A decentralized and robust approach to estimating a probabilistic mixture model for structuring distributed data
Ali El Attar, Antoine Pigeau, Marc Gelgon

To cite this version:
Ali El Attar, Antoine Pigeau, Marc Gelgon. A decentralized and robust approach to estimating a probabilistic mixture model for structuring distributed data. IEEE/ACM Int. conf on Web Intelligence, Aug 2011, Lyon, France. pp.372-379. hal-00595300

HAL Id: hal-00595300
https://hal.archives-ouvertes.fr/hal-00595300
Submitted on 28 Aug 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A decentralized and robust approach to estimating a probabilistic mixture model for structuring distributed data

Ali El Attar, Antoine Pigeau and Marc Gelgon
LINA (UMR CNRS 6241)
Université de Nantes
Nantes, France
firstname.name@univ-nantes.fr

Abstract—Data sharing services on the web host huge amounts of resources supplied and accessed by millions of users around the world. While the classical approach is a central control over the data set, even if this data set is distributed, there is growing interesting in decentralized solutions, because of good properties (in particularity, privacy and scaling up). In this paper, we explore a machine learning side of this work direction. We propose a novel technique for decentralized estimation of probabilistic mixture models, which are among the most versatile generative models for understanding data sets. More precisely, we demonstrate how to estimate a global mixture model from a set of local models. Our approach accommodates dynamic topology and data sources and is statistically robust, i.e. resilient to the presence of unreliable local models. Such outlier models may arise from local data which are outliers, compared to the global trend, or poor mixture estimation. We report experiments on synthetic data and real geo-location data from Flickr.

Keywords—Probabilistic mixture models ; Distributed data ; Decentralized estimation ; Gossip ; Robust estimation.

I. INTRODUCTION

Web-based content sharing services gather huge amounts of data (multimedia documents and associated meta-data tags, scientific data, etc...) uploaded and retrieved by many users around the world. The present work is located at the crossroad of the two following research lines in this field:

- the large amount of user-contributed data is amenable to statistical analysis. For instance, a classical goal is content recommendation through collaborative filtering [1]. Another example pertains to collaborative tagging of images [2], which has been identified as a precious resource for statistical learning models of visual appearance, where the lack of labelled data was long a bottleneck [3];
- many popular systems rely on a central control on the data set, even if the data is physical distributed for performance and data availability reasons. Yet, there are strong grounds for promoting alternative solutions, founded on a distribution of data storage with a decentralization of control over information flow. Compared to centralized systems, they demonstrate good properties in terms of scaling up to large amounts of data and avoid having a single point of failure. Further, they can offer participant’s control over propagation and exploitation of their personal data [4], and lead to novel approaches to information retrieval [5].

While we are far from addressing all of these issues here, our point is that statistical machine learning in decentralized data management systems is becoming a key research track. In this perspective, this paper focuses on learning a highly popular probabilistic model for continuous data, whether for density modelling or data clustering, the Gaussian mixture model [6]. Discrete counterparts, such pLSA [7] and extensions, are also widely used for topic modelling and community identification. Mixture models are of the semi-parametric type, i.e. they have a built-in trade-off between the ability to model a wide range of data distributions and the parsimony of representation.

Let us assume a set of nodes, each node hosting a local data set. As sketched on fig. 1, let us assume that, indepen-

Figure 1. Overview of the proposed scheme: Mixture models are first estimated locally on local data. They are then exchanged and aggregated with neighbouring models, though a gossip process. Simultaneously, outlier models identified are progressively discarded.
In the context of the estimation of a model mixture, several works [10], [11] propose a distributed EM algorithm. In both cases, a node applies local iterations of the Expectation and Maximisation steps and then sends its model parameters to its neighbors until convergence. The main difference with our approach is the access to the data set. Indeed, in our context we make the hypothesis that the local Gaussian models are already available, so that our estimation process does not rely directly on the distributed data sets.

Several works [14] also propose decentralized algorithms robust to outliers, an important property for our objective. The principle is similar to the precedent works, but integrates a step to detect the outliers. To our knowledge, the methods proposed in this context are based on existing approaches already used in the scope of centralized clustering. Thus, the nearest neighbor [14] or statistical [14], [15] approaches may well be applied. An interesting method [15], presenting the advantage to avoid critical arbitrary parameters, is based on a sampling approach: several clusterings are carried out on different data samples and the best clustering obtained is the closest one of the whole data set. Our proposal detection method of outliers is based on this approach but applied directly on probabilistic models.

Finally, after applying an aggregation function, a communication protocol must be applied to obtain the global model. Indeed, in our solution, each node iterates between two steps: it collects all the models of its neighbors list in order to re-compute its local model. Then, it selects one node from its neighbors to update its list. The choice of the selected node to communicate with and the way to swap the list of neighbors is crucial to enable a correct dissemination of the information. For that, we use the gossip protocol which is a probabilistic way to choose a member pairs to communicate and exchange an information [16]. Here, we use a specific implementation: the peer sampling service (PSS) [17]. The advantage of such a solution is practically to improve the aggregation convergence [16]. It proposes to update continuously the overlay topology of the network, in order to make it dynamic and more realistic than the static topologies. In a peer to peer network, nodes can leave or join the system continuously.

III. A DISTRIBUTED AND ROBUST ESTIMATION ALGORITHM

Our proposal is founded on a decentralized and robust algorithm running independently on each node of the network. Let us assume a network composed of \(n \) nodes, where each node \(i \) is defined with the following properties:

1) a local data set \(D_i \);
2) a mixture model \(M_i \);
3) a list of \(c \) neighbors \(L_i \).

The models \(M_i \) are a precondition for our algorithm: we assume data set \(D_i \) on each node is modelled as a probabilistic
mixture, using for instance an EM algorithm or a Bayesian form thereof, supplying model parameters M_i.

Overall, the scheme iterates over the following 4 following steps. For node i:

- **retrieve all the models of its neighbors L_i**. Each node $j \in L_i$ sends its local model M_j to node i. Let M_{neighbor} be the set of L_i’s models \cup model M_i;

- **detect and outliers locally**: filtering outliers out of M_{neighbor} is carried out with a model clustering process. The chosen algorithm is adapted from a sampling method [15]. Note that node i itself can be considered as an outlier. Let M_{robust} be the set of models built from M_{neighbor} where outlier models have been removed;

- **update its model M_i**: we aggregate the set M_{robust} to obtain a new local model. To this aim, we resort to a technique exploiting approximate KL divergences between mixtures [18], that enables to aggregate mixture models. It operates similarly to a k-means algorithm: given an initial set of mixture and a number of components P, it provides a final mixture of P components;

- **apply a gossip protocol**: in order to guarantee a correct propagation of the new model M_i, the node i updates its list of neighbors. The proposed method is founded on the peer sampling service [17]. In a nutshell, the principle consists in exchanging a part of the neighbors list of M_i with one of its neighbors. The point is to increase the convergence speed of the clustering process and the quality of the global model estimate by changing the topology of the network. Each new aggregation of models for model M_i is then carried out with different neighbors, avoiding to fall in a local configuration;

- **compute the convergence criterion**: before executing a new iteration of the estimation process, we check whether models in the neighborhood of M_i are all similar enough.

The main algorithm and an example of the different steps are presented respectively in algorithm 1 and on figure 2.

In the following, we explain in details the different steps of our algorithm. The similarity measure between mixture models is first presented, followed by the detection of outliers and the estimation algorithm of Gaussian models. Finally, the gossip protocol used to change the topology of the network and the convergence criterion are explained.

A. Similarity between Gaussian components

In order to aggregate or filter out outliers among a set of Gaussian models, we resort to an approximation of the Kullback-Leibler divergence. Our solution was motivated by the work proposed in [19], which assessed several approaches to compare Gaussian mixture models. As expected, it stated that Monte Carlo sampling leads to best accuracy, but at the price of a high calculation complexity. Thus, we focus on methods aiming the best trade-off between accuracy in KL approximation and computational cost (i.e. requiring only models parameters). Experiments from [19] conclude that the best approaches are the matched bound and the variational approximations. Because of its lower cost, we resort to the matched bound criterion.

$$KL_{match}(f || g) = \sum_i \pi_{f_i} \left(KL(f_i || g_{m(i)}) + \log \frac{\pi_{f_i}}{\pi_{g_{m(i)}}} \right) .$$

(1)

where π_{f_i} is the prior probability of a component f_i, and m is the matching function between elements of f and g.

Algorithm 1 Iterative process applied on node i

Require: A mixture M_i, a list of neighbors L_i and the number of components P for the global model

while Convergence not achieved **do**

- Build the set of mixture M_{neighbor} composed of M_i and the set of models contained in its neighbors L_i
- Filter the outlier out from M_{neighbor}: $M_{\text{robust}} = \text{REMOVE_OUTLIER}(M_{\text{neighbor}})$
- Aggregation of M_{robust}: $M'_i = \text{ESTIMATION}(M_{\text{robust}}, P)$
- Update of the neighbors L_i with the peer sampling service
- Compute the convergence criterion

end while
where \(\gamma \) is the dimension of the feature space.

This convenient criterion is used as a similarity distance in both our sampling algorithm and our aggregation algorithm.

B. Detection of outliers

Our algorithm is an adaptation of the sample algorithm [15] to deal with Gaussian models. Its objective is to build a sample with no outlier in order to obtain a baseline before to apply our aggregation algorithm. The principle is to draw randomly several samples of a set of Gaussian model, to improve them with an iterative algorithm and to select the one presenting the best similarity with the initial data set. Such a method presents interesting advantages for our purpose:

- it does not depend on strong arbitrary parameters: it is based on a simple hypothesis, the percentage of outliers supposed on the network;
- it does not depend on the space dimension or domain of the initial data set: our choice is then more convenient than for example distance-based algorithms using a fix threshold to detect outliers.

In our solution, we use the KL\(_{match}\) (eq. 1) as a similarity criterion. Figure 3 presents an overview on this algorithm.

More formally, the initial step of the algorithm is to draw \(T \) samples of size \(s_{size} \) from a set of Gaussian model \(M_{neighbor} = \{M_1, M_1, \ldots, M_L\} \) obtained. Then for each sample \(S_t = \{M_1, \ldots, M_r, M_{size}\} \), \(t \in [1,T] \), \(M_r \in M_{neighbor} \), the following steps are applied until convergence:

1) compute a model \(M_r \) obtained with the merge of all \(M_r \in S_t \);
2) compute the \(KL_{match} \) divergence between \(M_r \) and each model \(M_l \in M_{neighbor} \). A ascending sorted list of models is then computed;
3) update the sample \(S_t \) with the first \(s_{size} \) of the sorted list obtained previously.

The convergence is achieved when each sample \(S_t \) remains stable. Finally, the sample minimizing its \(KL_{match} \) divergence with all the \(M_l \) is selected. This model is supposed to be cleared of outliers and is then used as a baseline for the final aggregation of the set of models \(M_{neighbor} \).

This algorithm depends on two understandable parameters, the size \(s_{size} \) of each sample and their number \(T \):

- the setting of the parameter \(s_{size} \) has to reflect the average number of outlier on the network, but of course this information is unknown. Practically, the higher the value of \(s_{size} \), the higher is the chance that the sample contains outliers. And inversely, the lower its value, the higher is the risk to select a set of models none representative of the real global view. The setting of this parameter is then a compromise between the robustness and the quality of the final sample.
- the impact of the parameter \(T \) concerns the performance: a high value would test a large number of samples but it will increase the computational cost. To improve this point, algorithm [15] proposes to make a first selection of the best samples. The previous iterative algorithm is first applied twice on a large number of samples, leading to a selection of a subset of the best ones. The algorithm is then applied until convergence only on the selected samples.

Figure 3. Example of the sampling algorithm: first, a node \(i \) retrieves the models of its neighbors and \(T \) samples are drawn from the set \(M_{neighbor} = \{M_1, M_1, \ldots, M_L\} \) obtained. Second, for each sample an iterative algorithm is applied to improve their quality: the goal is to except in each sample the outlier models. For a sample \(S_t \), the iterative algorithm consists in comparing the similarity between the components \(M_l \in M_{neighbor} \) and those in \(S_t \). The nearest components \(M_l \in M_{neighbor} \) are then selected and used to update the sample \(S_t \). The convergence is achieved when the samples keep stable.

\[
\begin{align*}
m(i) &= \arg \min_j (KL(f_i || g_j) - \log \pi_{g_j}) \quad (2) \\
KL(f_i || g_j) &= \frac{1}{2} [\log |\Sigma_{g_j}| + Tr |\Sigma_{g_j}^{-1} \Sigma f_i| - \gamma + (\mu_{f_i} - \mu_{g_j})^T \Sigma_{g_j}^{-1} (\mu_{f_i} - \mu_{g_j})] \quad (3)
\end{align*}
\]
Algorithm 2 REMOVE_OUTLIER: Sampling algorithm to remove outlier in a set of mixture models

Require: A set of Gaussian mixture \(M_{\text{neighbor}} = M_1, \ldots, M_L \) and the number of components \(P \) for the global model
- Draw randomly \(T \) samples \(S_{\text{Sample}} = S_1, \ldots, S_T \) composed of \(s_{\text{size}} \) Models of \(M_{\text{neighbor}} \)
 for each sample \(S_t, 1 < t < T \), repeat the following operations twice do
 for each model \(M_j \in M_{\text{neighbor}}, 1 < j < L \) do
 - Compute the \(KL_{\text{match}} \) divergence between \(M_j \) and \(M_t \) the concatenated model of all \(M_r \in S_t \).
 \[
 M_t = \frac{1}{T} \sum_{r=1}^{s_{\text{size}}} M_r, \quad \pi = \sum_{r=1}^{s_{\text{size}}} \pi_r, \quad N^i \text{ is a Gaussian component}
 \]
 end for
 - \(S_t = \{ M_r \mid r = \arg \min_{1 < j < L} (KL_{\text{match}}(M_i, M_j)) \} \) and \(1 < |S_t| < s_{\text{size}} \)
 end for
- Select from \(S_{\text{Sample}} \) the \(T' \) best samples \(S_{\text{best}} \) minimizing \(\sum_{j=1}^{L} KL_{\text{match}}(M_i, M_j) \)
 for each sample \(S_t \in S_{\text{best}}, 1 < t < T' \) do
 repeat
 for each model \(M_j, 1 < j < L \) do
 - Compute \(KL_{\text{match}}(M_i, M_j) \)
 end for
 - \(S_t = \{ M_r \mid r = \arg \min_{1 < j < L} (KL_{\text{match}}(M_i, M_j)) \} \) and \(1 < |S_t| < s_{\text{size}} \)
 until \(S_t \) is unchanged
 end for
return the sample \(S_t, 1 < t < T' \), minimizing \(\sum_{j=1}^{L} KL_{\text{match}}(M_i, M_j) \)

Algorithm 2 details the sampling algorithm used to remove outliers from our aggregation process.

C. Mixture Model Estimation

Let the problem be formulated as transforming a mixture model \(f \) into another mixture \(g \) with less components, while minimizing a Kullback-Leibler divergence involved by the simplification process. This section recalls how this was solved in [18], as the sole difference in our approach is the use of a different KL-approximation, the \(KL_{\text{match}} \). A key feature of their solution is that only model parameters are accessed to group components, i.e. neither access to data nor sampling are required. Thus, it is very cost effective in terms of computation.

The search for optimal \(g \) is composed in two alternating steps. The first one consists in determining the best mapping \(m \) between the components of \(f \) and \(g \) such that criterion (4) is minimized:

\[
\begin{align*}
 d(f, g) &= d(f, g, m) \\
 &= \sum_i KL_{\text{match}}(f_i || g_{m(i)}) \quad (4)
\end{align*}
\]

where \(m = \arg \min_{m'} d(f, g, m') \).

The second step updates the model parameters of \(g \), again from the sole model parameters of \(f \). It is proposed to compute the average of the mean and the covariance in accordance with the mapping \(m \) obtained at previous step. Each Gaussian is updated as follows:

\[
\begin{align*}
 \mu_{g_j} &= \frac{1}{\pi_{g_j}} \sum_{i \in m^{-1}(j)} \pi_if_i \mu_f_i \\
 \Sigma_{g_j} &= \frac{1}{\pi_{g_j}} \sum_{i \in m^{-1}(j)} \pi_if_i \left((\Sigma_{f_i} + (\mu_{f_i} - \mu_{g_j})(\mu_{f_i} - \mu_{g_j})^T) \right) \quad (5, 6)
\end{align*}
\]

with \(\pi_{g_j} = \sum_{i \in m^{-1}(j)} \pi_i \). These two steps are iterated until the convergence of the criterion defined in equation 4.

As our aggregation process is similar to a k-means algorithm, let us discuss major shortcomings:

- the number of components \(P \) of the reduced model must be known. This is the sole critical parameter of our algorithm. Comparing several complexities of the reduced model is nevertheless possible with Bayesian criteria which in our context, should be adapted to work directly on mixture parameters, rather than data. This is discussed in another paper [?].

- the result is highly dependent on the parameter initializations: we opt for the kmeans++ [20] to set the initial parameter of the reduction model \(P \). This method consists in selecting the centers as far as possible from each others, while avoiding outliers. Adapted to the context of the mixture model, this method consists in first, selecting a center randomly from the initial components, and second, choosing the subsequent cluster center from the remaining components with a probability proportional to its distance squared to the closest center. The distance used between components is again the \(KL \) divergence.

D. Update of the network topology

In order to increase the convergence of our clustering process, we propose to use an implementation of a gossip protocol, the peer sampling service [17]. This protocol consists in changing dynamically the topology of the network to improve the propagation of the information. In our context, the goal is to improve the propagation of the aggregated models obtained iteratively on each node.

Let’s recall that each node has a list of its neighbors composed of \(c \) elements. The different steps of the protocol for a node \(i \) are the following:

1) select randomly a node \(j \) from the neighbors list of the node \(i \) to initiate a communication;
model \(M \) node is interrupted. all present a strong similarity, our estimation process on this

Roughly, our solution consists in comparing for each node each node contains the same global estimation. We then pro-

E. Convergence criterion

Our objective is to stop automatically our algorithm when each node contains the same global estimation. We then pro-

pose a decentralized solution to detect such a configuration. Roughly, our solution consists in comparing for each node its local models with the ones of its neighborhood: if they all present a strong similarity, our estimation process on this node is interrupted.

More precisely, let \(i \) be a node containing its new update model \(M_i \) the method consists in:

1) sorting its neighbors in ascending order in accordance with the \(KL \) divergence between \(M_i \) and their models;
2) selecting the model \(M_{threshold} \) defined as the \(S_{size} \)th nearest neighbor in the list obtained. Recall that \(S_{size} \) is the average number of outlier in the network. We then suppose that the selected models is the last good models among its neighbors;
3) comparing \(KL_{match} \) of \(M_{threshold} \) to a threshold \(\epsilon \): if \(KL_{match} \) is lower the algorithm is stopped, else a new iteration is processed.

The parameter \(\epsilon \) is set empirically to a small value: a \(KL_{match}(M_i, M_j) \) divergence lower to \(\epsilon \) must involve a strong similarity between \(M_i \) and \(M_j \).

IV. Experiments

To evaluate our proposed algorithm, we report experiments on, first a synthetic data set with known ground truth and then on a real geolocation data set taken from Flickr. These experiments aim at computing the global model from the distributed models. The objective is to evaluate different aspects of our solution as the robustness and the aggregation process. For both experiments, we ran our algorithm on a peer to peer network composed of 200 nodes, characterized as follows:

- each node has \(c = 20 \) neighbors;
- each node holds a Gaussian mixture model;
- 20\% of models are considered as outliers;
- the number of nodes exchanged with the gossip protocol is set to \(c/2 \), the half of the neighbors list.

A. Experimental results on synthetic data

The objective of this first experiment is to assess the robustness of our distributed algorithm. Our synthetic data set is generated as follows:

- each node contains a Gaussian mixture model with a number of components varying between 3 and 12;
- the components of the outlier nodes are all generated randomly.

In order to evaluate the results of our distributed algorithm, we compute our global model without the outliers in a centralized way, presented in figure 4(a). This model, composed of 4 distinct components, represents the true global data distribution over the network. To demonstrate that our sampling algorithm succeed to discard the outliers, we also compute the global view with the outliers models, depicted on figure 4(b). The result shows the impact of the outliers on the aggregation process: the models obtained present strong differences.

Figure 5 presents an example of initial models of 4 nodes on the peer to peer network. These models are composed of different number of components (Figure 5(a),(b),(c) and (d) with 7, 9, 2 and 6 components respectively). An example of outlier models is showed in figure 5(c).

Figure 7 presents the evolution of our convergence criterion all along the iterations of our algorithm on each node. The convergence criterion used here is the average of the \(KL \) divergence between each local model and the real global model. This curve decreases after each iteration and tends quickly toward zero. This convergence is confirmed by the results obtained on figure 6 of the previous models (figure 5) after 13 iterations of our algorithm. All the models, even the outliers (figure 6(c)), seem identical to the initial centralized global model without outliers (figure 4(a)). This result confirms that our sampling algorithm is effective to discard the outliers from the aggregation process.

With this experiment, we assessed the robustness and convergence properties of our distributed algorithm to obtain a real global view of the network.
Figure 5. These figures present the initial model of 4 nodes of the peer to peer network

Figure 6. These figures present the models of the 4 nodes presented in figure 5 after 13 iterations

B. Experimental results on real data

This second experiment proposes to assess our algorithm on a real multimedia set: a collections of 406, 450 geotagged Flickr images from 5,951 users, presented in figure 8. To apply our algorithm, we first split this collection on 200 nodes, each one containing a set of data varying from 500 to 4000 images. The local Gaussian models are obtained with the EM algorithm and their complexity are determined thanks to the BIC criterion (models were tested between 3 and 6 components).

Figure 10 presents an example of initial models of 2 nodes obtained after applying the EM algorithm on their local data set. The two models presented here are quite different, due to their different initial data set: node of figure 10(a) is composed of 3 components while the one of figure 10(b) contains 6 components. Their models obtained after 10 iterations of our algorithm are presented in figures 11. Even though these nodes present initial differences, they converge to a similar model with an identical number of components. Figure 9 shows that, similarly to the previous experiment, the KL criterion converges quickly toward zero.

In order to assess our decentralized algorithm, we compute the aggregation of all the local Gaussian models in a centralized manner, presented on figure 8. The comparison between figure 8 and figure 11 shows that both the models obtained are similar. We can then conclude that our algorithm succeed to build a correct global estimation in a decentralized way.
This paper presents an original solution for decentralized and statistically robust learning of a probabilistic mixture model, from a distributed data set. Such settings are of much current interest in decentralized data sharing systems, for data understanding, content recommendation and so forth. The proposed scheme is founded on local aggregation of models, that rest upon the sole use of model parameters, learning to interesting properties with regard to data privacy and network load, rather than original data. We then illustrated the proposal on synthetic and real-world results.

We are currently adapting the proposal to bi-clustering mixture models, such as latent Dirichlet allocation models, that are fundamental to topic-based clustering for a wide range of applications. Besides, while in practice we have observed good convergence properties, their existence and characteristics remain to be established theoretically. Finally, recent advances pertaining to gossip algorithms should be introduced in the scheme.

References

