived: s+1;2f;p = (# H/ s;f;:)p s+1;2f+1;p = (# G/ s;f;:)p:Note that in
rementing the s
ale modi�es the `frequen
y index' f be
ause in
reasing the s
ale
orresponds to a �ner frequen
y analysis and authorizes a greater number of frequen
ies. In thetime/frequen
y plane, applying # H/ and # G/ `splits' the initial band into two subbands whi
hdoubles the frequen
y resolution as illustrated in �gure 4. The inverse `merging' operator merges twoadja
ent frequen
y bands in a single larger one (�gure 5). �g.4�g.5In this kind of diagram, the entire time-frequen
y 
ell information is supposed to be 
arried bythe wavelet 
oeÆ
ient, whi
h is the inner produ
t of  s;f;p(t) with the signal x(t):WPs;f;p = hx;  s;f;pi in the L2(R) sense.Remarkably, the wavelet 
oeÆ
ients 
an be re
ursively evaluated from the s
ale s to the next one6



s+ 1 in the same way it 
an be done with the wavelet fun
tions:WP s+1;2f;p = (# H/ WP s;f;:)pWP s+1;2f+1;p = (# G/ WP s;f;:)p:In the merging pro
ess, 
oeÆ
ients are re
onstru
ted by the following relation:WPs;f;p = (H "WPs+1;2f;:)p + (G "WPs+1;2f+1;:)pwhere the interpolation operator a
ts like (" x)2n = xn and (" x)2n+1 = 0. Sin
e wavelets areorthonormal, it is possible to easily re
onstru
t a signal from the 
oeÆ
ients and to obtain �lteredversions of the original signal at frequen
y f and s
ale s, su
h that xsf(t) = PpWP s;f;p s;f;p(t).A wavelet pa
ket basis of L2(R) 
an be 
onstru
ted by appropriately sele
ting a set of waveletsby their triplets (s; f; p) among the whole 
olle
tion f s;f;p(t); s; p 2 Z and f 2 Ng. The indi
es s; fmust be sele
ted su
h that dyadi
 disjoint intervals Isf = h f2s ; f+12s i f 2 Z; s 2 Z 
over the entire realpositive frequen
y axis. Then the fun
tions  f (2�st � p); p 2 Z su
h that [s;fIsf = R+ 
onstitutean orthonormal basis of L2(R). Let us denote B all the possible 
onstru
tible bases derived from theadmissible sets in T = f(s; f; p)= [s;f [2�sf; 2�s(f + 1)℄ = R+ ; p 2 Zg. Then the signal x(t) reads:x(t) = X(s;f;p)2T WP s;f;p s;f;p(t):This relation not only stands for an expansion of the signal on the f s;f;p(t); (s; f; p) 2 T g familybut also expresses a signal re
onstru
tion from a set of wavelet 
oeÆ
ients.Pra
ti
ally, for an N = 2L points digital signal xn, the number of 
oeÆ
ients at a given frequen
yband is s
ale dependent. At a s
ale depth s, we have f = 0; : : : ; 2s � 1 frequen
y indi
es and p =0; : : : ; 2L�s 
ell positions equally distributed on the time axis. Globally, the number of 
oeÆ
ientsin the time-frequen
y plane is always the same (i.e. N the sample number of the original signal)whatever the adapted tiling 
onsidered.We now explain how to obtain the best adapted wavelet basis.2.3 Towards the `best' adapted wavelet basisThe key point in the sear
h for the best basis results in the ability of making a basis evolve towardsthe `best' one by iteratively substituting elements of the basis with other admissible elements. Forexample, the f s;f(p); p = 0::2L�sg wavelets 
an be substituted by the fun
tions f s+1;2f+�(p); � =0; 1 and p = 0::2L�s2 g. In the manipulation, the number of wavelets is un
hanged for the basis.This operation a�e
ts the time-frequen
y tiling by splitting or merging frequen
y bands when
hanging the s
ale parameter. The de
ision of modifying or not the initial basis at ea
h step is takena

ording to a 
riterion. Pra
ti
ally, we need to start with a given initial basis. The basis is 
omposedof a set of wavelets with the same largest given s
ale. In the time-frequen
y plane, it 
orresponds tosli
ing the Nyquist band in equal frequen
y bands with the desired �nest width. The split and mergeprin
iple is only applied in the merge sense and sele
ts the frequen
y bands to be merged, from the�nest ones to the largest ones. 7



The `split and merge' algorithm 
ompares a fun
tion evaluated on the 
oeÆ
ients of two adja
entfrequen
y bands. Traditional fun
tions su
h as Shannon entropy, 
on
entration in lp or logarithm ofenergy are used. These fun
tions stand for an information measure and the aim is to 
onstru
t abasis with the minimum 
ost, i.e. to minimize the total information measure.Let us 
all M an information 
ost fun
tional 
omputed on the wavelet pa
ket 
oeÆ
ients:MfWPs;f;pg = X(s;f)2B IfjWP s;f(p)jgfor a 
hosen f(s; f; p)g family. Here I is a real valued additive information measure. The best basis isobtained by minimizingMfWPg. This 
orresponds to 
hoosing the appropriate sequen
e of (s; f; p)indi
es in B ne
essary to 
over the time-frequen
y plane. The minimization is made re
ursively.Considering two sequen
es of 
oeÆ
ients fWPs;2f(p)g and fWPs;2f+1(p)g at a �xed s
ale s andfrequen
y f , and the sequen
e 
overing the same frequen
y band at s
ale s � 1 fWPs�1;f(p)g, the
riterion must de
ide whi
h 
oeÆ
ient sets must be kept for the `best' de
omposition. The 
hoi
e ofminimum information 
ost is generally 
onsidered whi
h provides the following de
ision 
riterion:8>>>>><>>>>>: If IfWPs;2f(p)g+ IfWPs;2f+1(p)g < IfWPs�1;f(p)gthen keep the 
oeÆ
ients WPs;2f(p) and WPs;2f+1(p) for the wavelet de
ompositionOtherwise repla
e the 
oeÆ
ients WPs;2f(p) and WPs;2f+1(p) by the 
oeÆ
ients WPs�1;f(p):For ea
h de
ision, the minimum 
ost must be kept.This de
ision 
riterion is built under the idea of 
oding or 
ompression appli
ations, where the in-formation must be 
arried by the minimum number of 
oeÆ
ients. Remember that we want to dete
ttransient signals whi
h is not ne
essarily 
ompatible with a 
onstru
tion in a minimum 
ost sense.The purpose in the 
ase of dete
tion is quite di�erent: The 
riterion must realize the segmentationthat makes the desired signals 
learly appear in the time-frequen
y representation.The next part des
ribes the 
riterion we propose for that purpose.3 Pro
edure of dete
tion and performan
eThe pro
edure of dete
tion is based on a best basis sear
h pro
edure whi
h is able to in
rease thesignal to noise ratio by an appropriate time frequen
y tiling.3.1 Sear
hing for the best basis and de-noisingThe noise is supposed to be stationary. Transients are often os
illating produ
ing some large 
oef-�
ients in a wavelet de
omposition. Therefore, the amplitudes of the 
oeÆ
ients are rather far frombeing smoothly distributed. By 
ontrast, the noise samples are Gaussian distributed when observedfor a suÆ
iently long time [3℄. The dis
rimination between transients and the noise 
an thereforebe 
reated using a Gaussianity measure. The presen
e of a transient will generate nonGaussian8




oeÆ
ients at some frequen
y bands where the transient exists. On the other hand, Gaussian 
oef-�
ients will represent noise only 
ases. Thus a natural idea 
onsists in merging the frequen
y bandswhi
h have the same Gaussian nature. Finally, the pro
edure `merge frequen
y bands when they areGaussian' reveals transients by showing a �ne frequen
y segmentation for nonGaussian events.The problem now is to get a Gaussianity measure. Higher Order Statisti
s are traditionally used toa

omplish this aim. We must 
onsider a normalized measure be
ause the Gaussianity measure mustnot depend on the signal energy at ea
h frequen
y band. We want to solve the problem of dete
tionfor stationary 
olored noise. A good 
andidate is the kurtosis whi
h is the normalized version of thefourth order 
umulant [13℄. Gaussian pro
ess theoreti
ally have a kurtosis value that equals zero.One 
ould have 
hosen a fun
tional of various Gaussianity measures. For example, using bothskewness and kurtosis permits one to take into a

ount the asymmetry and the tail behavior of theprobability density fun
tion of the 
oeÆ
ients. However in this work, we have only kept a kurtosisestimator to measure the Gaussianity.Theoreti
ally, measuring the Gaussianity for a set of 
oeÆ
ients 
onsists of 
omparing the kurtosisvalue with zero. In pra
ti
e, the kurtosis is estimated and its value is authorized to exist in a 
on-�den
e interval whi
h is 
onditioned by the probability properties of the estimator. An asymptoti
regime 
ould lead to a probability density fun
tion estimator, but experimental 
onditions are notasymptoti
. So we need to frame the estimator by another way, for example using the Bienaym�e-T
heby
hev inequality. Given a desired 
on�den
e per
entage, the estimator 
an be framed betweentwo values depending on the �rst statisti
s of the estimator. In the 
ase where the N 
oeÆ
ientsWPs;f;p are white and Gaussian, bias and varian
e of the kurtosis estimator 
k4 are evaluated as8><>: B(
k4) = �6=NV ar(
k4) = 24=Nwhen the kurtosis is 
lassi
ally 
omputed by a statisti
al estimation of the mean as
k4(WPs;f) = E[WPs;f4℄�E[WPs;f2℄�2 � 3 = N PNp=1WPs;f(p)4�PNp=1WPs;f(p)2�2 � 3:The Bienaym�e-T
heby
hev inequality allows a Gaussian estimator to move between �q24=N=p1� �+6=N and q24=N=p1� � + 6=N with an � authorized 
on�den
e per
entage value. This 
onditionuses the �rst estimator statisti
s of the kurtosis whi
h have been analyti
ally evaluated when thesamples are white and Gaussian. In the present 
ase, the signal samples are Gaussian and 
orrelated.The wavelet 
oeÆ
ients 
learly stay Gaussian when applying the linear wavelet transform. Moreover,wavelets and wavelet pa
kets 
an be 
onsidered as good de
orrelators, if the number of vanishingmoments of the mother wavelet is suÆ
iently high. Assuming this 
ondition is realized, the 
oeÆ-
ients 
an be 
onsidered as nearly white, whi
h justi�es the appli
ation of the Bienaym�e-T
heby
hevinequality given above. More pre
isely, the observed de
orrelation pro
ess is not the same for all thewavelet 
oeÆ
ients. A
tually, the se
ond order 
oeÆ
ient moments whi
h are a measure of the white-ness are linked to the frequen
y lo
alization of the wavelet pa
kets, also depending on the fhn; gngsequen
es used ([15℄).Note that an unbiased version of the kurtosis estimator 
an be derived using k-statisti
s [12℄: Thekurtosis is 
al
ulated using unbiased estimations of the 
umulants of order 2 and 4. Its varian
e is9



given by V ar(
k4unbiased) = 24N(N � 1)2(N � 3)(N � 2)(N + 3)(N + 5)for an N samples sequen
e. Choosing or not a biased estimator has a minor in
uen
e on the perfor-man
es in the present 
ase. The simple test j
k4j < q24=N=p1� � is retained for the Gaussianitymeasure.In pra
ti
e, the best basis sear
h strategy 
onsists of 
hoosing a maximal wavelet de
ompositiondepth of the signal. This maximal depth nlevel de�nes the �nest bandwidth available for the de
om-position as 2nlevel�1 � fs, where fs stands for the frequen
y sampling. An initial basis 
omposed ofthe wavelets at the greatest resolution level is arbitrarily sele
ted. At this level, frequen
y bands aremerged or not a

ording to the diagnosis given by the Bienaym�e-T
heby
hev inequality. It meansthat two 
omponents of the basis  s;2f;p and  s;2f+1;p 
an be repla
ed by the admissible wavelet s�1;f;p. The merging test is repeated at ea
h resolution level s on adja
ent pairs indexed by 2fand 2f + 1 with f 2 [0; 2s�1 � 1℄, up to the root 
orresponding to the entire temporal signal. Thepro
edure leads to the sele
tion of the triplets f(s; f; p) su
h that (s; f; p) 2 B�g where B� standsfor the sear
hed `best' basis in all the admissible bases of B.In the operation, the 
ontrast between Gaussian and nonGaussian regions is enhan
ed in thetime-frequen
y representation. For the purpose of dete
tion, the idea is to keep only nonGaussian
oeÆ
ients whi
h allows to get rid of the greatest part of the disturbing noise. This 
lassi
al te
hniqueis 
alled de-noising and 
onsists in setting to zero all the wavelet 
oeÆ
ients whose magnitude is belowan appropriate threshold. The method used here is quite di�erent in so far as the whole 
oeÆ
ientsin the same frequen
y band are set to zero or not a

ording to the Gaussianity property. We haveproposed to measure the Gaussianity with the kurtosis of the 
oeÆ
ients at ea
h frequen
y band.So in a de-noising pro
edure, all the 
oeÆ
ients representing the de
omposition in a same frequen
yband are set to zero or not a

ording to the Gaussianity of the band.How 
an the de-noising threshold be 
hosen ? Only the �nest frequen
y bands a
tually reveal lo
alnonGaussianities. The other larger bands are not relevant for making a de
ision on the Gaussianitynature be
ause of the 
onstraining dyadi
 stru
ture of the de
omposition. The de-noising thresholdis naturally set as the Byenaym�e-T
heby
hev bound evaluated for the �nest frequen
y band.For an N = 2L samples observed signal x, the threshold therefore reads:� = 1p1� �% :s 24Nmin where Nmin = 2L�nlevel:The threshold depends on the number of points at the �nest frequen
y band whi
h is in relation tothe number of de
omposition levels nlevel.Other kinds of thresholding te
hniques exist. They 
orrespond to di�erent strategies whi
h arenot appropriate for the problem dis
ussed in this paper. Here we operate in the sense of dete
tion.It 
onsists of di�erentiating Gaussian and nonGaussian areas and this strategy leads to an adaptedthresholding method with a natural thresholding value.A validation of this approa
h is given in the paragraph 3.3, with a set of 
omparison and per-forman
e tests. An illustration on real signals is proposed in the next paragraph. The dete
tion10



pro
edure is more pre
isely des
ribed.3.2 Illustration with real signalsThe two 
omponents signal + noise have been re
orded independently. This allows to generatenoisy realizations of the transient with a desired signal-to-noise ratio. �g.6We have retained a set of four transient signals stemming from real experiments in underwatera
ousti
s. These signals depi
ted in �gure 6 have in 
ommon a brief existen
e and present one orseveral narrow bands. The peaks 
hara
terize os
illatory responses of the material or stru
ture aftera sho
k given to generate transient signals (See [16℄ for a pre
ise des
ription of their generation). Asthese signals look rather 
omplex in the frequen
y domain, the signal-to-noise ratio has been de�nedas the energy ratio on the support of the transient, as explained in [2℄. �g.7The noise has been dire
tly re
orded in the Mediterranean sea at a 16 kHz sampling frequen
y.The noise is 
olored with high energy in the low frequen
ies, presenting a -6 dB/o
tave spe
tralde
rease up to about 1500 Hz (�gure 7). The kurtosis estimated beyond 20000 points is less than0.05.We have generated a realization of the transient `manhole 
over sho
k' embedded in the sea noiseat -6 dB. The dete
tion s
heme we propose is illustrated with the panels of �gure 8. �g.8The pro
edure of dete
tion is the following, assuming the parameters have been �xed (de
ompo-sition depth nlevel, 
on�den
e per
entage �, wavelet order):{ Cal
ulates all the wavelet 
oeÆ
ients of the N points signal up to nlevel. The 
oeÆ
ients are storedin a de
omposition tree.{ Initialize the best basis with the nodes of the de
omposition tree at the deepest level.{ Apply the merging 
riterion from the leafs to the root, using the 
riterion `If two adja
ent frequen
ybands have Gaussian 
oeÆ
ients, then merge the bands, otherwise let them be separated'. Thisoperation leads to sele
ting the best de
omposition basis whi
h retains some nodes in the tree. Thepanel C gives a time-frequen
y representation of the best de
omposition a

ording to the kurtosis
riterion. The spe
trogram is given in panel B for 
omparison.{ Keep the frequen
y bands whi
h are nonGaussian, i.e. 
hara
terized by an estimated kurtosis valueless than the �xed threshold 1p1��% :q2nlevel 24N . The 
oeÆ
ients in the other Gaussian bands areset to zero.{ Re
onstru
t the N points temporal signal.{ Apply a `standard' transient dete
tor, for instan
e an adaptive energy dete
tor estimated at ea
hinstant k by de2;k =\e2;k�1 � �(\e2;k�1 � x2k). The adaptive step � 
ontrols the 
onvergen
e rate.Noti
e that the low frequen
y areas whi
h are highly energeti
 have been merged in a singlelarge frequen
y band be
ause of the Gaussian nature of the noise in this frequen
y zone. On theother hand, the interesting region is greatly enhan
ed by an adapted �ne segmentation around thefrequen
y pulses produ
ed by the transient appearan
e.The panel F 
learly shows the dete
tion inability of the adaptive energy on the raw signal. By
ontrast, the de-noising pro
edure leads to an obvious peak in the dete
tion 
urve.11



This simple example shows quite good results 
ompared with the 
lassi
al adaptive energy de-te
tor. Other te
hniques based on HOS or WT are also available. We 
ompare in se
tion 3.3.2 theperforman
es of the proposed hybrid dete
tor with existing HOS or WT based dete
tors. In se
tion3.3.3, we point out the eÆ
ien
y of our kurtosis 
riterion best basis sear
h by 
omparing its perfor-man
es with the other 
lassi
al 
riteria. A study of performan
es as a fun
tion of the parameters hasbeen 
arried out in the se
tion hereafter. This study is realized on the four test transients.
3.3 Comparison and performan
eThe 
omparison between dete
tion methods is made in terms of performan
e ROC 
urves (Re
eiverOperating Chara
teristi
s). Experimental studies of performan
es are 
arried out with Monte-Carlosimulations. The exa
t pro
edure is explained in [16℄.
3.3.1 Choosing the parametersThe purpose of this study is the following:{ To obtain suitable values for a 
orre
t dete
tion.{ To know the parameters that may in
uen
e the quality of dete
tion.For a �xed SNR, we have 
onsidered for ea
h 4096 samples test transient depi
ted in �gure 6 a setof di�erent values for the three following parameters:{ The depth of de
omposition de�ning the �nest possible bandwidth in the de
omposition has beenset to the di�erent following values nlevel = f4,5,6g. In
reasing the value of this parameter allowsto more pre
isely sele
t or dis
riminate the frequen
ies. On the other hand the de
reasing numberof samples leads to non suÆ
iently reliable estimations for 
orre
t de
isions.{ The order of the Daube
hies wavelet has been experimented to the values order = f2,8,16,32g.This value 
ontrols the number of vanishing moments of the Daube
hies wavelet whi
h is relatedto the regularity of the wavelet.{ The frequen
y band merging de
ision furnished by the kurtosis based 
riterion has been madea

ording to three 
on�den
e per
entage values f85%,90%,95%g. The 
on�den
e per
entage in
u-en
es the segmentation rate.The results of the simulation are presented in the array given below.12



nlevel=4 nlevel=5 nlevel=6Spool 85%(SNR=-6dB) 90% order=895%Bottle 85%(SNR=-6dB) 90%95% order=32Manhole 
over sho
k 85%(SNR=-6dB) 90% order=3295%Impulsive sho
k 85%(SNR=-2dB) 90% order=1695%For 
larity reasons, we only give the parameter values that produ
e the best results, for ea
h testtransient. The performan
e evaluations are made through experimental ROC 
urves 
omparisons.Pra
ti
ally, the relative variations of the performan
es are rather small. The sear
h for the bestperforman
es is not an obvious exer
i
e and the results are 
ertainly not highly signi�
ant.Nevertheless, we noti
e that the value nevel=5 is the best one ex
ept for the manhole 
over sho
kwhere nlevel=6 is better. For a 6 kHz sampling frequen
y, this 
orresponds to a �nest bandwidthequal to 94 Hz. A good frequen
y resolution is indeed ne
essary to 
orre
tly dis
riminate the variousfrequen
ies present in the manhole 
over sho
k as observed in the �gure 6.Con
erning the wavelet order, the e�e
t of this parameter is almost insigni�
ant on the qualityof dete
tion. Nevertheless, the order must be suÆ
iently high to whiten the noise spe
trum. For analready white noise it has no e�e
t sin
e wavelets are orthonormal. When the noise is 
olored witha 
orrelation fun
tion �x(t), a simple 
omputation leads to:E[POsfpPO�sfp0℄ = 2s Z (�x(2st) ?  f (t� p)) : f (t� p0)dt:As s (i.e. the de
omposition level) in
reases, the 
orrelation fun
tion narrows and tends to a
t as aneutral element in the 
onvolution. The expression restri
ts to the Dira
 fun
tion Æ(p � p0). In thesame manner, when the regularity of  f is in
reased by 
hoosing higher orders of the Daube
hieswavelet, the 
orrelation fun
tion has less e�e
t on the 
onvolution produ
t be
ause the waveletsupport enlarges with the wavelet order.In [15℄, Pastor & Gay have theoreti
ally proved that the wavelet 
oeÆ
ient sequen
es tend to bewhitened with the de
omposition level and the �lter regularity. More pre
isely, they have shown thatthe whitening was not the same for all the wavelet pa
kets be
ause the se
ond order of the 
oeÆ
ientswhi
h is a whitening measure depends on the frequen
y lo
alisation of the wavelet pa
kets.13



For the greatest part of the experimented transients, the most suitable 
on�den
e per
entagevalue seems to be 90 %. For the bottle transient, the results are better if the 
on�den
e per
entagevalue rea
hes 95 %. The bottle presents peaks in high frequen
ies whi
h are lo
ated in a 
at areaof the noise spe
trum. The danger is to segment the low frequen
ies bands too mu
h be
ause of theimportant energy 
u
tuations in this area. A higher 
on�den
e per
entage favours a frequen
y bandmerging and is more appropriate.A brief 
omparison with other dete
tors is proposed in the next se
tion: The performan
e are �rstexposed for a single HOS based method and in a se
ond time for a WT based method.3.3.2 Comparison with HOS and WTMeasuring a distan
e from Gaussianity An interesting dete
tor proposed by Hini
h in [11,10℄aims to dete
t a deviation from Gaussianity by a bispe
tral measure on temporal blo
ks. The bispe
-trum is a third-order statisti
 (2D Fourier transform of the tri
orrelation) whi
h theoreti
ally equalsto zero. The test evaluates the energy of the bispe
trum modulus estimated in its prin
ipal domainon a temporal blo
. For a nonGaussian stationary signal, the test should equal to zero. Anothertest estimates the bispe
trum in an area whi
h is outside its prin
ipal domain. Its values equal tozero only if the signal is non-stationary and nonGaussian. In this 
ase, a 
orre
t estimation of thebispe
trum needs the signal to be sampled at least three times its highest frequen
y. Otherwise thetest may not be 
orre
t be
ause it 
an not dis
ern bispe
trum samples due to non-stationarity fromsamples due to overlapping. �g.9We have evaluated the performan
es of the two real transient signals `manhole 
over sho
k' and`impulsive sho
k' embedded in real noise respe
tively at -6 dB and -2 dB (�gure 9). The ROC 
urvesshow that the hybrid approa
h HOS-WT performs better than the bispe
tral dete
tor for these twotransients. Indeed, for small probability of false alarm (say 2%) gains of about 15% are rea
hed inprobability of dete
tion.The bispe
trum method does not intrinsi
ally realize a lo
al time and frequen
y analysis sin
e thetest is evaluated on an entire temporal blo
k and a set of bifrequen
ies de�ned in a global area.Lo
al time-frequen
y �ltering The se
ond approa
h studied relies on analysis tools spe
i�
 fornon-stationary signals: The idea is to 
al
ulate a time frequen
y representation and to estimate atest on this representation. In this sense, Fris
h & Messer in [8℄ have proposed a dete
tor designedlike a mat
hed �ltering in the wavelet transform domain. They use a set of transient models. TheGeneralized Likelihood Ratio Test derived gives a measure of ressemblan
e by lo
ally 
omparing thesignal with ea
h model of the library. The 
omparison is made with a s
alar produ
t between the4 wavelet 
oeÆ
ients patterns of the signal and the model over the time-s
ale plane. The patternrepresents a lo
al time s
ale area in the representation. The s
alar produ
t is high when the patternsare �tting.Like 
lassi
al mat
hed �ltering, the method gives very good results as long as the fun
tions in thelibrary are `near' from the transient. The method is not robust and 
annot be employed be
ause itwould restri
t the study to some spe
i�
 kinds of transients.Other HOS or WT methods obviously exist but pi
king up a few of them show that 
onsidering14



the tools independently is not optimal. Wavelet pa
kets allow to merge both approa
hes and tosear
h for example the most nonGaussian basis. We analyse in the next se
tion the performan
e ofthe de-noising algorithm when 
lassi
al best basis sear
h 
riteria are used.3.3.3 What about the other 
lassi
al best basis sear
h pro
edures ?Classi
al best basis sear
h pro
edures rely on a 
riterion whose purpose is to minimize a basis
onstru
tion 
ost. The approa
h proposed in this arti
le is quite di�erent be
ause the 
riterion isbuilt with a dete
tion goal. What is at stake is to de
ide whether or not samples are Gaussian and tokeep nonGaussian 
oeÆ
ients. This dete
tion formulation naturally leads to an automati
 de-noisingthreshold.None of the existing 
ost fun
tions have been used for dete
tion. Indeed initial purpose was
ompression involving an information measure realized by entropy, logarithmi
 energy or lp norm.Instead of minimizing a 
ost fun
tional allowing to get the `
heapest' basis in terms of 
oding, one
an imagine to sear
h for the `most nonGaussian' basis [4℄. This 
an be done by 
hoosing the basiswhi
h maximizes the kurtosis of the 
oeÆ
ients.At this point, the proposed thresholding value 
an be used to get rid of the Gaussian frequen
ybands in the obtained time-frequen
y tiling. Experiments show that results are as good as the pro-posed dete
tion method ex
ept for very low SNR. For frequen
y multi-
omponent transients, thedete
tion driven basis sear
h method gives better results (�gure 10). �g.10After performan
e and 
omparison results, we propose a real 
ase study en
ountered in an in-dustrial 
ontext. The signals presented and analyzed for this illustration have been furnished by theFren
h National Ele
tri
ity Company that we gratefully a
knowledge.4 Appli
ation to missing bolt dete
tion in nu
lear plantsThe �rst appli
ation depi
ted in paragraph 3.2 allowed to validate the algorithm through simula-tions and performan
e 
urves. Experiments were 
ontrolled by embedding real transients in re
ordedsea noise. Beyond these simulated situations we tested the method on a real problem of dete
tionappearing in nu
lear plant pipings. Sensors pla
ed on the pipes sometimes dete
t hits in the innersides of pipes produ
ed by any forgotten or deta
hed obje
t. For example the wandering bodiesdete
ted in this appli
ation has been identi�ed as s
rew bolts whi
h have been forgotten after pipe
leaning operations. A
tually, su
h problems o

asionally appear in nu
lear plants and are of greatimportan
e. Indeed the wandering bodies 
an 
ause damage whi
h requires repair and ne
essitatesshutting the plant down. This produ
es important 
osts thus requiring most 
orre
t dete
tions aspossible.The existing method based on a spe
tral substra
tion su�ers from a too signi�
ant false alarmrate at the �xed dete
tion rate. The reason is the following: Energy 
u
tuations are dete
ted asthey should not. The 
uid 
ir
ulating in the pipes produ
es hydrauli
 noise whi
h is a
tually subje
tto some energy 
u
tuations along the time. The proposed dete
tion method essentially takes intoa

ount the statisti
al properties of the noise along the time. In the present 
ase, the hydrauli
 noiselooks Gaussian and stays Gaussian whatever its power may be. �g.1115



A wandering bodies signal is presented �gure 11 (panel A). The signal is sampled at a rate of50 kHz. The spe
trogram of the signal appears in panel B. It is 
al
ulated on 256 points segmentswith 50% overlapping. Segments are weighted with Hanning windows. Transient events 
an 
learlybe seen in the signal around 1 se
ond. Four narrow bands 
an be seen in the spe
trogram (at about3, 6, 10 and 11 kHz). These bands 
orrespond to hydrauli
 noise due to the 
uid. In some parti
ularworking 
onditions, 
uid 
ir
ulating generates frequen
y bands in the pipes a
ting as a wave guide.The 3 kHz frequen
y band is the most powerful and its energy 
u
tuates a lot along the time. Thishides the presen
e of transients whi
h are diÆ
ult to be seen in the time domain. By 
ontrast, themost powerful transients are 
learly depi
ted by the spe
trogram. However, we 
an wonder if others
rew bolts signatures are present in the signal.The time frequen
y representation obtained with the des
ribed algorithm is shown in panel C.The de
omposition depth is set to 6 (i.e. 64 frequen
y 
hannels). Bands have been merged a

ordingto their 
oeÆ
ients Gaussianity with a 90% 
on�den
e made de
ision. A suÆ
ient regular wavelethas been 
hosen su
h as a Daube
hies one 
onstru
ted on a 16-taps �lter. The same representationafter thresholding is represented in panel D. The kurtosis 
urve plotted at the right have permittedto retain the nonGaussian frequen
y bands. It is very interesting to see that the powerful frequen
ybands at 3, 10 and 11 kHz have been 
onsidered as Gaussian by the algorithm and then have beeneliminated. The re
onstru
ted signal is shown in panel E. An adaptive dete
tor is then applied onthat signal. It is shown in panel F where we also plot the adaptive energy before any pro
essing for
omparison (signal have been normalized in energy). We 
an see that the false alarm before pro
essinghave been eliminated, at the instant 0.1 se
ond. The false alarm may be due to the high amplitude ofthe 3 kHz band at this instant. Note also the spe
ta
ular gain obtained in the dete
tion, by 
ontrastbetween the 
urves. Furthermore, a transient at 1.1 se
ond is dete
ted by the hybrid dete
tor whereasit is not seen by the energy on the raw signal. The proposed dete
tor on this example de
reases thefalse alarm rate and reveals a miss dete
tion not solved by the energy dete
tor.5 Con
lusionIn this paper we use an adaptive time-frequen
y plane segmentation for a transient dete
tionproblem. We take advantage of the segmentation 
exibility proposed by the wavelet pa
kets theoryto �nd the `most adapted' basis among a library of possible wavelet pa
ket bases.The segmentation pro
ess is guided by a dete
tion purpose: Trying to make transients emergefrom the noise in the time-frequen
y representation. The dis
rimination is based on the knowledgeof the signals we study: The wavelet 
oeÆ
ients of the transient signals are nonGaussian whereasthe 
oeÆ
ients of the noise are Gaussian. The derived 
riterion merges Gaussian frequen
y bands.The simulation results in terms of ROC 
urves show that the 
ombination of HOS tools with time-frequen
y representations is eÆ
ient. They also show the importan
e of the time-frequen
y planesegmentation in the transient dete
tion problem.Let us re
all the key-parameters in the proposed algorithm. The results essentially depend onthe 
on�den
e value attributed to the de
ision 
riterion. It de�nes the segmentation tenden
y byfa
ilitating the merging or not. Above all, the de-noising pro
edure used is parti
ularly interestingbe
ause the threshold is automati
ally �xed by the 
on�den
e value and the 
hosen de
ompositiondepth. Finally the algorithm 
an be 
onsidered as an automati
 band-pass �ltering.16



Beyond the beginning appli
ations 
onsidered in passive sonar, we have shown interesting resultsappearing in an industrial 
ontext. The algorithm 
an be used both as a dete
tion method and as ade-noising method. In the wandering bodies problem, the main obje
tive is to make 
lear disturbingsituations. However the other de-noising appli
ation is also very useful for an event 
lassi�
ation. The
lassi�
ation allows to identify the 
ause of the dete
ted hits and then to evaluate the seriousness ofthe situation.Other appli
ations may be 
onsidered. For example radio astronomy re
ordings are perturbed bypowerful interferen
es stemming from satellite 
ommuni
ations. Some of the perturbations 
an bemodeled as unknown pure frequen
ies. The 
urrent methods dete
t the appearan
e of su
h interfer-en
es and then stop the re
ordings - the method is named time-blanking. Our dete
tor 
ould dete
tthe disturbing frequen
y bands whi
h are nonGaussian. On the 
ontrary Gaussian 
omponents wouldbe kept in the de-noising pro
edure so that radio astronomi
 re
ordings would not stop.Beside other new appli
ations, future works 
on
ern the extension of the algorithm to a `doubletree' method: It allows to sele
t the best basis among a set of best bases found when the initial signalis time sli
ed [9℄. A binary primary tree is build. It segments the initial signal up to a 
ertain level inthe time domain . On ea
h node, a wavelet pa
ket de
omposition tree is developed in whi
h a bestbasis is sele
ted. Ea
h node of the primary tree is then a�e
ted with its best basis 
onstru
tion 
ost.The �nal best basis is sele
ted with the sear
h algorithm in the primary tree. This method needs yetto be adapted for a dete
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