Lipschitz Bandits without the Lipschitz Constant

Abstract : We consider the setting of stochastic bandit problems with a continuum of arms. We first point out that the strategies considered so far in the literature only provided theoretical guarantees of the form: given some tuning parameters, the regret is small with respect to a class of environments that depends on these parameters. This is however not the right perspective, as it is the strategy that should adapt to the specific bandit environment at hand, and not the other way round. Put differently, an adaptation issue is raised. We solve it for the special case of environments whose mean-payoff functions are globally Lipschitz. More precisely, we show that the minimax optimal orders of magnitude $L^{d/(d+2)} \, T^{(d+1)/(d+2)}$ of the regret bound against an environment $f$ with Lipschitz constant $L$ over $T$ time instances can be achieved without knowing $L$ or $T$ in advance. This is in contrast to all previously known strategies, which require to some extent the knowledge of $L$ to achieve this performance guarantee.
Document type :
Conference papers
Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen, Thomas Zeugmann. ALT 2011 - 22nd International Conference on Algorithmic Learning Theory, Oct 2011, Espoo, Finland. Springer, pp.[A venir], 2011, LNCS / Lecture Notes in Artificial Intelligence
Liste complète des métadonnées

Cited literature [6 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00595692
Contributor : Gilles Stoltz <>
Submitted on : Thursday, July 14, 2011 - 1:14:01 PM
Last modification on : Wednesday, January 4, 2017 - 4:25:24 PM
Document(s) archivé(s) le : Saturday, October 15, 2011 - 2:20:29 AM

Files

ALT-Paper-16-Bubeck-Stoltz-Yu-...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00595692, version 2
  • ARXIV : 1105.5041

Collections

Citation

Sébastien Bubeck, Gilles Stoltz, Jia Yuan Yu. Lipschitz Bandits without the Lipschitz Constant. Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen, Thomas Zeugmann. ALT 2011 - 22nd International Conference on Algorithmic Learning Theory, Oct 2011, Espoo, Finland. Springer, pp.[A venir], 2011, LNCS / Lecture Notes in Artificial Intelligence. 〈hal-00595692v2〉

Share

Metrics

Record views

600

Files downloads

198