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1. Introduction. Blackwell’s approachability theory and its variants has become a standard and
useful tool in analyzing online learning algorithms (Cesa-Bianchi and Lugosi [5]) and algorithms for learn-
ing in games (Hart and Mas-Colell [13, 14]). The first application of Blackwell’s approachability to learn-
ing in the online setup is due to Blackwell [3] himself. Numerous other contributions are summarized in
the monograph by Cesa-Bianchi and Lugosi [5]. Blackwell’s approachability theory enjoys a clear geomet-
ric interpretation that allows it to be used in situations where online convex optimization or exponential
weights do not seem to be easily applicable and, in some sense, to go beyond the minimization of the
regret and/or to control quantities of a different flavor; e.g., in the article by Mannor et al. [20], to mini-
mize the regret together with path constraints, and in the one by Mannor and Shimkin [18], to minimize
the regret in games whose stage duration is not fixed. Recently, it has been shown by Abernethy et al. [1]
that approachability and low regret learning are equivalent in the sense that efficient reductions exist
from one to the other. Another recent paper by Rakhlin et al. [27] showed that approachability can be
analyzed from the perspective of learnability using tools from learning theory.

In this paper we consider approachability and online learning with partial monitoring in games against
Nature. In partial monitoring the decision maker does not know how much reward was obtained and only
gets a (random) signal whose distribution depends on the action of the decision maker and the action
of Nature. There are two extremes of this setup that are well studied. On the one extreme we have the
case where the signal includes the reward itself (or a signal that can be used to unbiasedly estimate the
reward), which is essentially the celebrated bandits setup. The other extreme is the case where the signal
is not informative (i.e., it tells the decision maker nothing about the actual reward obtained); this setting
then essentially consists of repeating the same situation over and over again, as no information is gained
over time. We consider a setup encompassing these situations and more general ones, in which the signal
is indicative of the actual reward, but is not necessarily a sufficient statistics thereof. The difficulty is
that the decision maker cannot compute the actual reward he obtained nor the actions of Nature.

Regret minimization with partial monitoring has been studied in several papers in the learning the-
ory community. Piccolboni and Schindelhauer [26], Mannor and Shimkin [17], Cesa-Bianchi et al. [6]
study special cases where an accurate estimation of the rewards (or worst-case rewards) of the decision
maker is possible thanks to some extra structure. A general policy with vanishing regret is presented
by Lugosi et al. [16]. This policy is based on exponential weights and a specific estimation procedure
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for the (worst-case) obtained rewards. In contrast, we provide approachability-based results for the
problem of regret minimization. On route, we define a new type of approachability setup, with enables
to re-derive the extension of approachability to the partial monitoring vector-valued setting proposed
by Perchet [23]. More importantly, we provide concrete algorithms for this approachability problem that
are more efficient in the sense that, unlike previous works in the domain, their complexity is constant over
all steps. Moreover, their rates of convergence are independent of the game at hand, as in the seminal
paper by Blackwell [3] but for the first time in this general framework. For example, the recent purely
theoretical (and fairly technical) study of approachability Perchet and Quincampoix [25], which is based
on somehow related arguments, does neither provide rates of convergence nor concrete algorithms for this
matter.

Outline. The paper is organized as follows. In Section 2 we recall some basic facts from approachability
theory in the standard vector-valued games setting where a decision maker is engaged in a repeated vector-
valued game against an arbitrary opponent (or “Nature”). In Section 3 we propose a novel setup for
approachability, termed “robust approachability,” where instead of obtaining a vector-valued reward,
the decision maker obtains a set, that represents the ambiguity concerning his reward. We provide a
simple characterization of approachable convex sets and an algorithm for the set-valued reward setup
under the assumption that the set-valued reward functions are linear. In Section 4 we extend the robust
approachability setup to problems where the set-valued reward functions are not linear, but rather concave
in the mixed action of the decision maker and convex in the mixed action of Nature. In Section 5 we
show how to apply the robust approachability framework to the repeated vector-valued games with partial
monitoring. In Section 6 we consider a special type of games where the signaling structure possesses a
special property, called bi-piecewise linearity, that can be exploited to derive efficient strategies. This
type of games is rich enough as it encompasses several useful special cases. In Section 6.1 we provide a
simple and constructive algorithm for theses games. Previous results for approachability in this setup
were either non-constructive (Rustichini [29]) or were highly inefficient as they relied on some sort of
lifting to the space of probability measures on mixed actions (Perchet [23]) and typically required a grid
that is progressively refined (leading to a step complexity that is exponential in the number T of past
steps). In Section 6.2 we apply our results for both external-regret and internal-regret minimization in
repeated games with partial monitoring. In both cases our proofs are simple, lead to algorithms with
constant complexity at each step, and are accompanied with rates. Our results for external regret have
rates similar to the ones obtained by Lugosi et al. [16], but our proof is direct and simpler. In Section 7
we mention the general signaling case and explain how it is possible to approach certain special sets such
as polytopes efficiently and general convex sets although inefficiently.

2. Some basic facts from approachability theory. In this section we recall the most basic
versions of Blackwell’s approachability theorem for vector-valued payoff functions.

We consider a vector-valued game between two players, a decision maker (first player) and Nature
(second player), with respective finite action sets A and B, whose cardinalities are referred to as NA and
NB. We denote by d the dimension of the reward vector and equip Rd with the ℓ2–norm ‖ · ‖2. The payoff
function of the first player is given by a mapping m : A × B → Rd, which is multi-linearly extended to
∆(A)×∆(B), the set of product-distributions over A× B.

We consider two frameworks, depending on whether pure or mixed actions are taken.

Pure actions taken and observed. We denote by A1, A2, . . . and B1, B2, . . . the actions in A and
B sequentially taken by each player; they are possibly given by randomized strategies, i.e., the actions
At and Bt were obtained by random draws according to respective probability distributions denoted by
xt ∈ ∆(A) and yt ∈ ∆(B). For now, we assume that the first player has a full or bandit monitoring of the
pure actions taken by the opponent player: at the end of round t, when receiving the payoff m(At, Bt),
either the pure action Bt (full monitoring) or only the indicated payoff (bandit monitoring) is revealed
to him.

Definition 2.1 A set C ⊆ Rd is m–approachable with pure actions if there exists a strategy of the first
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player such that, for all ε > 0, there exists an integer Tε such that for all strategies of the second player,

P

{
∀T > Tε, inf

c∈C

wwwwwc−
1

T

T∑

t=1

m
(
At, Bt

)
wwwww

2

6 ε

}
> 1− ε .

In particular, the first player has a strategy that ensures that the average of his vector-valued payoffs
converges almost surely to the set C (uniformly with respect to the strategies of the second player).

The above convergence will be achieved in the course of this paper under two forms. Most often we
will exhibit strategies such that, for all strategies of the second player, for all δ > 0, with probability at
least 1− δ,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

m
(
At, Bt

)
wwwww

2

6 β(T, δ) .

A union bound shows that such strategies m–approach C as soon as there exists a positive sequence εT
such that

∑
εt is finite and β(T, εT ) → 0. Sometimes we will also deal with strategies directly ensuring

that, for all strategies of the second player, for all δ > 0, with probability at least 1− δ,

sup
τ>T

inf
c∈C

wwwwwc−
1

τ

τ∑

t=1

m
(
At, Bt

)
wwwww

2

6 β(T, δ) .

Such strategies m–approach C as soon as β(T, δ) → 0 for all δ > 0.

Mixed actions taken and observed. In this case, we denote by x1, x2, . . . and y1, y2, . . . the actions
in ∆(A) and ∆(B) sequentially taken by each player. We also assume a full or bandit monitoring for the
first player: at the end of round t, when receiving the payoff m(xt,yt), either the mixed action yt (full
monitoring) or the indicated payoff (bandit monitoring) is revealed to him.

Definition 2.2 A set C ⊆ Rd is m–approachable with mixed actions if there exists a strategy of the first
player such that, for all ε > 0, there exists an integer Tε such that for all strategies of the second player,

P

{
∀T > Tε, inf

c∈C

wwwwwc−
1

T

T∑

t=1

m
(
xt,yt

)
wwwww

2

6 ε

}
> 1− ε .

As indicated below, in this setting the first player may even have deterministic strategies such that,
for all (deterministic or randomized) strategies of the second player,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

m
(
xt,yt

)
wwwww

2

6 β(T )

with probability 1, where β(T ) → 0.

Necessary and sufficient condition for approachability. For closed convex sets there is a simple
characterization of approachability that is a direct consequence of the minimax theorem; the condition
is the same for the two settings, whether pure or mixed actions are taken and observed.

Theorem 2.1 (Theorem 3 of Blackwell [2]) A closed convex set C ⊆ Rd is approachable (with pure
or mixed actions) if and only if

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ∈ C .

An associated strategy (that is efficient depending on the geometry of C). Blackwell suggested
a simple strategy with a geometric flavor; it only requires a bandit monitoring.

Play an arbitrary x1. For t > 1, given the vector-valued quantities

m̂t =
1

t

t∑

s=1

m(As, Bs) or m̂t =
1

t

t∑

s=1

m(xs,ys) ,



4 Mannor, Perchet, and Stoltz: Robust approachability and regret minimization in games with partial monitoring
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

depending on whether pure or mixed actions are taken and observed, compute the projection ct (in
ℓ2–norm) of m̂t on C. Find a mixed action xt+1 that solves the minimax equation

min
x∈∆(A)

max
y∈∆(B)

〈
m̂t − ct, m(x,y)

〉
, (1)

where 〈 · , · 〉 is the Euclidian inner product in Rd. In the case when pure actions are taken and observed,
draw At+1 at random according to xt+1.

The minimax problem used above to determine xt+1 is easily seen to be a (scalar) zero-sum game and
is therefore efficiently solvable using, e.g., linear programming: the associated complexity is polynomial
in NA and NB. All in all, this strategy is efficient if the computations of the required projections onto C
in ℓ2–norm can be performed efficiently.

The strategy presented above enjoys the following rates of convergence for approachability.

Theorem 2.2 (Theorem 3 of Blackwell [2]; Theorem II.4.3 of Mertens et al. [21]) We de-
note by M a bound in norm over m, i.e.,

max
(a,b)∈A×B

wwm(a, b)
ww

2
6 M .

With mixed actions taken and observed, the above strategy ensures that for all strategies of the second
player, with probability 1,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

m
(
xt,yt

)
wwwww

2

6
2M√
T

;

while with pure actions taken and observed, for all δ ∈ (0, 1) and for all strategies of the second player,
with probability at least 1− δ,

sup
τ>T

inf
c∈C

wwwwwc−
1

τ

τ∑

t=1

m
(
At, Bt

)
wwwww

2

6 2M

√
2

δT
.

An alternative strategy in the case where pure actions are taken and observed. Convergence
rates of a slightly different flavor (but still implying approachability) can be proved, in the full monitoring
case, by modifying the above procedure as follows. For t > 1, consider instead the vector-valued quantity

m̂t =
1

t

t∑

s=1

m(xs, Bs) ,

compute its projection ct (in ℓ2–norm) on C, and solve the associated minimax problem (1).

This modified strategy enjoys the following rates of convergence for approachability when pure actions
are taken and observed.

Theorem 2.3 (Section 7.7 and Exercise 7.23 of Cesa-Bianchi et al. [6]) We denote by M a
bound in norm over m, i.e.,

max
(a,b)∈A×B

wwm(a, b)
ww

2
6 M .

With pure actions taken and observed, the above strategy ensures that for all strategies of the second
player, with probability at least 1− δ,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

m
(
At, Bt

)
wwwww

2

6
2M√
T

(
1 + 2

√
ln(2/δ)

)
.

In the next section, we will rather resort to this slightly modified procedure as the form of the resulting
bounds is closer to the one derived in the main section (Section 6) of this paper.

3. Robust approachability for finite set-valued games. In this section we extend the results
from the previous section to set-valued payoff functions in the case of full monitoring. We denote by
S
(
Rd
)
the set of all subsets of Rd and consider a set-valued payoff function m : A× B → S

(
Rd
)
.
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Pure actions taken and observed. At each round t, the players choose simultaneously respective
actions At ∈ A and Bt ∈ B, possibly at random according to mixed distributions xt and yt. Full
monitoring takes place for the first player: he observes Bt at the end of round t. However, as a result, the
first player gets the subset m(At, Bt) as a payoff. This models the ambiguity or uncertainty associated
with some true underlying payoff gained.

We extend m multi-linearly to ∆(A) × ∆(B) and even to ∆(A × B), the set of joint probability
distributions on A× B, as follows. Let

µ =
(
µa,b

)
(a,b)∈A×B

be such a joint probability distribution; then m(µ) is defined as a finite convex combination1 of subsets
of Rd,

m(µ) =
∑

a∈A

∑

b∈B

µa,b m(a, b) .

When µ is the product-distribution of some x ∈ ∆(A) and y ∈ ∆(B), we use the notationm(µ) = m(x,y).

We denote by

πT =
1

T

T∑

t=1

δ(At,Bt)

the empirical distribution of the pairs (At, Bt) of actions taken during the first T rounds, and will be
interested in the behavior of

1

T

T∑

t=1

m(At, Bt) ,

which can also be rewritten here in a compact way as m(πT ), by linearity of the extension of m.

The distance of this set m(πT ) to the target set C will be measured in a worst-case sense: we denote
by

εT = sup
d∈m(πT )

inf
c∈C

‖c− d‖2

the smallest value such that m(πT ) is included in an εT –neighborhood of C. Robust approachability of a
set C with the set-valued payoff function m then simply means that the sequence of εT tends almost-surely
to 0, uniformly with respect to the strategies of the second player.

Definition 3.1 A set C ⊆ Rd is m–robust approachable with pure actions if there exists a strategy of
the first player such that, for all ε > 0, there exists an integer Tε such that for all strategies of the second
player,

P

{
∀T > Tε, sup

d∈m(πT )

inf
c∈C

‖c− d‖2 6 ε

}
> 1− ε .

Mixed actions taken and observed. At each round t, the players choose simultaneously respective
mixed actions xt ∈ ∆(A) and yt ∈ ∆(B). Full monitoring still takes place for the first player: he observes
yt at the end of round t; he however gets the subset m(xt,yt) as a payoff (which, again, accounts for the
uncertainty).

The product-distribution of two elements x = (xa)a∈A ∈ ∆(A) and y = (yb)b∈B ∈ ∆(B) will be
denoted by x ⊗ y; it gives a probability mass of xayb to each pair (a, b) ∈ A × B. We consider the
empirical joint distribution of mixed actions taken during the first T rounds,

νT =
1

T

T∑

t=1

xt ⊗ yt ,

and will be interested in the behavior of

1

T

T∑

t=1

m(xt,yt) ,

which can also be rewritten here in a compact way as m(νT ), by linearity of the extension of m.

1For two sets S, T and α ∈ [0, 1], the convex combination αS + (1− α)T is defined as
{

αs+ (1 − α)t, s ∈ S and t ∈ T
}

.
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Definition 3.2 A set C ⊆ Rd is m–robust approachable with mixed actions if there exists a strategy of
the first player such that, for all ε > 0, there exists an integer Tε such that for all strategies of the second
player,

P

{
∀T > Tε, sup

d∈m(νT )

inf
c∈C

‖c− d‖2 6 ε

}
> 1− ε .

Actually, the bounds exhibited below in this setting will be of the form

sup
d∈m(νT )

inf
c∈C

‖c− d‖2 6 β(T )

with probability 1 and uniformly over all (deterministic or randomized) strategies of the second player,
where β(T ) → 0 and for deterministic strategies of the first player.

A useful continuity lemma. Before proceeding we provide a continuity lemma. It can be reformulated
as indicating that for all joint distributions µ and ν overA×B, the set m(µ) is contained in aM ‖µ− ν‖1–
neighborhood of m(ν), where M is a bound in ℓ2–norm on m; this is a fact that we will use repeatedly
below.

Lemma 3.1 Let µ and ν be two probability distributions over A × B. We assume that the set-valued
function m is bounded in norm by M , i.e., that there exists a real number M > 0 such that

∀(a, b) ∈ A× B, sup
d∈m(a,b)

‖d‖2 6 M .

Then
sup

d∈m(µ)

inf
c∈m(ν)

‖d− c‖2 6 M ‖µ− ν‖1 6 M
√
NANB ‖µ− ν‖2 ,

where the norms in the right-hand side are respectively the ℓ1 and ℓ2–norms between probability distribu-
tions.

Proof. Let d be an element of m(µ); it can be written as

d =
∑

a∈A

∑

b∈B

µa,b θa,b

for some elements θa,b ∈ m(a, b). We consider

c =
∑

a∈A

∑

b∈B

νa,b θa,b ,

which is an element of m(ν). Then by the triangle inequality,

‖d− c‖2 =

wwwww
∑

a∈A

∑

b∈B

(
µa,b − νa,b

)
θa,b

wwwww
2

6
∑

a∈A

∑

b∈B

∣∣µa,b − νa,b
∣∣ ‖θa,b‖2 6 M

∑

a∈A

∑

b∈B

∣∣µa,b − νa,b
∣∣ .

This entails the first claimed inequality. The second one follows from an application of the Cauchy-
Schwarz inequality. �

Corollary 3.1 When the set-valued function m is bounded in norm, for all y ∈ ∆(B), the mapping
Dy : ∆(A) → R defined by

∀x ∈ ∆(A), Dy(x) = sup
d∈m(x,y)

inf
c∈C

‖c− d‖2

is continuous.

Proof. We show that for all x, x′ ∈ ∆(A), the condition ‖x′ − x‖1 6 ε implies that Dy(x) −
Dy(x

′) 6 Mε, where M is the bound in norm over m. Indeed, fix δ > 0 and let dδ,x ∈ m(x,y) be such
that

Dy(x) 6 inf
c∈C

wwc− dδ,x
ww

2
+ δ . (2)
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By Lemma 3.1 (with the choices µ = x ⊗ y and ν = x′ ⊗ y) there exists dδ,x′ ∈ m(x′,y) such thatwwdδ,x − dδ,x′

ww
2
6 Mε+ δ. The triangle inequality entails that

inf
c∈C

wwc− dδ,x
ww

2
6 inf

c∈C

wwc− dδ,x′

ww
2
+Mε+ δ .

Substituting in (2), we get that

Dy(x) 6 Mε+ 2δ + inf
c∈C

wwc− dδ,x′

ww
2
6 Mε+ 2δ +Dy(x

′) ,

which, letting δ → 0, proves our continuity claim. �

Necessary and sufficient condition for robust approachability. This conditions reads as follows
and will be referred to as (RAC), an acronym that stands for “robust approachability condition.”

Theorem 3.1 Suppose that the set-valued function m is bounded in norm by M . A closed convex set
C ⊆ Rd is m–approachable (with pure or mixed actions) if and only if the following robust approachability
condition is satisfied,

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ⊆ C . (RAC)

Proof of the necessity of Condition (RAC). If the condition does not hold, then there exists
y0 ∈ ∆(B) such that for every x ∈ A, the set m(x,y0) is not included in C, i.e., it contains at least
one point not in C. We consider the mapping Dy0

defined in the statement of Corollary 3.1. Since C is
closed, distances of given individual points to C are achieved; therefore, by the choice of y0, we get that
Dy0

(x) > 0 for all x ∈ ∆(A). Now, since Dy0
is continuous on the compact set ∆(A), as asserted by the

indicated corollary, it attains its minimum, whose value we denote by Dmin > 0.

Assume now that the second player chooses at each round yt = y0 as his mixed action. In the case of
mixed actions taken and observed, denoting

xT =
1

T

T∑

t=1

xt ,

we get that νt = xT ⊗ y0, and hence, for all strategies of the first player and for all T > 1,

sup
d∈m(νT )

inf
c∈C

‖c− d‖2 = Dy0
(xT ) > Dmin > 0 ,

which shows that C is not approachable.

The case of pure actions taken and observed is treated similarly, with the sole addition of a con-
centration argument. By martingale convergence (e.g., repeated uses of the Hoeffding-Azuma inequality
together with an application of the Borel-Cantelli lemma), δT = ‖πT − νT ‖1 → 0 almost surely as T → ∞.
By applying Lemma 3.1, we get

sup
d∈m(πT )

inf
c∈C

‖c− d‖2 > sup
d∈m(νT )

inf
c∈C

‖c− d‖2 −MδT > Dmin −MδT

and simply take the lim inf in the above inequalities to conclude the argument. �

That (RAC) is sufficient to get robust approachability is proved in a constructive way, by exhibiting
suitable strategies. We identify probability distributions over A × B with vectors in RA×B and consider
the vector-valued payoff function

m : (a, b) ∈ A× B 7−→ δ(a,b) ∈ RA×B ,

which we extend multi-linearly to ∆(A)×∆(B); the target set will be

C̃ =
{
µ ∈ ∆(A× B) : m(µ) ⊆ C

}
. (3)

Since m is a linear function on ∆(A× B) and C is convex, the set C̃ is convex as well. In addition, since

C is closed, C̃ is also closed.

Lemma 3.2 Condition (RAC) is equivalent to the m–approachability of C̃.
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Proof. This equivalence is immediate via Theorem 2.1. The latter indeed states that the m–
approachability of C̃ is equivalent to the fact that for all y ∈ ∆(B), there exists some x ∈ ∆(A) such that

µ = m(x,y), the product-distribution between x and y, belongs to C̃, i.e., satisfies m(µ) = m(x,y) ⊆ C.
�

The above definition of m entails the following rewriting,

πT =
1

T

T∑

t=1

m(At, Bt) and νT =
1

T

T∑

t=1

m(xt,yt) .

Let PC̃ denote the projection operator onto C̃; the quantities at hand in the definition ofm–approachability

of C̃ are given by

εT =
wwwπT − PC̃(πT )

www
2
= inf

µ∈C̃
‖πT − µ‖2 and ε′T =

wwwνT − PC̃(νT )
www

2
= inf

µ∈C̃
‖νT − µ‖2 .

We now relate the quantities of interest, i.e., the ones arising in the definition ofm–robust approachability
of C, to the former quantities.

Lemma 3.3 With pure actions taken and observed,

sup
d∈m(πT )

inf
c∈C

‖c− d‖2 6 M
√
NANB εT .

With mixed actions taken and observed,

sup
d∈m(νT )

inf
c∈C

‖c− d‖2 6 M
√
NANB ε′T .

Proof. Lemma 3.1 entails that the sets m(πT ) are included in M
√
NANB εT –neighborhoods of

m
(
PC̃(πT )

)
. Since by definition of C̃, one has m

(
PC̃(πT )

)
⊆ C, we get in particular that the sets m(πT )

are included in M
√
NANB εT –neighborhoods of C, which is exactly what was stated. The argument can

be repeated with the νT to get the second bound in the statement of the lemma. �

Proof of the sufficiency of Condition (RAC). First, Lemma 3.2 shows that Condition (RAC)

(via Theorems 2.2 or 2.3) ensures the existence of strategies m–approaching C̃. Second, Lemma 3.3
indicates that these strategies also m–robust approach C. (It even translates the rates for the m–

approachability of C̃ into rates for the m–robust approachability of C; for instance, in the case of mixed
actions taken and observed, the 2/

√
T rate for the m–approachability of C̃ becomes a 2M

√
NANB/T

rate for the m–robust approachability of C, a fact that we will use in the proof of Theorem 6.1.) �

Two concluding remarks. Note that, as explained around Equation (1), the considered strategies

for m–approaching C̃, or equivalently m–robust approaching C, are efficient as soon as projections in
ℓ2–norm onto the set C̃ defined in (3) can be computed efficiently. The latter fact depends on the
respective geometries of m and C. We will provide examples of favorable cases (see, e.g., Section 6.2.1
about minimization of external regret under partial monitoring).

A final remark is that the proposed strategies require full monitoring, as they rely on the observations
of either the pair of played mixed actions m(xt,yt) or of played pure actions m(At, Bt). They enjoy no
obvious extension to a case where only a bandit monitoring of the played sets m(xt,yt) or m(At, Bt)
would be available.

4. Robust approachability for concave–convex set-valued games. We consider in this section
the same setting of mixed actions taken and observed as in the previous section, that is, we deal with
set-valued payoff functions m : ∆(A) ×∆(B) → S

(
Rd
)
under full monitoring. However, in the previous

section m was linear on ∆(A)×∆(B), an assumption that we now weaken while still having that (RAC)
is the necessary and sufficient condition for robust approachability. The price to pay for this is the loss
of the possible efficiency of the approachability strategies exhibited and the worsening of the convergence
rates.

Formally, the functions m : ∆(A) ×∆(B) → S
(
Rd
)
that we will consider will satisfy one or several of

the following properties.
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Definition 4.1 A function m : ∆(A) × ∆(B) → S
(
Rd
)
is uniformly continuous in its first argument

if for all ε > 0, there exists η > 0 such that for all x,x′ ∈ ∆(A) satisfying ‖x− x′‖1 6 η and for all
y ∈ ∆(B), the set m(x′,y) is included in an ε–neighborhood of m(x,y) in the Euclidian norm. Put
differently,

sup
d∈m(x′,y)

inf
c∈m(x,y)

‖d− c‖2 6 ε or m(x′,y) ⊆ m(x,y) + εB ,

where B is the unit Euclidian ball in Rd.

Uniform continuity in the second argument is defined symmetrically.

Definition 4.2 A function m : ∆(A)×∆(B) → S
(
Rd
)
is concave in its first argument if for all x,x′ ∈

∆(A), all y ∈ ∆(B), and all α ∈ [0, 1],

m
(
αx+ (1− α)x′, y

)
⊆ αm(x,y) + (1 − α)m(x′,y) .

A function m : ∆(A) × ∆(B) → S
(
Rd
)
is convex in its second argument if for all x ∈ ∆(A), all

y,y′ ∈ ∆(B), and all α ∈ [0, 1],

αm(x,y) + (1− α)m(x,y′) ⊆ m
(
x, αy + (1− α)y′

)
.

An example of such a function m is discussed in Lemma 5.1.

The following theorem indicates that (RAC) is the necessary and sufficient condition for the m–robust
approachability of a closed convex set C with mixed actions when the payoff function m satisfies all four
properties stated above. (Boundedness of m indeed follows from the continuity of m in each variable.)

Theorem 4.1 If m is bounded, convex, and uniformly continuous in its second argument, then (RAC)
entails that a closed convex set C is m–robust approachable with mixed actions.

On the contrary, if m is concave and uniformly continuous in its first argument, then a closed convex
set C can be m–robust approachable with mixed actions only if (RAC) is satisfied.

Proof of the second statement of Theorem 4.1. The proof of Corollary 3.1 extends to the
case considered here and shows, thanks to the ad hoc consideration of the result stated in Lemma 3.1 as
following from Definition 4.1, that for all y ∈ ∆(B), the mappingDy is still continuous over ∆(A). We now
proceed by contradiction and assume that (RAC) is not satisfied; the first part of the proof of the necessity
of (RAC) in Theorem 3.1 also applies to the present case: there exists y0 such that Dy0

> Dmin > 0 over
∆(A). It then suffices to note that whenever the second player resorts to yt = y0 at all rounds t > 1,
then for all strategies of the first player, the quantity of interest in robust approachability can be lower
bounded as follows, thanks to the concavity in the first argument:

sup

{
inf
c∈C

‖d− c‖2 : d ∈ 1

T

T∑

t=1

m(xt,y0)

}

> sup

{
inf
c∈C

‖d− c‖2 : d ∈ m

(
1

T

T∑

t=1

xt, y0

)}
= Dy0

(
1

T

T∑

t=1

xt

)
> Dmin > 0 .

Therefore, C is m–robust approachable with mixed actions by no strategy of the first player. �

The proof of the first statement of Theorem 4.1 relies on the use of approximately calibrated strate-
gies of the first player, as introduced and studied (among others) by Dawid [8], Foster and Vohra [9],
Mannor and Stoltz [19]. Formally, given η > 0, an η–calibrated strategy of the first player considers
some finite covering of ∆(B) by Nη balls of radius η and abides by the following constraints. Denoting
by y1, . . . ,yNη the centers of the balls in the covering (they form what will be referred to later on as an
η–grid), such a strategy chooses only forecasts in

{
y1, . . . ,yNη

}
. We thus denote by Lt the index chosen

in
{
1, . . . , Nη

}
at round t and by

NT (ℓ) =

T∑

t=1

I{Lt=ℓ}

the total number of rounds within the first T ones when the element ℓ of the grid was chosen. We denote
by ( · )+ the function that gives the nonnegative part of a real number. The final condition to be satisfied
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is that for all δ > 0, there exists an integer Tδ such that for all strategies of the second player, with
probability at least 1− δ, for all T > Tδ,

Nη∑

ℓ=1

NT (ℓ)

T

(wwwwwy
ℓ − 1

NT (ℓ)

T∑

t=1

ytI{Lt=ℓ}

wwwww
1

− η

)

+

6 δ . (4)

This calibration criterion is slightly stronger than the classical η–calibration score usually considered in
the literature, which consists of omitting nonnegative parts in the criterion above and ensuring that for
all strategies of the second player, with probability at least 1− δ, for all T > Tδ,

Nη∑

ℓ=1

NT (ℓ)

T

wwwwwy
ℓ − 1

NT (ℓ)

T∑

t=1

ytI{Lt=ℓ}

wwwww
1

6 η + δ . (5)

The existence of a calibrated strategy in the sense of (4) however follows from the same approachability-
based construction studied in Mannor and Stoltz [19] to get (5) and is detailed in the appendix. In the
sequel we will only use the following consequence of calibration: that for all strategies of the second
player, with probability at least 1− δ, for all T > Tδ,

max
ℓ=1,...,Nη

NT (ℓ)

T

(wwwwwy
ℓ − 1

NT (ℓ)

T∑

t=1

ytI{Lt=ℓ}

wwwww
1

− η

)

+

6 δ . (6)

Proof of the first statement of Theorem 4.1. The insight of this proof is similar to the one
illustrated in Perchet [22]. We first note that it suffices to prove that for all ε > 0, the set Cε defined
as the ε–neighborhood of C is m–robust approachable with mixed actions; this is so up to proceeding in
regimes r = 1, 2, . . . each corresponding to a dyadic value εr = 2−r and lasting for a number of rounds
carefully chosen in terms of the length of the previous regimes.

Therefore, we fix ε > 0 and associate with it a modulus of continuity η > 0 given by the uniform
continuity of m in its second argument. We consider an η/2–calibrated strategy of the first player, which
we will use as an auxiliary strategy. Since (RAC) is satisfied, we may associate with each element yℓ of
the underlying η/2–grid a mixed action xℓ ∈ ∆(A) such that m

(
xℓ,yℓ

)
⊆ C. The main strategy of the

first player then prescribes the use of xt = xLt at each round t > 1. The intuition behind this definition
is that if yLt is forecast by the auxiliary strategy, then since the latter is calibrated, one should play as
good as possible against yLt ; in view of the aim at hand, which is approaching C, such a good reply is
given by xLt .

To assess the constructed strategy, we group rounds according to the values ℓ taken by the Lt; to that
end, we recall that NT (ℓ) denotes the number of rounds in which yℓ was forecast and xℓ was played. The
average payoff up to round T is then rewritten as

1

T

T∑

t=1

m(xt,yt) =

Nη/2∑

ℓ=1

NT (ℓ)

T

(
1

NT (ℓ)

T∑

t=1

m
(
xℓ,yt

)
I{Lt=ℓ}

)
.

We denote for all ℓ such that NT (ℓ) > 0 the average of their corresponding mixed actions yt by

yℓ
T =

1

NT (ℓ)

T∑

t=1

ytI{Lt=ℓ} .

The convexity of m in its second argument leads to the inclusion

1

T

T∑

t=1

m(xt,yt) =

Nη/2∑

ℓ=1

NT (ℓ)

T

(
1

NT (ℓ)

T∑

t=1

m
(
xℓ,yt

)
I{Lt=ℓ}

)
⊆

Nη/2∑

ℓ=1

NT (ℓ)

T
m
(
xℓ,yℓ

T

)
.

To show that the above-defined strategy m–robust approaches Cε = C + εB, it suffices to show that for
all δ > 0, there exists an integer T ′

δ such that for all strategies of the second player,

P



∀T > T ′

δ,

Nη/2∑

ℓ=1

NT (ℓ)

T
m
(
xℓ,yℓ

T

)
⊆ C + (ε+ δ)B



 > 1− δ .
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We denote by M a bound in ℓ2–norm on m, i.e., for all x ∈ ∆(A) and y ∈ ∆(B), the inclusion
m(x,y) ⊆ MB holds. We let δ′ = δ(η/2)

/(
M Nη/2

)
and define T ′

δ as the time Tδ′ corresponding to (6).
All statements that follow will be for all strategies of the second player and with probability at least
1 − δ′ > 1 − δ, for all T > T ′

δ, as required. For each index ℓ of the grid, either δ′T/NT (ℓ) 6 η/2 or
δ′T/NT (ℓ) > η/2. In the first case, following (6),

wwyℓ − yℓ
T

ww 6 η/2 + δ′T/NT (ℓ) 6 η; since η is the
modulus of continuity for ε, we get that

NT (ℓ)

T
m
(
xℓ,yℓ

T

)
⊆ NT (ℓ)

T

(
m
(
xℓ,yℓ

)
+ εB

)
⊆ NT (ℓ)

T

(
C + εB

)
,

where we used the definition of xℓ to get the second inclusion. In the second case, using the boundedness
of m, we simply write

NT (ℓ)

T
m
(
xℓ,yℓ

T

)
⊆ NT (ℓ)

T
MB ⊆ δ′

η/2
MB .

Summing these bounds over ℓ yields

Nη/2∑

ℓ=1

NT (ℓ)

T
m
(
xℓ,yℓ

T

)
⊆ C + εB +

Nη/2δ
′

η/2
M B = C + (ε+ δ)B ,

where we used the definition of δ′ in terms of δ. This concludes the proof. �

5. Approachability in games with partial monitoring: statement of the necessary and
sufficient condition; links with robust approachability. A repeated vector-valued game with
partial monitoring is described as follows (see, e.g., Mertens et al. [21], Rustichini [29], and the references
therein). The players have respective finite action sets I and J . We denote by r : I × J → Rd the
vector-valued payoff function of the first player and extend it multi-linearly to ∆(I) × ∆(J ). At each
round, players simultaneously choose their actions It ∈ I and Jt ∈ J , possibly at random according to
probability distributions denoted by pt ∈ ∆(I) and qt ∈ ∆(J ). At the end of a round, the first player
does not observe Jt nor r(It, Jt) but only a signal. There is a finite set H of possible signals; the feedback
St that is given to the first player is drawn at random according to the distribution H(It, Jt), where the
mapping H : I × J → ∆(H) is known by the first player.

Example 5.1 Examples of such partial monitoring games are provided by, e.g., Cesa-Bianchi et al. [6],
among which we can cite the apple tasting problem, the label-efficient prediction constraint, and the multi-
armed bandit settings.

Some additional notation will be useful. We denote by R the norm of (the linear extension of) r,

R = max
(i,j)∈I×J

wwr(i, j)
ww

2
.

The cardinalities of the finite sets I, J , and H will be referred to as NI , NJ , and NH.

Definition 2.1 can be extended as follows in this setting; the only new ingredient is the signaling
structure, the aim is unchanged.

Definition 5.1 Let C ⊆ Rd be some set; C is r–approachable for the signaling structure H if there exists
a strategy of the first player such that, for all ε > 0, there exists an integer Tε such that for all strategies
of the second player,

P

{
∀T > Tε, inf

c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

6 ε

}
> 1− ε .

That is, the first player has a strategy that ensures that the sequence of his average vector-valued payoffs
converges to the set C (uniformly with respect to the strategies of the second player), even if he only
observes the random signals St as a feedback.
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Our contributions. A necessary and sufficient condition for r–approachability with the signaling struc-
ture H was stated and proved by Perchet [23]; we therefore need to indicate where our contribution lies.
First, both proofs are constructive but our strategy can be efficient (as soon as some projection opera-
tor can be computed efficiently, e.g., in the cases of external and internal regret minimization described
below) whereas the one of Perchet [23] relies on auxiliary strategies that are calibrated and that require
a grid that is progressively refined (leading to a step complexity that is exponential in the number T of
past steps); the latter construction is in essence the one used in Section 4. Second, we are able to exhibit
convergence rates. Third, as far as elegancy is concerned, our proof is short, compact, and more direct
than the one of Perchet [23], which relied on several layers of notations (internal regret in games with
partial monitoring, calibration of auxiliary strategies, etc.).

5.1 Statement of the necessary and sufficient condition for approachability in games with
partial monitoring. To recall the mentioned approachability condition of Perchet [23] we need some

additional notation: for all q ∈ ∆(J ), we denote by H̃(q) the element in ∆(H)I defined as follows. For
all i ∈ I, its i–th component is given by the convex combination of probability distributions over H

H̃(q)i = H(i, q) =
∑

j∈J

qjH(i, j) .

Finally, we denote by F the convex set of feasible vectors of probability distributions over H:

F =
{
H̃(q) : q ∈ ∆(J )

}
.

A generic element of F will be denoted by σ ∈ F and we define the set-valued function m, for all p ∈ ∆(I)
and σ ∈ F , by

m(p, σ) =
{
r(p, q′) : q′ ∈ ∆(J ) such that H̃(q′) = σ

}
.

The necessary and sufficient condition exhibited by Perchet [23] for the r–approachability of C with
the signaling structure H can now be recalled. In the sequel we will refer to this condition as Condi-
tion (APM), an acronym that stands for “approachability with partial monitoring.”

Condition 1 (referred to as Condition (APM)) The signaling structure H, the vector-payoff
function r, and the set C satisfy

∀ q ∈ ∆(J ), ∃p ∈ ∆(I), ∀ q′ ∈ ∆(J ), H̃(q) = H̃(q′) ⇒ r(p, q′) ∈ C .
The condition can be equivalently reformulated as

∀σ ∈ F , ∃p ∈ ∆(I), m(p, σ) ⊆ C . (APM)

This condition is necessary. The subsequent sections show (in a constructive way) that Condi-
tion (APM) is sufficient for r–approachability of closed convex sets C given the signaling structure H .
That this condition is necessary was already proved in Section 3.1 of Perchet [23].

5.2 Links with robust approachability. As will become clear in the proof of Theorem 6.1, the key
in our problem will be to ensure the robust approachability of C with the following non-linear set-valued
payoff function, that is however concave–convex in the sense of Definition 4.2.

Lemma 5.1 The function
(p, q) ∈ ∆(I) ×∆(J ) 7−→ m

(
p, H(q)

)
.

is concave in its first argument and convex in its second argument.

Unfortunately, efficient strategies for robust approachability were only proposed in the linear case, not
in the concave–convex case. But we illustrate in the next example (and provide a general theory in the
next section) how working in lifted spaces can lead to linearity and hence to efficiency.

Example 5.2 We consider a game in which the second player (the column player) can force the first
player (the row player) to play a game of matching pennies in the dark by choosing actions L or M ; in
the matrix below, the real numbers denote the payoff while ♣ and ♥ denote the two possible signals. The
respective sets of actions are I = {T, B} and J = {L, M, R}.
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L M R

T 1 / ♣ −1 / ♣ 2 / ♥
B −1 / ♣ 1 / ♣ 3 / ♥

In this example we only study the mapping p 7→ m(p,♣) and show that it is piecewise linear on ∆(I),
thus, is induced by a linear mapping defined on a lifted space.

We introduce a set A = {pT , pB , p1/2} of possibly mixed actions extending the set I = {T, B} of
pure actions; the set A is composed of

pT = δT , pB = δB, and p1/2 =
1

2
δT +

1

2
δB .

Each mixed action in ∆(I) can be uniquely written as pλ = λ δB + (1 − λ) δT for some λ ∈ [0, 1]. Now,
for λ > 1/2, first,

pλ = (2λ− 1) δB +
(
1− (2λ− 1)

)
p1/2 ;

second, by definition of m,
m
(
pλ, ♣

)
= [1− 2λ, 2λ− 1] ;

since in particular m
(
p1/2, ♣

)
= {0} and m(δB ,♣) = [−1, 1], we have the convex decomposition

m
(
pλ, ♣

)
= (2λ− 1)m(δB ,♣) +

(
1− (2λ− 1)

)
m(p1/2,♣) ,

which can be restated as

m
(
pλ, ♣

)
= m

(
(2λ− 1) δB +

(
1− (2λ− 1)

)
p1/2, ♣

)
= (2λ− 1)m(δB,♣) +

(
1− (2λ− 1)

)
m(p1/2,♣) .

That is, m( · , ♣) is linear on the subset of ∆(I) corresponding to mixed actions pλ with λ > 1/2.

A similar property holds the subset of distributions with λ 6 1/2, so that we have proved that m( · , ♣)
is piecewise linear on ∆(I).

The linearity on a lifted space comes from the following observation: m is induced by the linear
extension to ∆(A) of the restriction of m to A (see Definition 6.1 for a more formal statement).

6. Application of robust approachability to games with partial monitoring: for a particu-
lar class of games encompassing regret minimization. In this section we consider the case where
the signaling structure has some special properties described below (linked to linearity properties on lifted
spaces) and that can be exploited to get efficient strategies. The case of general signaling structures is
then considered in Section 7 but the particular class of games considered here is already rich enough to
encompass the minimization of external and internal regret.

6.1 Approachability in bi-piecewise linear games. To define bi-piecewise linearity of a game,
we start from a technical lemma that shows that m(p, σ) can be written as a finite convex combination
of sets of the form m(p, b), where b belongs to some finite set B ⊆ F that depends on the game. Under
the additional assumption of piecewise linearity of the thus-defined mappings m( · , b), we then describe
a (possibly) efficient strategy for approachability followed by convergence rate guarantees.

6.1.1 Bi-piecewise linearity of a game – A preliminary technical result.

Lemma 6.1 For any game with partial monitoring, there exists a finite set B ⊂ F and a piecewise-linear
(injective) mapping Φ : F → ∆(B) such that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) =
∑

b∈B

Φb(σ)m(p, b) ,

where we denoted the convex weight vector Φ(σ) ∈ ∆(B) by
(
Φb(σ)

)
b∈B

.

Proof. Since H̃ is linear on the polytope ∆(J ), Proposition 2.4 in Rambau and Ziegler [28] implies

that its inverse application H̃−1 is a piecewise linear mapping of F into the subsets of ∆(J ). This means
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that there exists a finite decomposition of F into polytopes {P1, . . . , PK} each on which H̃−1 is linear.
Up to a triangulation (see, e.g., Chapter 14 in [12]), we can assume that each Pk is a simplex. Denote by
Bk ⊆ F the set of vertices of Pk; then, the finite subset stated in the lemma is

B =

K⋃

k=1

Bk ,

the set of all vertices of all the simplices.

Fix any σ ∈ F . It belongs to some simplex Pk, so that there exists a convex decomposition
σ =

∑
b∈Bk

λb b; this decomposition is unique within the simplex Pk. If σ belongs to two different
simplices, then it actually belongs to their common face and the two possible decompositions coincide
(some coefficients λb in the above decomposition are null). All in all, with each σ ∈ F , we can associate
a unique decomposition in B,

σ =
∑

b∈B

Φb(σ) b ,

where the coefficients
(
Φb(σ)

)
b∈B

form a convex weight vector over B, i.e., belong to ∆(B); in addition,
Φb(σ) > 0 only if b ∈ Bk, where k is such that σ ∈ Pk.

Since H̃−1 is linear on each simplex P1, . . . , PK , we therefore get

H̃−1(σ) =
∑

b∈B

Φb(σ) H̃
−1(b) .

Finally, the result is a consequence of the fact that

m(p, σ) = r
(
p, H̃−1(σ)

)
= r

(
p,
∑

b∈B

Φb(σ) H̃
−1(b)

)
,

which implies, by linearity of r, that

m(p, σ) =
∑

b∈B

Φb(σ) r
(
p, H̃−1(b)

)
=
∑

b∈B

Φb(σ)m(p, b) ,

which concludes the proof. �

Remark 6.1 The proof shows that Φ is piecewise linear on a finite decomposition of F ; it is therefore
Lipschitz on F . We denote by κΦ its Lipschitz constant with respect to the ℓ2–norms.

The main contribution of this subsection (Definition 6.1) relies on the following additional assumption.

Assumption 6.1 A game is bi-piecewise linear if m( · , b) is piecewise linear on ∆(I) for every b ∈ B.

Assumption 6.1 means that for all b ∈ B there exists a decomposition of ∆(I) into polytopes each
on which m( · , b) is linear. Since B is finite, there exists a finite number of such decompositions, and
thus there exists a decomposition to polytopes that refines all of them. (The latter is generated by the
intersection of all considered polytopes as b varies.) By construction, every m( · , b) is linear on any of the
polytopes of this common decomposition. We denote by A ⊂ ∆(I) the finite subset of all their vertices: a
construction similar to the one used in the proof of Lemma 6.1 (provided below) then leads to a piecewise
linear (injective) mapping Θ : ∆(I) → ∆(A), where Θ(p) is the decomposition of p on the vertices of the
polytope(s) of the decomposition to which it belongs, satisfying

∀ b ∈ B, ∀p ∈ ∆(I), m(p, b) =
∑

a∈A

Θa(p)m(a, b) ,

where we denoted the convex weight vector Θ(p) ∈ ∆(A) by
(
Θa(p)

)
a∈A

. This, Lemma 6.1, and

Assumption 6.1 show that on a lifted space, m coincides with a bi-linear mapping m, as is made formal
in the next definition.

Definition 6.1 We denote by m the linear extension to ∆(A × B) of the restriction of m to A× B, so
that for all p ∈ ∆(I) and σ ∈ F ,

m(p, σ) = m
(
Θ(p), Φ(σ)

)
.
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Approaching Strategy in Games with Partial Monitoring

Parameters: an integer block length L > 1, an exploration parameter γ ∈ [0, 1], a strategy Ψ for m–robust
approachability of C

Notation: u ∈ ∆(I) is the uniform distribution over I, PF denotes the projection operator in ℓ2–norm of RH×I

onto F

Initialization: compute the finite set B and the mapping Φ : F → ∆(B) of Lemma 6.1, compute the finite set A

and the mapping Θ : ∆(I) → ∆(A) defined based on Assumption 6.1, pick an arbitrary θ1 ∈ ∆(A)

For all blocks n = 1, 2, . . .,

(i) define xn =
∑

a∈A θn,a a and pn = (1− γ)xn + γ u;

(ii) for rounds t = (n− 1)L+ 1, . . . , nL,

2.1 draw an action It ∈ I at random according to pn;

2.2 get the signal St;

(iii) form the estimated vector of probability distributions over signals,

σ̃n =


 1

L

nL∑

t=(n−1)L+1

I{St=s}I{It=i}

pIt,n




(i,s)∈I×H

;

(iv) compute the projection σ̂n = PF

(
σ̃n

)
;

(v) choose θn+1 = Ψ
(
θ1, Φ

(
σ̂1

)
, . . . , θn, Φ

(
σ̂n

))
.

Figure 1: The proposed strategy, which plays in blocks.

6.1.2 Construction of a strategy to approach C. The approaching strategy for the original
problem is based on a strategy Ψ for m–approachability of C, provided by Theorem 3.1; we therefore first
need to prove the existence of such a Ψ.

Lemma 6.2 Under Condition (APM), the closed convex set C is m–robust approachable.

Proof. We show that Condition (RAC) in Theorem 3.1 is satisfied, that is, that for all y ∈ ∆(B),
there exists some x ∈ ∆(A) such that m(x,y) ⊆ C. With such a given y ∈ ∆(B), we associate2 the
feasible vector of signals σ =

∑
b∈B yb b ∈ F and let p be given by Condition (APM), so that m(p, σ) ⊆ C.

By linearity of m (for the first equality), by convexity of m in its second argument (for the first inclusion),
by Lemma 6.1 (for the second and fourth equalities), by construction of A (for the third equality),

m
(
Θ(p),y

)
=
∑

a∈A

Θa(p)
∑

b∈B

yb m(a, b) ⊆
∑

a∈A

Θa(p)m(a, σ) =
∑

a∈A

Θa(p)
∑

b∈B

Φb(σ)m(a, b)

=
∑

b∈B

Φb(σ)m(p, b) = m(p, σ) ⊆ C ,

which concludes the proof. �

We consider the strategy described in Figure 1. It forces exploration at a γ rate, as is usual in situations
with partial monitoring. One of its key ingredient, that conditionally unbiased estimators are available,
is extracted from Section 6 in the article by Lugosi et al. [16]: in block n we consider sums of elements
of the form

Ĥt =

(
I{St=s}I{It=i}

pIt,n

)

(i,s)∈I×H

∈ RH×I ;

averaging over the respective random draws of It and St according to pn and H(It, Jt), i.e., taking the
conditional expectation Et with respect to pn and Jt, we get

Et

[
Ĥt

]
= H̃

(
δJt

)
. (7)

2Note however that we do not necessarily have that Φ(σ) and y are equal, as Φ is not a one-to-one mapping (it is injective

but not surjective).
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Indeed, the conditional expectation of the component i of Ĥt equals

Et

[(
I{St=s}I{It=i}

pIt,n

)

s∈H

]
= Et

[
H(It, Jt) I{It=i}

pIt,n

]
=

H(i, Jt)

pi,n
Et

[
I{It=i}

]
= H(i, Jt) ,

where we first took the expectation over the random draw of St (conditionally to pn, Jt, and It) and
then over the one of It. Consequently, concentration-of-the-measure arguments can show that for L large
enough,

σ̃n =
1

L

nL∑

t=(n−1)L+1

Ĥt is close to H̃
(
q̂n

)
, where q̂n =

1

L

nL∑

t=(n−1)L+1

δJt .

Actually, since F ⊆ ∆(H)I , we have a natural embedding of F into RH×I and we can define PF , the
convex projection operator onto F (in ℓ2–norm). Instead of using directly σ̃n, we consider in our strategy

σ̂n = PF

(
σ̃n

)
, which is even closer to H̃

(
q̂n

)
.

More precisely, the following result can be extracted from the proof of Theorem 6.1 in Lugosi et al. [16].
The proof is provided in Appendix B.

Lemma 6.3 With probability 1− δ,

wwwσ̂n − H̃
(
q̂n

)www
2
6
√
NINH

(√
2NI

γL
ln

2NINH

δ
+

1

3

NI

γL
ln

2NINH

δ

)
.

6.1.3 A performance guarantee for the strategy of Figure 1. For the sake of simplicity, we
provide first a performance bound for fixed parameters γ and L tuned as functions of T . Adaptation to
T → ∞ is then described in the next section; note that it cannot be performed by simply proceeding in
regimes, as the approachability guarantees offered by the second part of the theorem are only at time
round T . (This is so because the considered strategy depends on T via the parameters γ and L.)

Theorem 6.1 Consider a closed convex set C and a game (r,H) for which Condition (APM) is satisfied
and that is bi-piecewise linear in the sense of Assumption 6.1. Then, for all T > 1, the strategy of
Figure 1, run with parameters γ ∈ [0, 1] and L > 1 and fed with a strategy Ψ for m–approachability of C
(provided by Lemma 6.2) is such that, with probability at least 1− δ,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

6
2L

T
R+ 4R

√
ln
(
(2T )/(Lδ)

)

T
+ 2γR+

2R√
T/L− 1

√
NANB

+RκΦ

√
NINHNA

(√
2NI

γL
ln

2NINHT

Lδ
+

1

3

NI

γL
ln

2NINHT

Lδ

)
.

In particular, for all T > 1, the choices of L =
⌈
T 3/5

⌉
and γ = T−1/5 imply that with probability at least

1− δ,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

6 �

(
T−1/5

√
ln

T

δ
+ T−2/5 ln

T

δ

)

for some constant � depending only on C and on the game (r, H) at hand.

The efficiency of the strategy of Figure 1 depends on whether it can be fed with an efficient approacha-
bility strategy Ψ, which in turn depends on the respective geometries of m and C, as was indicated before
the statement of Theorem 3.1. (Note that the projection onto F can be performed in polynomial time,
as the latter closed convex set is defined by finitely many linear constraints, and that the computation of
A, B, and m can be performed beforehand.) In any case, the per-round complexity is constant (though
possibly large).

Proof. We write T as T = NL + k where N is an integer and 0 6 k 6 L − 1 and will show
successively that (possibly with overwhelming probability only) the following statements hold.

1

T

T∑

t=1

r(It, Jt) is close to
1

NL

NL∑

t=1

r(It, Jt) ; (8)
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1

NL

NL∑

t=1

r(It, Jt) is close to
1

N

N∑

n=1

r
(
pn, q̂n

)
; (9)

1

N

N∑

n=1

r
(
pn, q̂n

)
is close to

1

N

N∑

n=1

r
(
xn, q̂n

)
; (10)

1

N

N∑

n=1

r
(
xn, q̂n

)
=

1

N

N∑

n=1

∑

a∈A

θn,a r
(
a, q̂n

)
belongs to the set

1

N

N∑

n=1

∑

a∈A

θn,am
(
a, H̃

(
q̂n

))
;

1

N

N∑

n=1

∑

a∈A

θn,a m
(
a, H̃

(
q̂n

))
is equal to the set

1

N

N∑

n=1

m

(
θn, Φ

(
H̃
(
q̂n

)))
;

1

N

N∑

n=1

m

(
θn, Φ

(
H̃
(
q̂n

)))
is close to the set

1

N

N∑

n=1

m
(
θn, Φ

(
σ̂n

))
; (11)

1

N

N∑

n=1

m
(
θn, Φ

(
σ̂n

))
is close to the set C ; (12)

where we recall that the notation q̂n was defined above and is referring to the empirical distribution
of the Jt in the n–th block. Actually, we will show below the numbered statements only. The first
unnumbered statement is immediate by the definition of xn, the linearity of r, and the very definition of
m; while the second one follows from Definition 6.1:

1

N

N∑

n=1

∑

a∈A

θn,a m
(
a, H̃

(
q̂n

))
=

1

N

N∑

n=1

∑

(a,b)∈A×B

θn,aΦb

(
H̃
(
q̂n

))
m(a, b) =

1

N

N∑

n=1

m

(
θn, Φ

(
H̃
(
q̂n

)))
.

Step 1: Assertion (8). A direct calculation decomposing the sum over T elements into a sum over
the NL first elements and the k remaining ones shows thatwwwww

1

T

T∑

t=1

r(It, Jt)−
1

NL

NL∑

t=1

r(It, Jt)

wwwww
2

6 R

(
k

T
+

(
1

NL
− 1

T

)
NL

)
=

2k

T
R 6

2L

T
R .

Step 2: Assertion (9). We note that by defining Et the conditional expectation with respect to
(I1, S1, J1), . . ., (It−1, St−1, Jt−1) and Jt, which fixes the values of the distribution p′

t of It and the value
of Jt, we have

Et

[
r(It, Jt)

]
= r(p′

t, Jt) .

We note that by definition of the forecaster, p′
t = pn if t belongs to the n–th block. By a version of the

Hoeffding-Azuma inequality for sums of Hilbert space-valued martingale differences stated as3 Lemma 3.2
in Chen and White [7], we therefore get that with probability at least 1− δ,

wwwww
1

NL

NL∑

t=1

r(It, Jt)−
1

N

N∑

n=1

r
(
pn, q̂n

)
wwwww

2

6 4R

√
ln(2/δ)

T
.

Step 3: Assertion (10). Since by definition pn = (1− γ)xn + γ u, we get
wwwww

1

N

N∑

n=1

r
(
pn, q̂n

)
− 1

N

N∑

n=1

r
(
xn, q̂n

)
wwwww

2

6 2γR .

Step 4: Assertion (11). We fix a given block n. Lemma 6.3 indicates that with probability 1− δ,

wwwσ̂n − H̃
(
q̂n

)www
2
6
√
NINH

(√
2NI

γL
ln

2NINH

δ
+

1

3

NI

γL
ln

2NINH

δ

)
. (13)

Since Φ is Lipschitz (see Remark 6.1), with a Lipschitz constant in ℓ2–norms denoted by κΦ, we get that
with probability 1− δ,

wwwΦ
(
σ̂n

)
− Φ

(
H̃
(
q̂n

))www
2
6 κΦ

√
NINH

(√
2NI

γL
ln

2NINH

δ
+

1

3

NI

γL
ln

2NINH

δ

)
.

3Together with the fact that
√
u e−u 6 e−u/2 for all u > 0.
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By a union bound, the above bound holds for all blocks n = 1, . . . , N with probability at least 1 −Nδ.
Finally, an application of Lemma 3.1 shows that

1

N

N∑

n=1

m

(
θn, Φ

(
H̃
(
q̂n

)))
is in a εT –neighborhood (in ℓ2–norm) of

1

N

N∑

n=1

m
(
θn, Φ

(
σ̂n

))
,

where

εT = R
√
NB × κΦ

√
NINH

(√
2NI

γL
ln

2NINH

δ
+

1

3

NI

γL
ln

2NINH

δ

)
.

Step 5: Assertion (12). Since C is m–robust approachable and by definition of the choices of the
θn in Figure 1, we get by (the proof of the sufficiency part of) Theorem 3.1, with probability 1,

inf
c∈C

wwwwwc−
1

N

N∑

n=1

m
(
θn, Φ

(
σ̂n

))
wwwww

2

6
2R√
N

√
NANB 6

2R√
T/L− 1

√
NANB ,

since T/L 6 N + k/L 6 N + 1.

Conclusion of the proof. The proof is concluded by putting the pieces together, thanks to a triangle
inequality and by considering Lδ/T 6 δ/(N + 1) instead of δ. �

6.1.4 Uniform guarantees over time for a time-adaptive version of the strategy of Figure 1.
We present here a variant of the strategy of Figure 1 for which the lengths Ln of blocks n and the
exploration rates γn are no longer constant. To do so, we need the following generalization of Theorem 2.2
to polynomial averages; this result is of independent interest. We only state the result for mixed actions
taken and observed, but the generalization for pure actions follows easily.

Consider the setting of Theorem 2.2. The studied strategy relies on a parameter α > 0. It plays an
arbitrary x1. For t > 1, it forms at stage t+ 1 the vector-valued polynomial average

m̂α
t =

1

Tα
t

t∑

s=1

sα m(xs,ys) where Tα
t =

t∑

s=1

sα ,

computes its projection cαt onto C, and resorts to a mixed action xt+1 solving the minimax equation

min
x∈∆(A)

max
y∈∆(B)

〈
m̂α

t − cαt , m(x,y)
〉
.

Theorem 6.2 We denote by M a bound in norm over m, i.e.,

max
(a,b)∈A×B

wwm(a, b)
ww

2
6 M .

For all α > 0, when C is an approachable closed convex set, the above strategy ensures that for all strategies
of the second player, with probability 1, for all T > 1,

inf
c∈C

wwwwwc−
1

∑T
t=1 t

α

T∑

t=1

tα m(xt,yt)

wwwww
2

6 2M

√∑T
t=1 t

2α

∑T
t=1 t

α
6

2MKα√
T

, (14)

where Kα is a constant depending only α.

It is interesting to note that the convergence rate are independent of α and are the same as standard
approachability (1/

√
T ).

Proof. The proof is a slight modification of the one of Theorem 2.2. We denote by dαt the squared
distance of m̂α

t to C,
dαt = inf

c∈C

wwc− m̂α
t

ww2
=
wwcαt − m̂α

t

ww2



Mannor, Perchet, and Stoltz: Robust approachability and regret minimization in games with partial monitoring
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 19

and use the shortcut notation mt = m(xt,yt) for all t > 1. Then,

dαt+1 6
wwm̂α

t+1 − cαt
ww2

=

wwwwm̂
α
t − cαt +

(t+ 1)α

Tα
t+1

(
mt+1 − m̂α

t

)wwww
2

6
wwm̂α

t − cαt
ww2

+
2(t+ 1)α

Tα
t+1

〈
m̂α

t − cαt , mt+1 −mα
t

〉
+

(
(t+ 1)α

Tα
t+1

)2wwmt+1 − m̂α
t

ww2

6 dαt +
2(t+ 1)α

Tα
t+1

〈
m̂α

t − cαt , mt+1 − cαt
〉

︸ ︷︷ ︸
60

+
2(t+ 1)α

Tα
t+1

〈
m̂α

t − cαt , c
α
t −mα

t

〉
+

(
(t+ 1)α

Tα
t+1

)2

4M2

6 dαt

(
1− 2(t+ 1)α

Tα
t+1

)
+

(
(t+ 1)α

Tα
t+1

)2

4M2,

where we used in the third inequality the same convex projection inequality as in the proof of Theorem 2.2.

The first inequality in (14) then follows by induction: the bound 2M for t = 1 is by boundedness of
m. If the stated bound holds for dαt , then

dαt+1 6


2M

√∑t
s=1 s

2α

∑t
s=1 s

α


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2(
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)2

4M2 6 4M2
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s=1 s

2α

(
Tα
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)2 ,

as desired, since

1
(
Tα
t

)2
(
1− 2(t+ 1)α

Tα
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)
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1

Tα
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(
Tα
t

)2
(
Tα
t − (t+ 1)α

)
6

1
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(
Tα
t

)2

(
Tα
t

)2 − (t+ 1)2α

Tα
t + (t+ 1)α

6
1

(
Tα
t+1

)2 .

The second inequality in (14) can be proved as follows. First, for all α > 0, by comparing sums and
integrals, we get that for all t > 1,

tα+1

α+ 1
=

∫ t

0

sα ds 6

t∑

s=1

sα 6

∫ t+1

1

sα ds 6
(t+ 1)α+1

α+ 1
6

(2t)α+1

α+ 1
.

Therefore, √∑t
s=1 s

2α
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s=1 s

α
6

α+ 1√
2α+ 1

√
(2t)α+1

tα+1
= Kα
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t

for

Kα =
α+ 1√
2α+ 1

√
2α+1 .

This concludes the proof. �

The extension to polynomially weighted averages can also be obtained in the context of robust ap-
proachability as the key to Theorem 3.1 is Lemma 3.3, which indicates that to get robust approachability,
it suffices to approach, in the usual sense, C̃; both can thus be performed with polynomially weighted
averages.

Consider now the variant of the strategy of Figure 1 for which the length of the n-th block, denoted by
Ln, is equal to nα, the exploration rate on this block comes at a rate γn = n−α/3 and Ψ is an m-robust
approachability strategy of C with respect to polynomially weighted averages with parameter α = 3/2.
We call it a time-adaptive version of this strategy; note that it does not depend anymore on any time
horizon T , hence guarantees can be obtained for all T .

Theorem 6.3 The time-adaptive version of the strategy described in Figure 1 (with Ln = nα and γn =
n−α/3 for α = 3/2) ensures that, for all T > 1, with probability at least 1− δ,

inf
c∈C

wwwwwc−
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T

T∑

t=1

r(It, Jt)

wwwww
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(
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√
ln
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δ
+ T−2/5 ln

T

δ

)

for some constant � depending only on C and the game (r, H) at hand.
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Proof. The proof follows closely the one of Theorem 6.1. We choose N so as to write T = Tα
N + k

where 0 6 k 6 LN+1 − 1. We adapt step 1 as follows,
wwwwww

1

T

T∑

t=1

r(It, Jt)−
1

Tα
N
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N∑
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r(It, Jt)

wwwwww
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T
+
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1
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− 1

T

)
Tα
N

)
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2k

T
R 6

2LN+1

T
R .

Second, as in step 2, we resort again to the Hoeffding-Azuma inequality for sums of Hilbert space-valued
martingale differences; with probability at least 1− δ,

wwwwww
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In view of the choice γn = n−α/3, step 3 translates here to
wwwww
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The same argument as the one at the beginning of the proof of Theorem 6.1 shows that

1
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∈ 1
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)))
.

Step 4 starts also by an application of Lemma 6.3 together with the Lipschitzness of Φ to get that for all
regimes n = 1, . . . , N , with probability at least 1− δ,

wwwΦ
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.

By a union bound, the above bound holds for all regimes n = 1, . . . , N with probability at least 1−Nδ.
Then, an application of Lemma 3.1 shows that
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,

where, substituting the values of Ln = nα and γn = n−α/3,
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N∑

n=1

nα

(√
2NI

γnLn
ln

2NINH

δ
+

1

3

NI

γnLn
ln

2NINH

δ

)

= R
√
NB × κΦ

√
NINH

(
T

(2α/3)
N

Tα
N

√
2NI ln

2NINH

δ
+

T
(α/3)
N

Tα
N

NI

3
ln

2NINH

δ

)
.

It then suffices, as in step 5 of the original proof, to write the convergence rates for robust approachability
guaranteed by the strategy Ψ. By combining the result of Lemma 3.3 with Theorem 6.2 and Lemma 3.1,
we get

inf
c∈C

wwwwwc−
1

Tα
n

N∑

n=1

nα m
(
θn, Φ

(
σ̂n

))
wwwww

2

6
2RKα√

N

√
NANB .

Putting all things together and applying a union bound, we obtain that with probability at least 1− δ,

inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

= O

(
(N + 1)α

T
+

√
ln(N/δ)

Tα
n

+
T

(2α/3)
N

Tα
N

+
T

(2α/3)
N

Tα
N

√
ln

N

δ
+

T
(α/3)
N

Tα
N

ln
N

δ
+

1√
N

)
.

Since (as proved at the end of Theorem 6.2) T β
N ∼ Nβ+1/(β + 1) for all β > 0, we get that

N ∼
(
(α+ 1)T

)1/(α+1)
and T β

N ∼ Nβ+1

β + 1
∼ κα,β T

(β+1)/(α+1) ,

where κα,β is a constant that only depends on α and β. Choosing α = 3/2 and substituting these
equivalences ensures the result. �
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6.2 Application to regret minimization. In this section we analyze external and internal regret
minimization in repeated games with partial monitoring from the approachability perspective. We show
how to—in particular—efficiently minimize regret in both setups using the results developed for vector-
valued games with partial monitoring; to do so, we indicate why the assumption of bi-piecewise linearity
(Assumption 6.1) is satisfied.

6.2.1 External regret. We consider in this section the framework and aim introduced by
Rustichini [29] and studied, sometimes in special cases, by Piccolboni and Schindelhauer [26],
Mannor and Shimkin [17], Cesa-Bianchi et al. [6], Lugosi et al. [16]. We show that our general strat-
egy can be used for regret minimization.

Scalar payoffs are obtained (but not observed) by the first player, i.e., d = 1: the payoff function r is
a mapping I × J → R; we still denote by R a bound on |r|. We define in this section

q̂T =
1

T

T∑

t=1

δJT

as the empirical distribution of the actions taken by the second player during the first T rounds. (This
is in contrast with the notation q̂T used in the previous section to denote such an empirical distribution,
but only taken within regime n.)

The external regret of the first player at round T equals by definition

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T

))
− 1

T

T∑

t=1

r(It, Jt) ,

where ρ : ∆(I) ×F is defined as follows: for all p ∈ ∆(I) and σ ∈ F ,

ρ(p, σ) = min
{
r(p, q) : q such that H̃(q) = σ

}
.

The function ρ is continuous in its first argument and therefore the supremum in the defining expression
of Rext

T is a maximum.

We recall briefly why, intuitively, this is the natural notion of external regret to consider in this case.
Indeed, the first term in the definition of Rext

T is (close to) the worst-case average payoff obtained by the
first player when playing consistently a mixed action p against a sequence of mixed actions inducing on
average the same laws on the signals as the sequence of actions actually played.

The following result is an easy consequence of Theorem 6.3, as is explained below; it corresponds to the
main result of Lugosi et al. [16], with the same convergence rate but with a different strategy. (However,
Section 2.3 of Perchet [24] exhibited an efficient strategy achieving a convergence rate of order T−1/3,
which is optimal; a question that remains open is thus whether the rates exhibited in Theorem 6.3 could
be improved.)

Corollary 6.1 The first player has a strategy such that for all T and all strategies of the second player,
with probability at least 1− δ,

Rext
T 6 �

(
T−1/5

√
ln

T

δ
+ T−2/5 ln

T

δ

)

for some constant � depending only on the game (r, H) at hand.

The proof below is an extension to the setting of partial monitoring of the original proof and strategy
of Blackwell [3] for the case of external regret under full monitoring: in the latter case the vector-payoff
function r and the set C considered in our proof are equal to the ones considered by Blackwell.

Proof. We embed F into RI×H so that in this proof we will be working in the vector space
Rd = R×RI×H. We consider the closed convex set C and the vector-valued payoff function r respectively
defined by

C =

{
(z, σ) ∈ R×F : z > max

p∈∆(I)
ρ(p, σ)

}
and r(i, j) =

[
r(i, j)

H̃(δj)

]
,
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for all (i, j) ∈ I × J .

We first show that Condition (APM) is satisfied for the considered convex set C and game (r,H). To
do so, by continuity of ρ in its first argument, we associate with each q ∈ ∆(J ) an element φ(q) ∈ ∆(I)
such that

φ(q) ∈ argmax
p∈∆(I)

ρ
(
p, H̃(q)

)
.

Then, given any q ∈ ∆(J ), we note that for all q′ satisfying H̃(q′) = H̃(q), we have by definition of ρ,

r
(
φ(q), q′

)
> ρ
(
φ(q), H̃(q′)

)
= max

p∈∆(I)
ρ
(
p, H̃(q′)

)
,

which shows that r
(
φ(q), q′

)
∈ C. The required condition is thus satisfied.

We then show that Assumption 6.1 is satisfied. To do so, we will actually prove the stronger property
that the mappings m( · , σ) are piecewise linear for all σ ∈ F ; we fix such a σ in the sequel. Only the
first coordinate r of r depends on p, so the desired property is true if and only if the mapping m1( · , σ)
defined by

p ∈ ∆(I) 7−→ m1(p, σ) =
{
r(p, q) : q ∈ ∆(J ) such that H̃(q) = σ

}

is piecewise linear. Since H̃ is linear, the set
{
q ∈ ∆(J ) such that H̃(q) = σ

}

is a polytope, thus, the convex hull of some finite set {qσ,1, . . . , qσ,M} ⊂ ∆(J ). Therefore, for every
p ∈ ∆(I), by linearity of r (and by the fact that it takes one-dimensional values),

m1(p, σ) = co
{
r(p, qσ,1), . . . , r(p, qσ,M )

}
=

[
min

k∈{1,..,M}
r(p, qσ,k) , max

k′∈{1,..,M}
r(p, qσ,k′)

]
, (15)

where co stands for the convex hull. Since all applications r( · , qσ,k) are linear, their minimum and their
maximum are piecewise linear functions, thus m1( · , σ) is also piecewise linear. Assumption 6.1 is thus
satisfied, as claimed.

Theorem 6.1 can therefore be applied to exhibit the convergence rates; we simply need to relate the
quantity of interest here to the one considered therein. To that end we use the fact that the mapping

σ ∈ F 7−→ max
p∈∆(I)

ρ(p, σ)

is Lipschitz, with Lipschitz constant in ℓ2–norm denoted by Lρ; the proof of this fact is detailed below.

Now, the regret is non positive as soon as
∑T

t=1 r(It, Jt)/T belongs to C; we therefore only need to
consider the case when this average is not in C. In the latter case, we denote by (r̃T , σ̃T ) its projection
in ℓ2–norm onto C. We have first that the defining inequality of C is an equality on its border, so that

r̃T = max
p∈∆(I)

ρ
(
p, σ̃T

)
;

and second, that

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T

))
− 1

T

T∑

t=1

r(It, Jt)

6

∣∣∣∣ max
p∈∆(I)

ρ
(
p, H̃

(
q̂T

))
− max

p∈∆(I)
ρ
(
p, σ̃T

)∣∣∣∣+
∣∣∣∣∣ r̃T − 1

T

T∑

t=1

r(It, Jt)

∣∣∣∣∣

6 Lρ

wwwσ̃T − H̃
(
q̂T

)www
2
+

∣∣∣∣∣ r̃T − 1

T

T∑

t=1

r(It, Jt)

∣∣∣∣∣

6
√
2 max

{
Lρ, 1

}
wwwww

[
r̃T
σ̃T

]
− 1

T

T∑

t=1

r(It, Jt)

wwwww
2

=
√
2 max

{
Lρ, 1

}
inf
c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

.
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The claimed rates are now seen to follow from the ones indicated in Theorem 6.3.

It only remains to prove the indicated Lipschitzness. (All Lipschitzness statements that follow will be
with respect to the ℓ2–norms.) We have by Definition 6.1 that for all p ∈ ∆(I) and σ ∈ F ,

ρ(p, σ) = min m1

(
p,Φ(σ)

)
,

where the linear m1 is indifferently either relative to m1 or is the projection onto the first component of
the function m relative to m. By Remark 6.1 the mapping σ ∈ F 7→ Φ(σ) is κΦ–Lipschitz; this entails, by
Lemma 3.1, that for all p ∈ ∆(I), the mapping σ ∈ F 7→ ρ(p, σ) is R

√
NB κΦ–Lipschitz. In particular,

since the latter Lipschitz constant is independent of p, the mapping

σ ∈ F 7−→ max
p∈∆(I)

ρ(p, σ)

is R
√
NB κΦ–Lipschitz as well, which concludes the proof. �

A similar argument to the one in Perchet [24] shows that the convex set C is defined by a finite
number of piecewise linear equations, it is therefore a polyhedron so the projection onto it, and as well
the computation of the strategy, can be done efficiently. We sketch the argument below, and refer the
reader to Perchet [24] for details. Equation (15) indicates a priori that for each σ ∈ F , there exist a
finite number Mσ (depending on σ) of mixed actions qσ,1, . . . , qσ,Mσ

such that for all p ∈ ∆(I), we have
ρ(p, σ) = min

{
r(p, qσ,1), . . . , r(p, qσ,Mσ

)
}
. But by an argument stated in Perchet [24],

σ 7−→
{
q ∈ ∆(J ) such that H̃(q) = σ

}

evolves in a piecewise linear way and thus there exist a finite number M of piecewise linear functions
σ 7→ q′σ,k, with k = 1, . . . ,M , such that, for all σ ∈ F ,

{
qσ,1, . . . , qσ,Mσ

}
=
{
q′
σ,1, . . . , q

′
σ,M

}
.

(There can be some redundancies between the q′
σ,k.) Because of this, we have that for all p ∈ ∆(I) and

σ ∈ F ,
ρ(p, σ) = min

{
r(p, q′

σ,1), . . . , r(p, q
′
σ,M )

}
.

Each function σ 7→ q′
σ,k being piecewise linear, one can construct a finite set {p1, . . . ,pK} ⊂ ∆(I) such

that, for any σ ∈ F , the mapping p 7→ ρ(p, σ) is maximized at one of these pk. The convex set C is
therefore defined by a finite number of piecewise linear equations, it is therefore a polyhedron; therefore
the projection onto it, hence the computation of the proposed strategy, can be done efficiently.

6.2.2 Internal / swap regret. Foster and Vohra [10] defined internal regret with full monitoring
as follows. A player has no internal regret if, for every action i ∈ I, he has no external regret on the
stages when this specific action i was played. In other words, i is the best response to the empirical
distribution of action of the other player on these stages.

With partial monitoring, the first player evaluates his payoffs in a pessimistic way through the function
ρ defined above. This function is not linear over ∆(I) in general (it is concave), so that the best
responses are not necessarily pure actions i ∈ I but mixed actions, i.e., elements of ∆(I). Following
Lehrer and Solan [15] one therefore can partition the stages not depending on the pure actions actually
played but on the mixed actions pt ∈ ∆(I) used to draw them. To this end, it is convenient to assume
that the strategies of the first player need to pick these mixed actions in a finite (but possibly thin)
grid of ∆(I), which we denote by

{
pg, g ∈ G

}
, where G is a finite set. At each round t, the first

player picks an index Gt ∈ G and uses the distribution pGt
to draw his action It. Up to a standard

concentration-of-the-measure argument, we will measure the payoff at round t with r
(
pGt

, Jt
)
rather

than with r(It, Jt).

For each g ∈ G, we denote by NT (g) the number of stages in {1, . . . , T } for which we had Gt = g and,
whenever NT (g) > 0,

q̂T,g =
1

NT (g)

∑

t:Gt=g

δJt .

We define q̂T,g is an arbitrary way when NT (g) = 0. The internal regret of the first player at round T is
measured as

Rint
T = max

g,g′∈G

NT (g)

T

(
ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
.
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Actually, our proof technique rather leads to the minimization of some swap regret (see
Blum and Mansour [4] for the definition of swap regret in full monitoring):

Rswap
T =

∑

g∈G

NT (g)

T

(
max
g′∈G

ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))

+

.

Again, the following bound on the swap regret easily follows from Theorem 6.1; the latter constructs a
simple and direct strategy to control the swap regret, thus also the internal regret. It therefore improves
the results of Lehrer and Solan [15] and Perchet [22], two articles that presented more involved and less
efficient strategies to do so (strategies based on auxiliary strategies using grids that need to be refined
over time and whose complexities is exponential in the size of these grids; ideas all in all similar to what
is done in calibration, see the references provided in Section 4). Moreover, we provide convergence rates.

Corollary 6.2 The first player has an explicit strategy such that for all T and all strategies of the
second player, with probability at least 1− δ,

Rswap
T 6 �

(
T−1/5

√
ln

T

δ
+ T−2/5 ln

T

δ

)

for some constant � depending only on the game (r, H) at hand and on the size of the finite grid G.

Proof. The proof of this corollary is based on ideas similar to the ones used in the proof of
Corollary 6.1; G will play the role of the action set of the first player. The proof proceeds in four steps.
In the first step, we construct an approachability setup and show that Condition (APM) applies. In the
second step, we show that Assumption 6.1 is satisfied. In the third step we analyze the convergence rates
of the swap regret. In the fourth and final step, we show that the set we are approaching possess some
smoothness properties by providing a uniform Lipschitz bound on certain functions.

Step 1: We denote by

Fcone =
{
λσ, σ ∈ F , λ ∈ R+

}

the cone generated by F and extend linearly ρ : ∆(I)×F → R into a mapping ρ : ∆(I)×Fcone → R as
follows: for all p ∈ ∆(I), for all λ > 0 with λ 6= 1, and all σ ∈ F ,

ρ(p, λσ) =

{
0 if λ = 0,
λ ρ(p, σ) if λ > 0.

In the sequel, we embed Fcone into RI×H.

The closed convex set C and the vector-valued payoff function r are then respectively defined by

C =

{
(zg,vg)g∈G ∈

(
R×Fcone

)G
: ∀ g ∈ G, zg > max

g′∈G
ρ
(
pg′ ,vg

)}

and, for all (g, j) ∈ G × J ,

r(g, j) =

[
r
(
pg, j

)
I{g′=g}

H̃(δj) I{g′=g}

]

g′∈G

.

To show that C is r–approachable, we associate with each q ∈ ∆(J ) an element g⋆(q) ∈ G such that

g⋆(q) ∈ argmax
g∈G

ρ
(
pg, H̃(q)

)
.

Then, given any q ∈ ∆(J ), we note that for all q′ satisfying H̃(q′) = H̃(q), the components of the vector
r
(
g⋆(q), q′

)
are all null but the ones corresponding to g⋆(q), for which we have

r
(
pg⋆(q), q

′
)
> ρ
(
pg⋆(q), H̃

(
q′
))

= ρ
(
pg⋆(q), H̃

(
q
))

= max
g′∈G

ρ
(
pg′ , H̃

(
q
))

= max
g′∈G

ρ
(
pg′ , H̃

(
q′
))

,

where the first inequality is by definition of ρ. Therefore, r
(
g⋆(q), q′

)
∈ C. Condition (APM) in

Lemma 6.2 and Theorem 6.1 is thus satisfied, so that we have approachability.
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Step 2: We then show that Assumption 6.1 is satisfied. It suffices to show that for all σ ∈ F , the
application

π = (πg)g∈G ∈ ∆(G) 7−→ m1(π, σ) =
{(

πg r(pg, q)
)
g∈G

: q ∈ ∆(J ) such that H̃(q) = σ
}

is piecewise linear (as the other components in the definition of m are linear in π). This is the case since
for each g, the application

π ∈ ∆(G) 7−→
{
πg r(pg, q) : q ∈ ∆(J ) such that H̃(q) = σ

}

is seen to be piecewise linear, by using the same one-dimensional argument as in the proof of Corollary 6.1.

Step 3: We now exhibit the convergence rates. In view of the form of the defining set of constraints
for C, the coordinates of the elements in C can be grouped according to each g ∈ G and projections onto
C can therefore be done separately for each such group. The group g of coordinates of

∑T
t=1 r(Gt, Jt)/T

is formed by
NT (g)

T
r
(
pg, q̂T,g

)
and

NT (g)

T
H̃
(
q̂T,g

)
;

when
NT (g)

T
r
(
pg, q̂T,g

)
> max

g′∈G
ρ

(
pg′ ,

NT (g)

T
H̃
(
q̂T,g

))
,

we denote these quantities by r̃T,g and ṽT,g. Otherwise, we project this pair on the set

Cg =

{
(zg,vg) ∈ R×Fcone : zg > max

g′∈G
ρ
(
pg′ ,vg

)}

and denote by r̃T,g and ṽT,g the coordinates of the projection; they satisfy the defining inequality of Cg
with equality,

r̃T,g = max
g′∈G

ρ
(
pg′ , ṽg

)
.

By distinguishing for each g according to which of the two cases above arose (for the first inequality),
we may decompose and upper bound the swap regret as follows,

Rswap
T =

∑

g∈G

NT (g)

T

(
max
g′∈G

ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))

+

=
∑

g∈G

(
max
g′∈G

ρ

(
pg′ ,

NT (g)

T
H̃
(
q̂T,g

))
− NT (g)

T
r
(
pg, q̂T,g

))

+

6
∑

g∈G

∣∣∣∣max
g′∈G

ρ

(
pg′ ,

NT (g)

T
H̃
(
q̂T,g

))
−max

g′∈G
ρ
(
pg′ , ṽg,T

)∣∣∣∣+
∑

g∈G

∣∣∣∣r̃T,g −
NT (g)

T
r
(
pg, q̂T,g

)∣∣∣∣

6
∑

g∈G

Lρ

wwww
NT (g)

T
H̃
(
q̂T,g

)
− ṽg,T

wwww
2

+
∑

g∈G

∣∣∣∣r̃T,g −
NT (g)

T
r
(
pg, q̂T,g

)∣∣∣∣ ,

where we used a fact proved below, that the application

v ∈ Fcone 7−→ max
g′∈G

ρ
(
pg′ ,v

)

is Lρ–Lipschitz. In the last inequality we had a sum of ℓ2–norms, which can be bounded by a single
ℓ2–norm,

Rswap
T 6 max

{
Lρ, 1

}√
2NG

wwwwww

[
r̃T,g

ṽT,g

]

g∈G

− 1

T

T∑

t=1

r(It, Jt)

wwwwww
2

6 max
{
Lρ, 1

}√
2NG inf

c∈C

wwwwwc−
1

T

T∑

t=1

r(It, Jt)

wwwww
2

,

where we denoted by NG the cardinality of G. Resorting to the convergence rate stated in Theorem 6.3
concludes the proof, up to the claimed Lipschitzness, which we now prove. (All Lipschitzness statements
that follow will be with respect to the ℓ2–norms.)
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Step 4: To do so, it suffices to show that for all fixed elements p ∈ ∆(I), the functions v ∈ Fcone 7→
ρ(p,v) are Lipschitz, with a Lipschitz constant Lρ that is independent of p. Note that we already proved
at the end of the proof of Corollary 6.1 that σ ∈ F 7→ ρ(p, σ) is Lipschitz, with a Lipschitz constant Lρ

independent of p. Consider now two elements v, v′ ∈ Fcone, which we write as v = λσ and v′ = λ′σ′,
with σ, σ′ ∈ F and λ, λ′ ∈ R+. Using triangle inequalities, the Lipschitzness of ρ on F , and the fact that
r thus ρ are bounded by R,

∣∣ρ(p, λσ)− ρ(p, λ′σ′)
∣∣ 6

∣∣λ
(
ρ(p, σ)− ρ(p, σ′)

)∣∣+
∣∣(λ− λ′)ρ(p, σ′)

∣∣
6 λLρ

wwσ − σ′
ww

2
+R

∣∣λ− λ′
∣∣

6 Lρ

wwλσ − λ′σ′ + (λ′ − λ)σ′
ww

2
+R

∣∣λ− λ′
∣∣

6 Lρ

wwλσ − λ′σ′
ww

2
+
(
R+ LρNI

) ∣∣λ− λ′
∣∣ ,

where we used also for the last inequality that since σ is a vector of NI probability distributions over
the signals, ‖σ‖2 6 ‖σ‖1 = NI . To conclude the argument, we simply need to show that

∣∣λ− λ′
∣∣ can be

bounded by
wwλσ − λ′σ′

ww
2
up to some universal constant, which we do now. We resort again to the fact

that ‖σ‖1 = ‖σ′‖1 = NI and can thus write, thanks to a triangle inequality and assuming with no loss
of generality that λ′ < λ, that

∣∣λ− λ′
∣∣ = 1

NI

(
λ ‖σ‖1 − λ′ ‖σ′‖1

)
6

1

NI
‖λσ − λ′σ′‖1 6

√
NHNI

NI
‖λσ − λ′σ′‖2 ,

where we used the Cauchy-Schwarz inequality for the final step. One can thus take, for instance,

Lρ = Lρ +
(
R+ LρNI

)√NH

NI
.

This concludes the proof. �

7. Approachability in the case of general games with partial monitoring. Unfortunately, as
is illustrated in the following example, there exist games with partial monitoring that are not bi-piecewise
linear.

Example 7.1 The following game (with the same action and signal sets as in Example 5.2) is not bi-
piecewise linear.

L M R

T (1, 0, 0, 0) / ♣ (0, 0, 1, 0) / ♣ (2, 0, 4, 0) / ♥
B (0, 1, 0, 0) / ♣ (0, 0, 0, 1) / ♣ (0, 3, 0, 5) / ♥

Proof. We denote mixed actions of the first player by (p, 1 − p), where p ∈ [0, 1] denotes the
probability of playing T and 1− p is the probability of playing B. It is immediate that m

(
(p, 1− p), ♣

)

can be identified with the set of all product distributions on 2×2 elements with first marginal distribution
(p, 1 − p). The proof of Lemma 6.1 shows that the set B associated with any game always contains the
Dirac masses on each signal; that is, δ♣ ∈ B. But for p 6= p′ and λ ∈ (0, 1), denoting p = λ p+ (1− λ)p′,
one necessarily has that

m
(
(p, 1− p), ♣

)
 λm

(
(p, 1− p), ♣

)
+ (1− λ)m

(
(p′, 1− p′), ♣

)
;

the inclusion ⊆ holds by concavity of m in its first argument (Lemma 5.1) but this inclusion is always
strict here since the left-hand side is formed by product distributions while the right-hand side also
contains distributions with correlations. Hence, bi-piecewise linearity cannot hold for this game. �

However, we will show that if Condition (APM) holds there exist strategies with a constant per-round
complexity to approach polytopes even when the game is not bi-piecewise linear. That is, by considering
simpler closed convex sets C, no assumption is needed on the pair (r,H).

We will conclude this section by indicating that thanks to a doubling trick, Condition (APM) is still
sufficient for approachability in the most general case when no assumption is made neither on (r,H) nor
on C—at the cost, however, of inefficiency.
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7.1 Approachability of the negative orthant in the case of general games. For the sake of
simplicity, we start with the case of the negative orthant Rd

−. Our argument will be based on Lemma 6.1;
we use in the sequel the objects and notation introduced therein. We denote by r = (rk)16k6d the
components of the d–dimensional payoff function r and introduce, for all k ∈ {1, . . . , d}, the set-valued
mapping m̃k defined by

m̃k : (p, b) ∈ ∆(I) × B 7−→ m̃k(p, b) =
{
rk(p, q) : q ∈ ∆(J ) such that H̃(q) = b

}
.

The mapping m̃ is then defined as the Cartesian product of the m̃k; formally, for all p ∈ ∆(I) and b ∈ B,

m̃(p, b) =
{
(z1, . . . , zd) : ∀k ∈ {1, . . . , d}, zk ∈ m̃k(p, b)

}
.

We then linearly extend this mapping into a set-valued mapping m̃ defined on ∆(I) ×∆(B) and finally
consider the set-valued mapping m̆ defined on ∆(I)×F by

∀σ ∈ F , ∀p ∈ ∆(I), m̆(p, σ) = m̃
(
p,Φ(σ)

)
=
∑

b∈B

Φb(σ) m̃(p, b) ,

where Φ refers to the mapping defined in Lemma 6.1 (based on m). The lemma below indicates why m̆
is an excellent substitute to m in the case of the approachability of the orthant Rd

−.

Lemma 7.1 The set-valued mappings m̆ and m satisfy that for all p ∈ ∆(I) and σ ∈ F ,

(i) the inclusion m(p, σ) ⊆ m̆(p, σ) holds;

(ii) if m(p, σ) ⊆ Rd
−, then one also has m̆(p, σ) ⊆ Rd

−.

The interpretations of these two properties are that: 1. m̆–robust approaching a set C is more difficult
than m–robust approaching it; and 2. that if Condition (APM) holds for m and Rd

−, it also holds for m̆
and Rd

−.

Proof. For property 1., note that by the component-wise construction of m̃,

∀ b ∈ B, ∀p ∈ ∆(I), m(p, b) ⊆ m̃(p, b) ;

Lemma 6.1, the linear extension of m̃, and the definition of m̆ then show that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) =
∑

b∈B

Φb(σ)m(p, b) ⊆ m̃
(
p, Φ(σ)

)
= m̆(p, σ) .

As for property 2., it suffices to work component-wise. Note that (by Lemma 6.1 again) the stated
assumption exactly means that

∑
b∈B Φb(σ)m(p, b) ⊂ Rd

−. In particular, rewriting the non-positivity
constraint for each of the d components of the payoff vectors, we get

∑

b∈B

Φb(σ) m̃k(p, b) ⊆ R− ,

for all k ∈ {1, . . . , d}; thus, in particular,
∑

b∈B Φb(σ) m̃(p, b) = m̆(p, σ) ⊆ Rd
−. �

We can then extend the result of the previous section without the bi-piecewise linearity assumption.

Theorem 7.1 If Condition (APM) is satisfied for m and Rd
−, then there exists a strategy for (r,H)–

approaching Rd
− at a rate of the order of T−1/5, with a constant per-round complexity.

Proof. The assumption of the theorem and Property 2. of Lemma 7.1 imply that Condition (APM)
holds for Rd

− and m̆; furthermore, the latter corresponds to a bi-piecewise linear game as can be seen
by noting, similarly to what was done in the section devoted to regret minimization (Section 6.2), that
each m̃k, being based on the scalar payoff function rk, is a piecewise linear function. Thus, m̆ is also a
piecewise linear function.

Therefore, the steps between Equations (10)–(12) of the proof of Theorem 6.1 (or the corresponding
statements in the proof of Theorem 6.3) can be adapted by replacing m and m by, respectively, m̃, m̆,
and its extension corresponding to Definition 6.1. The result follows. �
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7.2 Approachability of polytopes in the case of general games. If that the target set C is a
polytope, then C can be written as the intersection of a finite number of half-planes, i.e., there exists a
finite family

{
(ek, fk) ∈ Rd × R, k ∈ K

}
such that

C =
{
z ∈ Rd : 〈z, ek〉 6 fk, ∀ k ∈ K

}
.

Given the original (not necessarily bi-piecewise linear) game (r,H), we introduce another game (rC , H),
whose payoff function rC : I × J → RK is defined as

∀ i ∈ I, ∀ j ∈ J , rC(i, j) =
[
〈r(i, j), ek〉 − fk

]
k∈K

.

The following lemma follows by rewriting the above.

Lemma 7.2 Given a polytope C, the (r,H)–approachability of C and the
(
rC , H

)
–approachability of Rd

−

are equivalent in the sense that every strategy for one problem translates to a strategy for the other
problem. In addition, Condition (APM) holds for (r,H) and C if and only if it holds for

(
rC , H

)
and Rd

−.

Via the lemma above, Theorem 7.1 indicates that Condition (APM) for (r,H) and C is a sufficient
condition for the (r,H)–approachability of C and provides a strategy to do so. (The per-round complexity
of this strategy depends in particular at least linearly on the cardinality of K.)

7.3 Approachability of general convex sets in the case of general games. A general closed
convex set can always be approximated arbitrarily well by a polytope (where the number of vertices
of the latter however increases as the quality of the approximation does). Therefore, via playing in
regimes, Condition (APM) is also seen to be sufficient to (r,H)–approach any general closed convex
set C. However, the computational complexity of the resulting strategy is much larger: the per-round
complexity increases over time (as the numbers of vertices of the approximating polytopes do).

Appendix A. An auxiliary result of calibration.

We prove here (4) for a given η > 0 and do so by following the methodology of Mannor and Stoltz [19].
(Note that this result is of independent interest.)

We actually assume that the covering y1, . . . ,yNη is slightly finer than what was required around (4)
and that it forms an η/NB–grid of ∆(B), i.e., that for all y ∈ ∆(B), there exists ℓ ∈ {1, . . . , Nη} such
that

wwy − yℓ
ww

1
6 η/NB.

We recall that elements y ∈ B are denoted by y = (yb)b∈B and we identify ∆(B) with a subset of RNB .
In particular, Ib, the Dirac mass on a given b ∈ B, is a binary vector whose only non-null component is
the one indexed by b. Finally, we denote by

0 = (0, . . . , 0) and 1 = (1, . . . , 1)

the elements of RB respectively formed by zeros and ones only.

We consider a vector-valued payoff function C : {1, . . . , Nη} × B → R2NηNB defined as follows; for all
ℓ ∈ {1, . . . , Nη} and for all b ∈ B,

C(ℓ, b) =

(
0, . . . , 0, yℓ − Ib −

η

NB
1, Ib − yℓ − η

NB
1, 0, . . . , 0

)
,

which is a vector of 2Nη elements of RB composed by 2(Nη − 1) occurrences of the zero element 0 ∈ RB

and two non-zero elements, located in the positions indexed by 2ℓ− 1 and 2ℓ.

We now show that the closed convex set (R−)
2NηNB is C–approachable; to do so, we resort to the

characterization stated in Theorem 2.1. To each y ∈ ∆(B) we will associate a pure action ℓy in {1, . . . , Nη}
so that C

(
ℓy,y

)
∈ (R−)

2NηNB ; note that to satisfy the necessary and sufficient condition, it is not
necessary here to resort to mixed actions of the first player. The index ℓy is any index ℓ such thatwwy − yℓ

ww
1
6 η/NB; such an index always exists as noted at the beginning of this proof. Indeed, one

then has in particular that for each component b ∈ B,
∣∣yℓyb − yb

∣∣ 6
wwyℓy − y

ww
1
6 η/NB .
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A straightforward adaptation of the proof of Theorem 2.2 then yields a strategy such that for all
δ ∈ (0, 1) and for all strategies of the second player, with probability at least 1− δ,

sup
τ>T

inf
c∈(R−)2NηNB

wwwwwc−
1

τ

τ∑

t=1

C(Lt,yt)

wwwww
2

6 2M

√
2

δT
, (16)

where M is a bound in Euclidian norm over C, e.g., M = 4 + 2η. The quantities of interest can be
rewritten as

1

τ

τ∑

t=1

C(Lt,yt) =

(
Nτ (ℓ)

τ

(
yℓ − yℓ

τ

)
− Nτ (ℓ)

τ

η

NB
1,

Nτ (ℓ)

τ

(
yℓ
τ − yℓ

)
− Nτ (ℓ)

τ

η

NB
1

)

ℓ∈{1,...,Nη}

,

where we recall that we denoted for all ℓ such that Nτ (ℓ) > 0 the average of their corresponding mixed
actions yt by

yℓ
τ =

1

Nτ (ℓ)

τ∑

t=1

ytI{Lt=ℓ} .

The projection in ℓ2–norm of quantity of interest onto (R−)
2NηNB is formed by its non-positive compo-

nents, so that its square distance to (R−)
2NηNB equals

inf
c∈(R−)2NηNB

wwwwwc−
1

τ

τ∑

t=1

C(Lt,yt)

wwwww

2

2

=

Nη∑

ℓ=1

(
Nτ (ℓ)

τ

)2∑

b∈B

((
yℓb − yℓτ,b −

η

NB

)2

+

+

(
yℓτ,b − yℓb −

η

NB

)2

+

)

︸ ︷︷ ︸
=
(
|yℓ

τ,b−yℓ
b|−η/NB

)2
+

.

Therefore, our target is achieved: using first that ( · )+ is subadditive, then applying the Cauchy-Schwarz
inequality,

Nη∑

ℓ=1

Nτ (ℓ)

τ

(wwyℓ − yτ

ww
1
− η
)
+

6

Nη∑

ℓ=1

Nτ (ℓ)

τ

∑

b∈B

(∣∣yℓb − yℓτ,b
∣∣ − η

NB

)

+

6
√
NηNB

√√√√
Nη∑

ℓ=1

(
Nτ (ℓ)

τ

)2∑

b∈B

(∣∣yℓb − yℓτ,b
∣∣− η

NB

)2

+

6 2M
√
NηNB

√
2

δT
,

where the last inequality holds, by (16), for all τ > T with probability at least 1− δ. Choosing an integer
Tδ sufficiently large so that

2M
√
NηNB

√
2

δ Tδ
6 δ

concludes the proof of the property stated in (4).

Appendix B. Proof of Lemma 6.3.

Proof. For all (i, j) ∈ I ×J , the quantity H(i, j) is a probability distribution over the set of signals
H; we denote by Hs(i, j) the probability mass that it puts on some signal s ∈ H.

Equation (7) indicates that for each pair (i, s) ∈ I ×H,

nL∑

t=(n−1)L+1

(
I{St=s}I{It=i}

pIt,n
−Hs(i, Jt)

)

is a sum of L elements of a martingale difference sequence, with respect to the filtration whose t-th
element is generated by pn, the pairs (Is, Ss) for s 6 t, and Js for s 6 t+ 1. The conditional variances
of the increments are bounded by

Et

[(
I{St=s}I{It=i}

pIt,n

)2]
6

1

p2i,n
Et

[
I{It=i}

]
=

1

pi,n
;
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since by definition of the strategy, pn = (1 − γ)xn + γ u, we have that pi,n > γ/NI, which shows that
the sum of the conditional variances is bounded by

nL∑

t=(n−1)L+1

Vart

(
I{St=s}I{It=i}

pIt,n

)
6

LNI

γ
.

The Bernstein-Freedman inequality (see Freedman [11] or Cesa-Bianchi et al. [6], Lemma A.1) therefore
indicates that with probability at least 1− δ,

∣∣∣∣∣
1

L

nL∑

t=(n−1)L+1

I{St=s}I{It=i}

pIt,n
− 1

L

nL∑

t=(n−1)L+1

Hs(i, Jt)

︸ ︷︷ ︸
= Hs(i, q̂n)

∣∣∣∣∣ 6
√
2
NI

γL
ln

2

δ
+

1

3

NI

γL
ln

2

δ
.

Therefore, by summing the above inequalities over i ∈ I and s ∈ H, we get (after a union bound) that
with probability at least 1−NINHδ,

wwwσ̃n − H̃
(
q̂n

)www
2
6
√
NINH

(√
2NI

γL
ln

2

δ
+

1

3

NI

γL
ln

2

δ

)
.

Finally, since σ̂n is the projection in the ℓ2–norm of σ̃n onto the convex set F , to which H̃
(
q̂n

)
belongs,

we have that wwwσ̂n − H̃
(
q̂n

)www
2
6

wwwσ̃n − H̃
(
q̂n

)www
2
,

and this concludes the proof. �
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