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In this paper, we present a detector of transient acoustic signals that combines two
powerful detection tools: A local wavelet analysis and higher-order statistical properties
of the signals. Using both techniques makes detection possible in low signal-to-noise
ratio conditions, when other means of detection are no longer sufficient. The proposed
algorithm uses the adapted wavelet packet transform. It leads to a partition of the
signal which is ‘optimal’ according to a criterion that tests the Gaussian nature of the
frequency bands. To get a time dependent detection curve, we perform a de-noising
procedure on the wavelet coefficients: The Gaussian coefficients are set to zero. We
then apply a classical method of detection on the time reconstructed denoised signal.
We study the performance of the detector in terms of experimental ROC curves. We
show that the detector performs better than decompositions using other classical split-
ting criteria. In a last part, we present an application of the algorithm on real flow
recordings of nuclear plant pipings. The detector indicates the presence of a missing
body in the piping at some instants not seen with a classical energy detector.

Nous présentons dans cet article un nouveau détecteur de signaux transitoires acous-
tiques. Ce détecteur tire parti de deux techniques puissantes utilisées en détection :
une analyse locale par ondelettes combinée a une exploitation des propriétés statis-
tiques aux ordres supérieurs des signaux. Cette approche rend possible la détection
dans des conditions de rapport signal sur bruit difficiles alors que les méthodes clas-
siques demeurent insuffisantes. L’algorithme proposé utilise les paquets d’ondelettes
qui réalisent un pavage du plan temps-fréquence adapté a ’observation. Il aboutit & la
construction d’une base de décomposition qui est “optimale” selon un critére qui teste
la nature gaussienne des bandes fréquentielles. Pour obtenir une courbe de détection
temporelle, on effectue un débruitage du signal par mise a zéro des coefficients de ban-
des gaussiennes. Une méthode classique de détection est ensuite appliquée sur le signal
débruité reconstruit en temps.

On étudie les performances du détecteur en terme de courbes COR. expérimentales.
Nous montrons que le détecteur donne de meilleurs résultats que les décompositions
qui utilisent d’autres criteres classiques de segmentation. Dans une derniére partie, une
application de ’algorithme & un enregistrement de circulation hydraulique dans une
centrale nucléaire est proposée. Le détecteur indique la présence d’un corps errant A
des instants non révélés par un détecteur classique d’énergie.

Key words: transient detection, wavelet packets, multiresolution analysis, adapted
segmentation, de-noising, higher-order statistics, ROC performance curves.

1 Introduction

1.1 Presentation of the problem

Wavelets and Higher-Order-Statistics are two of the most successful advances in the field of signal
processing of the twenty last years. Both techniques are powerful tools that can efficiently be used
for detection applications. But rare are the applications where researchers simultaneously have tried
to take advantage of the two approaches by combining them. We propose to do so in this paper and
show how such a combination can improve the quality of detection.

The problem addressed here concerns the detection of short time impulsive signals that we call



transient signals. The detection of this kind of signal has many applications. In biological domains,
the detection and exact localization of transients in ECG or EEG recordings is of great importance
[18,19,5]. In [1], the authors detect wide-band transients that are pressure drop signals originating
from a developed turbulence experiment. In passive sonar problems, the detection of transient acous-
tic signals constitutes an alternative to other classical sonar detection means because of the progress
realized in reducing acoustic noise generated by naval vessels. Thus the traditional means of detection
are insufficiently reliable [6,17].

In the problem addressed here, the signals are supposed to be embedded in a sufficiently strong
additive noise so that phenomena cannot be visually detected considering the observed temporal
shape. The detector proposed aims to perform better than any energy detector so that false alarm
or missed detection situations are mitigated. In addition to severe signal-to-noise ratio contexts, the
signals of interest suffer from a lack of information: This makes the problem very difficult to solve.
The signals to detect are poorly defined for the following reasons:

— Their temporal signal shapes are not exactly known,
— Their arrival times are not known and generally need to be estimated,
— Their brief existence bring reduced information for their characterization.

However, we need to define the objects more precisely. Many of them have an oscillatory shape
yielding high peaks in their spectrum. This is especially true for the signals we considered such as
transients generated by metallic shocks, cracks or slams.

Transient signals can therefore be described as models with various parameters. Friedlander and
Porat in [7] have proposed a theoretical solution of the problem assuming the signal was composed of
damped parameterized sines corrupted by a white Gaussian noise. Detectors investigated are based
on a class of linear data transforms. Actually, models are rather far from representing all the variety of
transient signals. So we intentionally chose a non parametric approach to prevent from restricting the
problem to a class of particular signals. Transients will then be characterized through their statistical
properties which contrast with the properties of the noise.

We discuss in the next section how we already proposed a detector based on Malvar wavelets and
its working limitations for assumed white Gaussian stationary noise. Wavelet packets are proposed
instead in more realistic situations when the noise is colored and stationary.

1.2 From Malvar wavelets to wavelet packets

In a previous work, we have shown that Malvar wavelets can successfully be used when the noise
is stationary white and Gaussian [16]. The basic idea consists in discriminating the noise from the
transient signal by segmenting the observation in fine temporal slices when a transient is present and
in large ones when there is noise only. The purpose is to get the ‘best’ segmentation which is adapted
to a desired criterion. Actually, the segmentation corresponds to selecting a basis among the set of
all possible bases which is related to a corresponding partition in the time-frequency plane.

The criterion to choose the best basis is based on the Gaussianity coefficients: When two adjacent
segments have Gaussian coefficients, they are merged, otherwise they are kept separated. Determi-
nation of the Gaussianity of the wavelet coefficients is done using Higher-Order Statistics. When the



noise is white stationary, the coefficients remain white stationary so that statistics can be estimated
by replacing mathematical expectations with average computing. When the noise is colored, wavelet
coefficients in the same segment cannot be considered stationary so that the estimation is not correct.
For that reason, the ‘split and merge temporal slices’ criterion that is used for the best basis search,
fails to give good results. To circumvent this problem, we propose to work in the frequency domain
using wavelet packets. The best basis is chosen in the same way: Merging ‘Gaussian frequency bands’.
In this case, the estimation process is correct because the coefficients in the same frequency band are
stationary. This point is described further in the paper.

The procedure used to search for the best basis is schematically described in the figure 1 for the
two cases described below. In the first case depicted in [16], the best basis is initialized with a set
of Malvar wavelets supported on minimal equally temporal slices. The merging criterion is applied
on pairs of adjacent slices. It leads to the merging of the slices according to the Gaussianity of
the wavelet coefficients in each slice. When merging, considered wavelets are replaced by the same
number of twice longer supported wavelets. In the example of figure 1, the third slice is supposed
to have nonGaussian coefficients. The first step merges the slices 1-2, 5-6 and 7-8. In a second step,
the procedure leads to the merging of the last two slices obtained in the first step. The best basis is
reached.

In the second case (figure 1b), the process is exactly the same except the signal is initially seg-
mented in equal frequency bands. The merging criterion is applied to adjacent frequency bands.
The time-frequency plane evolves according to the frequency variable which is “active” in the tiling.
Inversely, the time variable passively reacts because frequency segmentation imposes the tiling in the
temporal domain.

Considering the detection problem, the purpose, however, is to get a time dependent detection
statistic. The obtained time frequency plane tiling actually corresponds to a set of admissible wavelets
constituting a basis. The signal is projected on each element of this basis producing decomposition
coefficients. To return to a single temporal curve, a de-noising procedure setting Gaussian coefficients
to zero is performed. A denoised signal is reconstructed from the retained coefficients. After that, a
standard detection algorithm is applied.

The exact procedure of detection is detailed in section 3. Studies of performance are described.

The method is illustrated in section 4 with the detection of a screw bolt that has been forgotten
in nuclear plant pipings.

In the section hereafter, we briefly introduce wavelet packets defined as an extension of the mul-
tiresolution analysis principles. We want to explain their construction as well as the coefficient compu-
tation. Before that, we give a justification in the use of adapted wavelets for the problem of transient
detection.



2 Using Wavelet Packets for detection

2.1 Interest of adapted wavelet transforms

In a detection problem, time-frequency representations are used to distribute the energy of a signal
on the time-frequency plane, in such a way that relevant information can be extracted to make a
good detection. The results generally depend on the retained parameters and on the method itself
used as a time-frequency representation.

For example, discrete windowed Fourier ‘bases’ tile the time-frequency plane in regular cells which
all have the same uncertainties. Discrete wavelet bases tile the time-frequency plane more naturally,
according to the evolution velocity of phenomena. A low frequency needs to be observed on a long time
to be correctly estimated whereas a high frequency can rapidly change at any time. Therefore, time-
frequency localization naturally depends on the ‘observation scale’. However, these decompositions
impose a fixed tiling shape in the time-frequency plane, independent of the observation. Moreover,
choosing the analysis window size or the decomposition depth is more or less done empirically. On
the other hand, it is possible, using adapted wavelet transforms, to obtain adapted tilings in the
time-frequency plane, automatically according to the observation.

In a detection problem, the idea is to adapt the time-frequency tiling to the signature of the signals
of interest. Considering figure 2, the pattern represented on the left corresponds to a transient signal in
a continuous short time Fourier representation. An adapted wavelet transform using wavelet packets
as depicted in panel (c) allows the time-frequency pattern to be insulated with an appropriate tiling.
In practice, the signal is of course strongly polluted and seeking for an adapted wavelet transform
will perform a better detection, if achievable.

The key point is to obtain a tiling showing a ‘pre-detection’ of the events. A time-frequency tiling is
associated to a retained wavelet basis among all the possible wavelet decomposition bases. Basically,
a basis is constituted by some admissible elements in a set of wavelet packets. Wavelet packets and
their properties are now presented.

2.2 Definitions and properties

We introduce wavelet packets as an extension of the multiresolution analysis (MRA). This math-
ematical formalism has been developed for fast computation of the discrete wavelet transform co-
efficients [14]. The MRA is built on two time series filters h, and g,. The construction of wavelet
families as well as the coefficient computation rely on these single sequences.

From h,, and g,, we need to define the two operators H and G as filters on the digital signal z,,:

(Hx)n — Zk hkxnfk
(gx)n — Zk JkTn—k-



When z is a function of the continuous variable ¢, we define:

(Hz)(t) = ) hex(t — k)
(Gx)(t) = Xy gra(t — k).

With these conventions, the classical scale and wavelet functions read:

¢ = oHo
Vv = 0Go.
where o is a compression operator applied on a continuous function f(t) such as: o f(t) = v/2f(2t).

Wavelet packets are created by further applying the operators either on ¢ or on . It produces the
infinity g, Y1, ¥9, ... of wavelets indexed by the arrangement f € N defined as:

wzf = Uﬂwf
Yopr1 = oGy with g = oHabo.

Note that 1)y = ¢ and ¢y = . The family {¢¢(t —p),p € Z, f € N} constitutes an orthonormal basis
of L*(R) [20] (The sequences {h,} and {g,} are called quadrature mirror filters).

In the frequency domain, the family {@}, where z/p}(u) stands for the Fourier transform of 1/(¢),
acts as a collection of subband filters (see figure 3b for f = 4).

We now shift and scale the ;(¢) to obtain multiscale wavelet packets:

,Q/}szap(t) = 2_%¢f(2_5t - p)7 S7p E Z? f E N

The operators H and G can again be used to express wavelet packets from one scale to the following
one. We note the decimation operator as (| ), = xa, and H® the operator H for the inverse sequence
h_,. The recursive expressions are derived:

ws+1,2f,p = (i ,quS,f,.)p
Vstior1p = (L G571, )p-

Note that incrementing the scale modifies the ‘frequency index’ f because increasing the scale
corresponds to a finer frequency analysis and authorizes a greater number of frequencies. In the
time/frequency plane, applying | H® and | G ‘splits’ the initial band into two subbands which
doubles the frequency resolution as illustrated in figure 4. The inverse ‘merging’ operator merges two
adjacent frequency bands in a single larger one (figure 5).

In this kind of diagram, the entire time-frequency cell information is supposed to be carried by
the wavelet coefficient, which is the inner product of ¢ ¢, (t) with the signal z(t):

WP, p = (T, s,1,) in the L*(R) sense.

Remarkably, the wavelet coefficients can be recursively evaluated from the scale s to the next one



s+ 1 in the same way it can be done with the wavelet functions:

WPe10pp = (L H WP, ;),
Wps+1,2f+l,p - (\l/ gq Wps,f,.)p-

In the merging process, coefficients are reconstructed by the following relation:
WP pp=(HTWPi27)p+ (G T WPep12p41,)p

where the interpolation operator acts like (T x)o, = z, and (T x)9,41 = 0. Since wavelets are
orthonormal, it is possible to easily reconstruct a signal from the coefficients and to obtain filtered
versions of the original signal at frequency f and scale s, such that z,¢(t) = >, WP, 05 7,(1).

A wavelet packet basis of L?(R) can be constructed by appropriately selecting a set of wavelets
by their triplets (s, f,p) among the whole collection {¢)s 1, (t), s,p € Z and f € N}. The indices s, f

must be selected such that dyadic disjoint intervals Iy = {%, f;l] f € Z,s € Z cover the entire real
positive frequency axis. Then the functions 1;(27°t — p), p € Z such that U, I;f = R" constitute
an orthonormal basis of L?(R). Let us denote B all the possible constructible bases derived from the

admissible sets in T = {(s, f,p)/ Us,r 27°f,27°(f +1)] = R", p € Z}. Then the signal z(t) reads:

w(t) = D WP, ptsrp(t).

(8,f,p)ET

This relation not only stands for an expansion of the signal on the {v ;,(t), (s, f,p) € T} family
but also expresses a signal reconstruction from a set of wavelet coefficients.

Practically, for an N = 2% points digital signal x,,, the number of coefficients at a given frequency
band is scale dependent. At a scale depth s, we have f = 0,...,2° — 1 frequency indices and p =
0,...,2F7% cell positions equally distributed on the time axis. Globally, the number of coefficients
in the time-frequency plane is always the same (i.e. N the sample number of the original signal)
whatever the adapted tiling considered.

We now explain how to obtain the best adapted wavelet basis.

2.8 Towards the ‘best’ adapted wavelet basis

The key point in the search for the best basis results in the ability of making a basis evolve towards
the ‘best’ one by iteratively substituting elements of the basis with other admissible elements. For
example, the {1, ;(p), p = 0..277°} wavelets can be substituted by the functions {¢s41274(p), € =

2L-

0,1 and p= OTS} In the manipulation, the number of wavelets is unchanged for the basis.

This operation affects the time-frequency tiling by splitting or merging frequency bands when
changing the scale parameter. The decision of modifying or not the initial basis at each step is taken
according to a criterion. Practically, we need to start with a given initial basis. The basis is composed
of a set of wavelets with the same largest given scale. In the time-frequency plane, it corresponds to
slicing the Nyquist band in equal frequency bands with the desired finest width. The split and merge
principle is only applied in the merge sense and selects the frequency bands to be merged, from the
finest ones to the largest ones.



The ‘split and merge’ algorithm compares a function evaluated on the coefficients of two adjacent
frequency bands. Traditional functions such as Shannon entropy, concentration in [” or logarithm of
energy are used. These functions stand for an information measure and the aim is to construct a
basis with the minimum cost, i.e. to minimize the total information measure.

Let us call M an information cost functional computed on the wavelet packet coefficients:

M{W Py} = > Z{WP. ()}

(s,f)eB

for a chosen {(s, f,p)} family. Here 7 is a real valued additive information measure. The best basis is
obtained by minimizing M{W P}. This corresponds to choosing the appropriate sequence of (s, f,p)
indices in B necessary to cover the time-frequency plane. The minimization is made recursively.

Considering two sequences of coefficients {W P or(p)} and {WP;27.1(p)} at a fixed scale s and
frequency f, and the sequence covering the same frequency band at scale s — 1 {WP,_; ¢(p)}, the
criterion must decide which coefficient sets must be kept for the ‘best’ decomposition. The choice of
minimum information cost is generally considered which provides the following decision criterion:

IEZ{W Py 25 (p)} + T{W Ps 2711 (p)} < Z{W Py_14(p) }
then keep the coefficients W P, 5¢(p) and WP 5741 (p) for the wavelet decomposition
Otherwise replace the coefficients W P; o(p) and W P; o741(p) by the coefficients W P,_; ((p).

For each decision, the minimum cost must be kept.

This decision criterion is built under the idea of coding or compression applications, where the in-
formation must be carried by the minimum number of coefficients. Remember that we want to detect
transient signals which is not necessarily compatible with a construction in a minimum cost sense.
The purpose in the case of detection is quite different: The criterion must realize the segmentation
that makes the desired signals clearly appear in the time-frequency representation.

The next part describes the criterion we propose for that purpose.

3 Procedure of detection and performance

The procedure of detection is based on a best basis search procedure which is able to increase the
signal to noise ratio by an appropriate time frequency tiling.

3.1 Searching for the best basis and de-noising

The noise is supposed to be stationary. Transients are often oscillating producing some large coef-
ficients in a wavelet decomposition. Therefore, the amplitudes of the coefficients are rather far from
being smoothly distributed. By contrast, the noise samples are Gaussian distributed when observed
for a sufficiently long time [3]. The discrimination between transients and the noise can therefore
be created using a Gaussianity measure. The presence of a transient will generate nonGaussian



coefficients at some frequency bands where the transient exists. On the other hand, Gaussian coef-
ficients will represent noise only cases. Thus a natural idea consists in merging the frequency bands
which have the same Gaussian nature. Finally, the procedure ‘merge frequency bands when they are
Gaussian’ reveals transients by showing a fine frequency segmentation for non(GGaussian events.

The problem now is to get a Gaussianity measure. Higher Order Statistics are traditionally used to
accomplish this aim. We must consider a normalized measure because the Gaussianity measure must
not depend on the signal energy at each frequency band. We want to solve the problem of detection
for stationary colored noise. A good candidate is the kurtosis which is the normalized version of the
fourth order cumulant [13]. Gaussian process theoretically have a kurtosis value that equals zero.

One could have chosen a functional of various Gaussianity measures. For example, using both
skewness and kurtosis permits one to take into account the asymmetry and the tail behavior of the
probability density function of the coefficients. However in this work, we have only kept a kurtosis
estimator to measure the Gaussianity.

Theoretically, measuring the Gaussianity for a set of coefficients consists of comparing the kurtosis
value with zero. In practice, the kurtosis is estimated and its value is authorized to exist in a con-
fidence interval which is conditioned by the probability properties of the estimator. An asymptotic
regime could lead to a probability density function estimator, but experimental conditions are not
asymptotic. So we need to frame the estimator by another way, for example using the Bienaymé-
Tchebychev inequality. Given a desired confidence percentage, the estimator can be framed between
two values depending on the first statistics of the estimator. In the case where the N coefficients
W P ¢, are white and Gaussian, bias and variance of the kurtosis estimator k4 are evaluated as

B(ks) = —6/N

Var(ky) = 24/N
when the kurtosis is classically computed by a statistical estimation of the mean as

— EWP, ;%]

N WP, ()
k(WP ;) = Xp=1 WP (p)

5 — 3=N svhn 3
(EW P, ) (SN WP (p))

The Bienaymé-Tchebychev inequality allows a Gaussian estimator to move between —,/24/N /y/1 — a+

6/N and \/24/N/v/1 —a + 6/N with an « authorized confidence percentage value. This condition
uses the first estimator statistics of the kurtosis which have been analytically evaluated when the
samples are white and Gaussian. In the present case, the signal samples are Gaussian and correlated.
The wavelet coefficients clearly stay Gaussian when applying the linear wavelet transform. Moreover,
wavelets and wavelet packets can be considered as good decorrelators, if the number of vanishing
moments of the mother wavelet is sufficiently high. Assuming this condition is realized, the coeffi-
cients can be considered as nearly white, which justifies the application of the Bienaymé-Tchebychev
inequality given above. More precisely, the observed decorrelation process is not the same for all the
wavelet coefficients. Actually, the second order coefficient moments which are a measure of the white-
ness are linked to the frequency localization of the wavelet packets, also depending on the {h,, g,}
sequences used ([15]).

Note that an unbiased version of the kurtosis estimator can be derived using k-statistics [12]: The
kurtosis is calculated using unbiased estimations of the cumulants of order 2 and 4. Its variance is



given by
—~unbiased 24N(N — ].)2
Var(k =
(ks ) (N —3)(N = 2)(N + 3)(N +5)
for an NV samples sequence. Choosing or not a biased estimator has a minor influence on the perfor-

mances in the present case. The simple test |E| < 4/24/N/+/1 — « is retained for the Gaussianity
measure.

In practice, the best basis search strategy consists of choosing a maximal wavelet decomposition
depth of the signal. This maximal depth nlevel defines the finest bandwidth available for the decom-
position as 2™l « f  where f, stands for the frequency sampling. An initial basis composed of
the wavelets at the greatest resolution level is arbitrarily selected. At this level, frequency bands are
merged or not according to the diagnosis given by the Bienaymé-Tchebychev inequality. It means
that two components of the basis 97, and 2741, can be replaced by the admissible wavelet
Ys—1,7p- The merging test is repeated at each resolution level s on adjacent pairs indexed by 2f
and 2f + 1 with f € [0;25! — 1], up to the root corresponding to the entire temporal signal. The
procedure leads to the selection of the triplets {(s, f,p) such that (s, f,p) € B*} where B* stands
for the searched ‘best’ basis in all the admissible bases of B.

In the operation, the contrast between Gaussian and nonGaussian regions is enhanced in the
time-frequency representation. For the purpose of detection, the idea is to keep only nonGaussian
coefficients which allows to get rid of the greatest part of the disturbing noise. This classical technique
is called de-noising and consists in setting to zero all the wavelet coefficients whose magnitude is below
an appropriate threshold. The method used here is quite different in so far as the whole coefficients
in the same frequency band are set to zero or not according to the Gaussianity property. We have
proposed to measure the Gaussianity with the kurtosis of the coefficients at each frequency band.
So in a de-noising procedure, all the coefficients representing the decomposition in a same frequency
band are set to zero or not according to the Gaussianity of the band.

How can the de-noising threshold be chosen 7 Only the finest frequency bands actually reveal local
nonGaussianities. The other larger bands are not relevant for making a decision on the Gaussianity
nature because of the constraining dyadic structure of the decomposition. The de-noising threshold
is naturally set as the Byenaymé-Tchebychev bound evaluated for the finest frequency band.

For an N = 2¥ samples observed signal z, the threshold therefore reads:

1 [ 24
n= =\ N where N,,;, = 2F—level,
- 0 min

The threshold depends on the number of points at the finest frequency band which is in relation to
the number of decomposition levels nlevel.

Other kinds of thresholding techniques exist. They correspond to different strategies which are
not appropriate for the problem discussed in this paper. Here we operate in the sense of detection.
It consists of differentiating Gaussian and nonGaussian areas and this strategy leads to an adapted
thresholding method with a natural thresholding value.

A validation of this approach is given in the paragraph 3.3, with a set of comparison and per-
formance tests. An illustration on real signals is proposed in the next paragraph. The detection

10



procedure is more precisely described.

3.2 Illustration with real signals

The two components signal 4+ noise have been recorded independently. This allows to generate
noisy realizations of the transient with a desired signal-to-noise ratio.

We have retained a set of four transient signals stemming from real experiments in underwater
acoustics. These signals depicted in figure 6 have in common a brief existence and present one or
several narrow bands. The peaks characterize oscillatory responses of the material or structure after
a shock given to generate transient signals (See [16] for a precise description of their generation). As
these signals look rather complex in the frequency domain, the signal-to-noise ratio has been defined
as the energy ratio on the support of the transient, as explained in [2].

The noise has been directly recorded in the Mediterranean sea at a 16 kHz sampling frequency.
The noise is colored with high energy in the low frequencies, presenting a -6 dB/octave spectral
decrease up to about 1500 Hz (figure 7). The kurtosis estimated beyond 20000 points is less than
0.05.

We have generated a realization of the transient ‘manhole cover shock’ embedded in the sea noise
at -6 dB. The detection scheme we propose is illustrated with the panels of figure 8.

The procedure of detection is the following, assuming the parameters have been fixed (decompo-
sition depth nlevel, confidence percentage «, wavelet order):

— Calculates all the wavelet coefficients of the N points signal up to nlevel. The coefficients are stored
in a decomposition tree.

— Initialize the best basis with the nodes of the decomposition tree at the deepest level.

— Apply the merging criterion from the leafs to the root, using the criterion ‘If two adjacent frequency
bands have Gaussian coefficients, then merge the bands, otherwise let them be separated’. This
operation leads to selecting the best decomposition basis which retains some nodes in the tree. The
panel C gives a time-frequency representation of the best decomposition according to the kurtosis
criterion. The spectrogram is given in panel B for comparison.

— Keep the frequency bands which are nonGaussian, i.e. characterized by an estimated kurtosis value
less than the fixed threshold \/ 2”16”61%. The coefficients in the other Gaussian bands are
set to zero.

— Reconstruct the N points temporal signal.

— Apply a ‘standard’ transient detector, for instance an adaptive energy detector estimated at each
instant k by €51, = €251 — p(€2_1 — 7). The adaptive step u controls the convergence rate.

1
V1i-a%'®

Notice that the low frequency areas which are highly energetic have been merged in a single
large frequency band because of the Gaussian nature of the noise in this frequency zone. On the
other hand, the interesting region is greatly enhanced by an adapted fine segmentation around the
frequency pulses produced by the transient appearance.

The panel F clearly shows the detection inability of the adaptive energy on the raw signal. By
contrast, the de-noising procedure leads to an obvious peak in the detection curve.

11



This simple example shows quite good results compared with the classical adaptive energy de-
tector. Other techniques based on HOS or WT are also available. We compare in section 3.3.2 the
performances of the proposed hybrid detector with existing HOS or WT based detectors. In section
3.3.3, we point out the efficiency of our kurtosis criterion best basis search by comparing its perfor-
mances with the other classical criteria. A study of performances as a function of the parameters has
been carried out in the section hereafter. This study is realized on the four test transients.

3.3  Comparison and performance

The comparison between detection methods is made in terms of performance ROC curves (Receiver
Operating Characteristics). Experimental studies of performances are carried out with Monte-Carlo
simulations. The exact procedure is explained in [16].

3.3.1 Choosing the parameters

The purpose of this study is the following:

— To obtain suitable values for a correct detection.
— To know the parameters that may influence the quality of detection.

For a fixed SNR, we have considered for each 4096 samples test transient depicted in figure 6 a set
of different values for the three following parameters:

— The depth of decomposition defining the finest possible bandwidth in the decomposition has been
set to the different following values nlevel = {4,5,6}. Increasing the value of this parameter allows
to more precisely select or discriminate the frequencies. On the other hand the decreasing number
of samples leads to non sufficiently reliable estimations for correct decisions.

— The order of the Daubechies wavelet has been experimented to the values order = {2,8,16,32}.
This value controls the number of vanishing moments of the Daubechies wavelet which is related
to the regularity of the wavelet.

— The frequency band merging decision furnished by the kurtosis based criterion has been made
according to three confidence percentage values {85%,90%,95%}. The confidence percentage influ-
ences the segmentation rate.

The results of the simulation are presented in the array given below.
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nlevel=4 | nlevel=5 | nlevel=6
Spool 85%
(SNR=-6dB) 90% order=8
95%
Bottle 85%
(SNR=-6dB) 90%
95% order=32
Manhole cover shock | 85%
(SNR=-6dB) 90% order=32
95%
Impulsive shock 85%
(SNR=-2dB) 90% order=16
95%

For clarity reasons, we only give the parameter values that produce the best results, for each test
transient. The performance evaluations are made through experimental ROC curves comparisons.

Practically, the relative variations of the performances are rather small. The search for the best
performances is not an obvious exercice and the results are certainly not highly significant.

Nevertheless, we notice that the value nevel=45 is the best one except for the manhole cover shock
where nlevel=6 is better. For a 6 kHz sampling frequency, this corresponds to a finest bandwidth
equal to 94 Hz. A good frequency resolution is indeed necessary to correctly discriminate the various
frequencies present in the manhole cover shock as observed in the figure 6.

Concerning the wavelet order, the effect of this parameter is almost insignificant on the quality
of detection. Nevertheless, the order must be sufficiently high to whiten the noise spectrum. For an
already white noise it has no effect since wavelets are orthonormal. When the noise is colored with
a correlation function I';(¢), a simple computation leads to:

B[P0, POy, =2 [ (Tu(200) %5t = p) (¢ — o)t

As s (i.e. the decomposition level) increases, the correlation function narrows and tends to act as a
neutral element in the convolution. The expression restricts to the Dirac function §(p — p’). In the
same manner, when the regularity of ¢; is increased by choosing higher orders of the Daubechies
wavelet, the correlation function has less effect on the convolution product because the wavelet
support enlarges with the wavelet order.

In [15], Pastor & Gay have theoretically proved that the wavelet coefficient sequences tend to be
whitened with the decomposition level and the filter regularity. More precisely, they have shown that
the whitening was not the same for all the wavelet packets because the second order of the coefficients
which is a whitening measure depends on the frequency localisation of the wavelet packets.
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For the greatest part of the experimented transients, the most suitable confidence percentage
value seems to be 90 %. For the bottle transient, the results are better if the confidence percentage
value reaches 95 %. The bottle presents peaks in high frequencies which are located in a flat area
of the noise spectrum. The danger is to segment the low frequencies bands too much because of the
important energy fluctuations in this area. A higher confidence percentage favours a frequency band
merging and is more appropriate.

A brief comparison with other detectors is proposed in the next section: The performance are first
exposed for a single HOS based method and in a second time for a WT based method.

3.3.2  Comparison with HOS and WT

Measuring a distance from Gaussianity An interesting detector proposed by Hinich in [11,10]
aims to detect a deviation from Gaussianity by a bispectral measure on temporal blocks. The bispec-
trum is a third-order statistic (2D Fourier transform of the tricorrelation) which theoretically equals
to zero. The test evaluates the energy of the bispectrum modulus estimated in its principal domain
on a temporal bloc. For a nonGaussian stationary signal, the test should equal to zero. Another
test estimates the bispectrum in an area which is outside its principal domain. Its values equal to
zero only if the signal is non-stationary and nonGaussian. In this case, a correct estimation of the
bispectrum needs the signal to be sampled at least three times its highest frequency. Otherwise the
test may not be correct because it can not discern bispectrum samples due to non-stationarity from
samples due to overlapping.

We have evaluated the performances of the two real transient signals ‘manhole cover shock’ and
‘impulsive shock” embedded in real noise respectively at -6 dB and -2 dB (figure 9). The ROC curves
show that the hybrid approach HOS-WT performs better than the bispectral detector for these two
transients. Indeed, for small probability of false alarm (say 2%) gains of about 15% are reached in
probability of detection.

The bispectrum method does not intrinsically realize a local time and frequency analysis since the
test is evaluated on an entire temporal block and a set of bifrequencies defined in a global area.

Local time-frequency filtering The second approach studied relies on analysis tools specific for
non-stationary signals: The idea is to calculate a time frequency representation and to estimate a
test on this representation. In this sense, Frisch & Messer in [8] have proposed a detector designed
like a matched filtering in the wavelet transform domain. They use a set of transient models. The
Generalized Likelihood Ratio Test derived gives a measure of ressemblance by locally comparing the
signal with each model of the library. The comparison is made with a scalar product between the
4 wavelet coefficients patterns of the signal and the model over the time-scale plane. The pattern
represents a local time scale area in the representation. The scalar product is high when the patterns
are fitting.

Like classical matched filtering, the method gives very good results as long as the functions in the
library are ‘near’ from the transient. The method is not robust and cannot be employed because it
would restrict the study to some specific kinds of transients.

Other HOS or WT methods obviously exist but picking up a few of them show that considering
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the tools independently is not optimal. Wavelet packets allow to merge both approaches and to
search for example the most nonGaussian basis. We analyse in the next section the performance of
the de-noising algorithm when classical best basis search criteria are used.

3.3.8 What about the other classical best basis search procedures ?

Classical best basis search procedures rely on a criterion whose purpose is to minimize a basis
construction cost. The approach proposed in this article is quite different because the criterion is
built with a detection goal. What is at stake is to decide whether or not samples are Gaussian and to
keep nonGaussian coefficients. This detection formulation naturally leads to an automatic de-noising
threshold.

None of the existing cost functions have been used for detection. Indeed initial purpose was
compression involving an information measure realized by entropy, logarithmic energy or [P norm.
Instead of minimizing a cost functional allowing to get the ‘cheapest’ basis in terms of coding, one
can imagine to search for the ‘most nonGaussian’ basis [4]. This can be done by choosing the basis
which maximizes the kurtosis of the coefficients.

At this point, the proposed thresholding value can be used to get rid of the Gaussian frequency
bands in the obtained time-frequency tiling. Experiments show that results are as good as the pro-
posed detection method except for very low SNR. For frequency multi-component transients, the
detection driven basis search method gives better results (figure 10).

After performance and comparison results, we propose a real case study encountered in an in-
dustrial context. The signals presented and analyzed for this illustration have been furnished by the
French National Electricity Company that we gratefully acknowledge.

4 Application to missing bolt detection in nuclear plants

The first application depicted in paragraph 3.2 allowed to validate the algorithm through simula-
tions and performance curves. Experiments were controlled by embedding real transients in recorded
sea noise. Beyond these simulated situations we tested the method on a real problem of detection
appearing in nuclear plant pipings. Sensors placed on the pipes sometimes detect hits in the inner
sides of pipes produced by any forgotten or detached object. For example the wandering bodies
detected in this application has been identified as screw bolts which have been forgotten after pipe
cleaning operations. Actually, such problems occasionally appear in nuclear plants and are of great
importance. Indeed the wandering bodies can cause damage which requires repair and necessitates
shutting the plant down. This produces important costs thus requiring most correct detections as
possible.

The existing method based on a spectral substraction suffers from a too significant false alarm
rate at the fixed detection rate. The reason is the following: Energy fluctuations are detected as
they should not. The fluid circulating in the pipes produces hydraulic noise which is actually subject
to some energy fluctuations along the time. The proposed detection method essentially takes into
account the statistical properties of the noise along the time. In the present case, the hydraulic noise
looks Gaussian and stays Gaussian whatever its power may be.
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A wandering bodies signal is presented figure 11 (panel A). The signal is sampled at a rate of
50 kHz. The spectrogram of the signal appears in panel B. It is calculated on 256 points segments
with 50% overlapping. Segments are weighted with Hanning windows. Transient events can clearly
be seen in the signal around 1 second. Four narrow bands can be seen in the spectrogram (at about
3, 6, 10 and 11 kHz). These bands correspond to hydraulic noise due to the fluid. In some particular
working conditions, fluid circulating generates frequency bands in the pipes acting as a wave guide.
The 3 kHz frequency band is the most powerful and its energy fluctuates a lot along the time. This
hides the presence of transients which are difficult to be seen in the time domain. By contrast, the
most powerful transients are clearly depicted by the spectrogram. However, we can wonder if other
screw bolts signatures are present in the signal.

The time frequency representation obtained with the described algorithm is shown in panel C.
The decomposition depth is set to 6 (i.e. 64 frequency channels). Bands have been merged according
to their coefficients Gaussianity with a 90% confidence made decision. A sufficient regular wavelet
has been chosen such as a Daubechies one constructed on a 16-taps filter. The same representation
after thresholding is represented in panel D. The kurtosis curve plotted at the right have permitted
to retain the nonGaussian frequency bands. It is very interesting to see that the powerful frequency
bands at 3, 10 and 11 kHz have been considered as Gaussian by the algorithm and then have been
eliminated. The reconstructed signal is shown in panel E. An adaptive detector is then applied on
that signal. It is shown in panel F where we also plot the adaptive energy before any processing for
comparison (signal have been normalized in energy). We can see that the false alarm before processing
have been eliminated, at the instant 0.1 second. The false alarm may be due to the high amplitude of
the 3 kHz band at this instant. Note also the spectacular gain obtained in the detection, by contrast
between the curves. Furthermore, a transient at 1.1 second is detected by the hybrid detector whereas
it is not seen by the energy on the raw signal. The proposed detector on this example decreases the
false alarm rate and reveals a miss detection not solved by the energy detector.

5 Conclusion

In this paper we use an adaptive time-frequency plane segmentation for a transient detection
problem. We take advantage of the segmentation flexibility proposed by the wavelet packets theory
to find the ‘most adapted’ basis among a library of possible wavelet packet bases.

The segmentation process is guided by a detection purpose: Trying to make transients emerge
from the noise in the time-frequency representation. The discrimination is based on the knowledge
of the signals we study: The wavelet coefficients of the transient signals are nonGaussian whereas
the coefficients of the noise are Gaussian. The derived criterion merges Gaussian frequency bands.
The simulation results in terms of ROC curves show that the combination of HOS tools with time-
frequency representations is efficient. They also show the importance of the time-frequency plane
segmentation in the transient detection problem.

Let us recall the key-parameters in the proposed algorithm. The results essentially depend on
the confidence value attributed to the decision criterion. It defines the segmentation tendency by
facilitating the merging or not. Above all, the de-noising procedure used is particularly interesting
because the threshold is automatically fixed by the confidence value and the chosen decomposition
depth. Finally the algorithm can be considered as an automatic band-pass filtering.
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Beyond the beginning applications considered in passive sonar, we have shown interesting results
appearing in an industrial context. The algorithm can be used both as a detection method and as a
de-noising method. In the wandering bodies problem, the main objective is to make clear disturbing
situations. However the other de-noising application is also very useful for an event classification. The
classification allows to identify the cause of the detected hits and then to evaluate the seriousness of
the situation.

Other applications may be considered. For example radio astronomy recordings are perturbed by
powerful interferences stemming from satellite communications. Some of the perturbations can be
modeled as unknown pure frequencies. The current methods detect the appearance of such interfer-
ences and then stop the recordings - the method is named time-blanking. Our detector could detect
the disturbing frequency bands which are nonGaussian. On the contrary Gaussian components would
be kept in the de-noising procedure so that radio astronomic recordings would not stop.

Beside other new applications, future works concern the extension of the algorithm to a ‘double
tree’ method: It allows to select the best basis among a set, of best bases found when the initial signal
is time sliced [9]. A binary primary tree is build. It segments the initial signal up to a certain level in
the time domain . On each node, a wavelet packet decomposition tree is developed in which a best
basis is selected. Each node of the primary tree is then affected with its best basis construction cost.
The final best basis is selected with the search algorithm in the primary tree. This method needs yet
to be adapted for a detection purpose.
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