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FROM POINCARÉ TO LOGARITHMIC SOBOLEV INEQUALITIES:
A GRADIENT FLOW APPROACH

JEAN DOLBEAULT∗, BRUNO NAZARET† , AND GIUSEPPE SAVARÉ‡

Abstract. We use the distances introduced in a previous joint paper to exhibit the gradient
flow structure of some drift-diffusion equations for a wide class of entropy functionals. Functional
inequalities obtained by the comparison of the entropy with the entropy production functional reflect
the contraction properties of the flow. Our approach provides a unified framework for the study of
the Kolmogorov-Fokker-Planck (KFP) equation.
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1. Setting of the problem. Our starting point concerns nonnegative solutions
with finite mass of the heat equation in R

d

∂tut = ∆ut . (1.1)

It is straightforward to check that for any smooth enough solution of (1.1) and any
C2 convex function ψ,

d

dt

∫

Rd

ψ(ut) dx = −
∫

Rd

ψ′′(ut) |Dut|2 dx

so that
∫

Rd ψ(ut) dx plays the role of a Lyapunov functional. To extract some informa-
tion out of such an identity, one needs to analyze the relation between

∫

Rd ψ(ut) dx and
∫

Rd ψ
′′(ut) |Dut|2 dx. This can be done using Green’s function or moment estimates,

with the drawback that these quantities are explicitly t-dependent. It is simpler to
rewrite the equation in self-similar variables and replace (1.1) by the Fokker-Planck
(FP) equation

∂tvt = ∆vt +∇ · (x v) . (1.2)

This can be done without changing the initial data by the time-dependent change of
variables

ut(x) =
1

R(t)d
vt

(

x

R(t)

)

, R(t) =
√
1 + 2t .

We shall restrict our approach to nonnegative initial data u0 = v0. By linearity, we
can further assume that

∫

Rd

vt dx =

∫

Rd

ut dx =

∫

Rd

u0 dx = 1

∗Ceremade (UMR CNRS no. 7534), Université Paris-Dauphine, place de Lattre de Tassigny,
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without loss of generality. We shall also assume that ψ is defined on R
+. Up to the

change of ψ into ψ̃ such that ψ̃(s) = ψ(s) − ψ(1) − ψ′(1)(s− 1), we can also assume
that ψ is nonnegative on R

+ and achieves its minimum value, zero, at s = 1.
Eq. (1.2) has a unique nonnegative stationary solution v = γ normalized such

that
∫

Rd γ dx = 1, namely

γ(x) =
e−|x|2/2

(2π)d/2
∀ x ∈ R

d .

If we introduce ρt = vt/γ, then ρt is a solution of the Ornstein-Uhlenbeck, or
Kolmogorov-Fokker-Planck (KFP), equation

∂tρt = ∆ρt − x ·Dρt (1.3)

with initial data ρ0 = v0/γ. After identifying γ with the measure γL d, the relevant
Lyapunov functional, or entropy, is

∫

Rd ψ(ρt) dγ and

d

dt

∫

Rd

ψ(ρt) dγ = −
∫

Rd

ψ′′(ρt) |Dρt|2 dγ .

We shall restrict our study to a class of functions ψ for which the entropy and the
entropy production functional are related by the inequality

2λ

∫

Rd

ψ(ρ) dγ ≤
∫

Rd

ψ′′(ρ) |Dρ|2 dγ (1.4)

for some λ > 0 (it turns out that in the case of the Gaussian measure we can choose
λ = 1). This allows us to prove that the entropy is exponentially decaying, namely

∫

Rd

ψ(ρt) dγ ≤
(
∫

Rd

ψ(ρ0) dγ

)

e−2λt ∀ t ≥ 0 , (1.5)

if ρt is a solution of (1.3) and if λ is positive. A sufficient condition for such an
inequality is that

the function h := 1/ψ′′ is concave (1.6)

(see for instance [8]). At first sight, this may look like a technical condition but it
has some deep implications. We are indeed interested in exhibiting a gradient flow
structure for (1.2) associated with the entropy or, to be more precise, to establish
that, for some distance, the gradient flow of the entropy is actually (1.2). It turns out
that (1.6) is the natural condition as we shall see in Section 3.2.

The entropy decays exponentially according to (1.5) not only when one considers
the L2

γ(R
d) norm (the norm of the square integrable functions with respect to the

Gaussian measure γ), i.e. the case ψ(ρ) = (ρ − 1)2/2, or the classical entropy built
on ψ(ρ) = ρ log ρ, for which (1.3) is the gradient flow with respect to the usual
Wasserstein distance (according to the seminal paper [24] of Jordan, Kinderlehrer
and Otto). We also have an exponential decay result of any entropy generated by

ψ(ρ) =
ρ2−α − 1− (2 − α)(ρ− 1)

(2− α)(1 − α)
=: ψα(ρ) , α ∈ [0, 1) ,
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and more generally any ψ satisfying (1.6). Notice by the way that ψ(ρ) = ψα(ρ) is
compatible with (1.6) if and only if α ∈ [0, 1) and that ψ(ρ) = ρ log ρ appears as the
limit case when α→ 1−.

The exponential decay is a striking property which raises the issue of the hid-
den mathematical structure, a question asked long ago by F. Poupaud. As already
mentionned, the answer lies in the gradient flow interpretation and the construction
of the appropriate distances. Such distances, based on an action functional related
to ψ, have been studied in [21]. Our purpose is to exploit this action functional for
the construction of gradient flows, not only in the case corresponding to (1.3) but also
for KFP equations based on general λ-convex potentials V . For the convenience of
the reader, the main steps of the strategy have been collected in Section 2, without
technical details (for instance on the measure theoretic aspects of our approach).

Coming back to our basic example, namely the solution of (1.3), we may observe
that a solution can easily be represented using the Green kernel of the heat equation
and our time-dependent change of variables. If ψ(ρ) = ψα(ρ), α ∈ [0, 1), we may
observe that the exponential decay of the entropy can be obtained using the known
properties of the heat flow and the homogeneity of ψα, while the contraction properties
of the heat flow measured in the framework of the weighted Wasserstein distances
introduced in [21] can be translated into the exponential decay of the distance of the
solution of (1.3) to the gaussian measure γ, if we assume that ρ γ is a probability
measure. We shall however not pursue in this direction as it is very specific of the
potential V (x) = 1

2 |x|2 and of the heat flow (for which an explicit Green function is
available).

Let us conclude this introductory section by a brief review of the literature on the
functional inequalities based on entropies such that (1.6) holds. Such functionals are
sometimes called ϕ-entropies. In this paper, we shall however avoid this denomination
to prevent from possible confusions with the function φ and the functional Φ used
below to define the action and the weighted Wasserstein distances Wh.

We shall refer to [16, 25] for a probabilistic point of view. A proof of (1.5) under
Assumption (1.6) and an hypothesis of convexity of V can be found for instance
in [8] or in the more recent paper [15]. This approach is based on the Bakry-Emery
method [9, 18] and heavily relies on the flow of KFP or, equivalently, on the geometric
properties of the Ornstein-Uhlenbeck operator (using the carré du champ: see [15]).
Strict convexity of the potential is usually required, but can be removed afterwards
by various methods: see [8, 10, 20]. For capacity-measure approaches of (1.4), we
shall refer to [11, 12, 19]. The inequality (1.4) itself has been introduced in [13] with
a proof based on the hypercontractivity of the heat flow and spectral estimates, and
later refined and adapted to general potentials in [6].

Concerning gradient flows and distances of Wasserstein type, there has been a
huge activity over the last years. We can refer to [24, 14] for fundamental ideas, and
to two books, [3, 27], for a large overview of the field. Many other contributions in
this area will be quoted whenever needed in the proofs.

2. Formal point of view: definitions, strategy and main results. In Sec-
tion 1, we have considered the case of the harmonic potential V (x) = 1

2 |x|2. We
generalize the setting to any smooth, convex potential V : Rd → R with

D2V ≥ λ I , λ ≥ 0 , (2.1)
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and consider the reference measure γ given by

γ := e−V L
d (2.2)

where L d denotes Lebesgues’s measure on R
d. We assume that

γ(Rd) =

∫

Rd

e−V dx =: Z <∞ . (2.3)

Next we define the action density φ : (0,∞)× R
d → R as

φ(ρ,w) := g(ρ) |w|2 =
|w|2
h(ρ)

for some concave, positive, non decreasing function h with sublinear growth. The
function g is therefore convex and also satisfies the condition

2 (g′)2 ≤ g g′′ . (2.4)

Our main example is h(ρ) := ρα for some α ∈ (0, 1). Based on the action density, we
can define the action functional by

Φ(ρ,w) :=

∫

Rd

φ(ρ,w) dγ . (2.5)

The Kolmogorov-Fokker-Planck (KFP) equation. With the notations ∆γ :=
∆−DV ·D, the equation

∂tρt −∆γρt = 0 (2.6)

determines the Kolmogorov-Fokker-Planck (KFP) flow St : ρ0 7→ ρt. Its first vari-
ation, Rt : w0 7→ wt, can be obtained as the solution of the modified Kolmogorov-
Fokker-Planck equation

∂twt −∆γwt +D2V wt = 0 .

If w0 = Dρ0, then wt = Dρt, which can be summarized by

D(Stρ0) = Rt(Dρ0) .

By duality, using the notations ∇γ ·w := ∇·w−DV ·w and ∇·w :=
∑d
i=1 ∂wi/∂xi,

if ∇γ ·w0 = ρ0, we also find that ∇γ ·wt = ρt, which amounts to

∇γ · (Rtw0) = St(∇γ ·w0) (2.7)

(see Theorem 5.4 for details). If µ = ρ γ, we define the semigroup St acting on
measures by Stµ := (Stρ) γ.

Consider an entropy density function ψ such that ψ(1) = ψ′(1) = 0. If we define
the entropy functional by

Ψ(ρ) :=

∫

Rd

ψ(ρ) dγ

4



and the entropy production, or generalized Fisher information functional, as the action
functional for the particular choice w = Dρ, i.e.

P (ρ) := Φ(ρ,Dρ) ,

then, along the KFP flow, we get

d

dt
Ψ(ρt) = −P (ρt) = −Φ(ρt,Dρt) (2.8)

for a solution ρt of (2.6) if

ψ′′ = g .

Notice that (1.6) and (2.4) are equivalent. See Section 3.2 for more details. The main
estimate for this paper goes as follows.

Theorem 2.1. Under Assumptions (2.1)–(2.4), if Φ(ρ0,w0) < ∞, ρt = Stρ0
and wt = Rtw0, then

d

dt
Φ(ρt,wt) + 2λΦ(ρt,wt) ≤ 0 ∀ t ≥ 0 .

In particular the action functional decays exponentially if λ is positive:

Φ(ρt,wt) ≤ e−2λtΦ(ρ0,w0) ∀ t ≥ 0 . (2.9)

At formal level, this follows by an easy convexity argument. The rigorous proof
requires many regularizations. See Theorem 6.1 for a more detailed version of this
result. Now let us review some of the consequences of Theorem 2.1.

Entropy, entropy production and generalized Poincaré inequalities. We can
now apply Theorem 2.1 to the KFP flow. With w = Dρ, we find that the entropy
production functional decays exponentially:

d

dt
P (ρt) + 2λP (ρt) ≤ 0 , P (ρt) ≤ e2λtP (ρ0) ∀ t ≥ 0 (2.10)

if λ is positive. By integrating (2.8) along the KFP flow when t varies in R
+, using

(2.10) and Ψ(1) = 0, we recover for ρ = ρ0 the generalized Poincaré inequalities

Ψ(ρ) ≤ 1

2λ
P (ρ) (2.11)

found by Beckner in [13] in the case of the harmonic potential and for h(ρ) := ρα,
α ∈ (0, 1), and generalized for instance in [8]. Such inequalities interpolate between
Poincaré and logarithmic Sobolev inequalities.

If we combine (2.11) with (2.10), we find that the entropy decays according to

d

dt
Ψ(ρt) + 2λΨ(ρt) ≤ 0 , Ψ(ρt) ≤ e−2λtΨ(ρ0) ∀ t ≥ 0 .

By integrating from 0 to t the inequality

d

dt

(

t P (ρt)
)

= P (ρt) + t
d

dt
P (ρt) ≤ P (ρt) = − d

dt
Ψ(ρt) ,
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which itself follows from (2.8) and (2.10), we observe a first regularization effect along
the KFP flow, namely

t P (ρt) ≤ Ψ(ρ0) ∀ t ≥ 0 . (2.12)

If λ is positive, we can refine this estimate and actually prove by the same method

that e2λt−1
2λ P (ρt) ≤ Ψ(ρ0) for any t ≥ 0.

The h-Wasserstein distance. If µ is a measure with absolutely continuous part ρ
with respect to γ, and singular part µ⊥, if ν is a vector valued measure which is
absolutely continuous with respect to γ and has a modulus of continuity w, i.e. if

µ = ρ γ + µ⊥ and ν = w γ , (2.13)

we can extend the action functional Φ to the measures µ and ν by setting

Φ(µ,ν) = Φ(ρ,w) =

∫

Rd

φ(ρ,w) dγ .

We shall say that there is an admissible path connecting µ0 to µ1 if there is a solution
(µs,νs)s∈[0,1] to the continuity equation

∂sµs +∇ · νs = 0 , s ∈ [0, 1] ,

and will denote by Γ(µ0, µ1) the set of all admissible paths. With these tools, we can
define the h-Wasserstein distance between µ0 and µ1 by

W 2
h (µ0, µ1) := inf

{

∫ 1

0

Φ(µs,νs) ds : (µ,ν) ∈ Γ(µ0, µ1)
}

.

Notice that h in “h-Wasserstein distance” refers to the dependence of Φ in h through
the action density φ, the usual Wasserstein distance corresponding to h(ρ) = ρ. If
(µt)t∈(0,T ) is a curve of measures, its h-Wasserstein velocity |µ̇t| is determined by

|µ̇t|2 = inf
ν

{

Φ(µ,ν) : ∇ · ν = − ∂tµt

}

.

Using the decomposition (2.13), we compute the derivative of the entropy along the
curve (µt)t∈(0,T ) as

d

dt
Ψ(ρt) =

∫

Rd

ψ′(ρt) ∂tρt dγ =

∫

Rd

ψ′′(ρt)Dρt ·wt dγ

and find that

− d

dt
Ψ(ρt) = −

∫

Rd

√

ψ′′(ρt)Dρt ·
√

ψ′′(ρt)wt dγ ≤
√

P (ρt) |µ̇t| (2.14)

by the Cauchy-Schwarz inequality. Along the KFP flow, we know that

d

dt
Ψ(ρt) = −P (ρt) = −|µ̇t|2 = −

√

P (ρt) |µ̇t| ,

which is the equality case in (2.14). This characterizes the KFP flow as the steepest
descent flow of the entropy Ψ, i.e. this is a first charaterization of KFP as the gradient
flow of Ψ with respect to the h-Wasserstein distance.
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The KFP flow connects µ = ρ γ with µ∞ = γ and it has been established in [21]
that one can estimate the length of the path by

Wh(µ, γ) =

∫ ∞

0

√

P (ρt) dt =

∫ ∞

0

|µ̇t| dt (2.15)

(see Section 3.5 for details). According to (2.10), we get

Wh(µ, γ) ≤
√

P (ρ)

∫ ∞

0

e−λt dt =
1

λ

√

P (ρ) .

This establishes the entropy production – distance estimate

Wh(µ, γ) ≤
1

λ

√

P (ρ) , if µ = ρ γ .

Along the KFP flow, we also find that

− d

dt

√

Ψ(ρt) =
P (ρt)

2
√

Ψ(ρt)
≥

√

λ

2
P (ρt)

using (2.11). By applying (2.15), this establishes the (Talagrand) entropy – distance
estimate

W 2
h (µ, γ) ≤

2

λ
Ψ(ρ) .

Contraction properties and gradient flow structure. Here as in [21], we use
the technique introduced in [26] and extended in [17, § 2]: we consider a geodesic (or
an approximation of a geodesic), and evaluate the derivative of the action functional
along a family of curves obtained by evolving the geodesic with the KFP flow.

Consider an ε-geodesic (ρs,ws) connecting µ0 = ρ0 γ to µ1 = ρ1 γ, i.e. an admis-
sible path in Γ(µ0, µ1) such that Φ(ρs0,w

s
0) ≤ W 2

h (ρ
0
0, ρ

1
0) + ε for any s ∈ (0, 1) and

observe that by (2.7), we know that (ρst = Stρ
s,ws

t = Rtw
s) is still an admissible

curve connecting Stρ
0 to Stρ

1. Therefore (2.9) yields

W 2
h (ρ

0
t , ρ

1
t ) ≤

∫ 1

0

Φ(ρst ,w
s
t ) ds ≤ e−2λt

∫ 1

0

Φ(ρs0,w
s
0) ds ≤ e−2λt

(

W 2
h (ρ

0
0, ρ

1
0) + ε

)

,

which, by letting ε→ 0, proves that the KFP flow contracts the distance:

Wh(Stµ
0, Stµ

1) ≤ e−λtWh(µ
0, µ1) ∀ t ≥ 0 .

See Theorem 7.1 for more details.
Next, we should again consider an ε-geodesic, but for simplicity we assume that

there is a geodesic (ρs,ws) connecting σ = µ0 = ρ0 γ to µ = µ1 = ρ1 γ, i.e. such that
Φ(ρs,ws) =W 2

h (σ, µ), and consider the path

(ρst ,w
s
t ) := (Sstρ

s,Rstws + tDρst )

connecting σ to µt := Stµ. Notice that our notations mean that ρs = ρs0. Since

∂sρ
s
t = ρst + t∆γρ

s
t = ∇γ · (ws

t + tDρst ) ,

7



the path is admissible and, as a consequence,

W 2
h (µt, σ) ≤

∫ 1

0

Φ(ρst ,w
s
t ) ds .

We can therefore differentiate the right hand side in the above inequality instead of the
distance and furthermore notice that it is sufficient to do it at t = 0; see Theorem 7.2
and its proof for details. Along the KFP flow we find that

1

2

d

dt
W 2
h (µt, σ) +

λ

2
W 2
h (µt, σ) ≤ Ψ(σ | γ)−Ψ(µt | γ) . (2.16)

This is the strongest metric formulation of a λ-contracting gradient flow. Here we
have defined the relative entropy as Ψ(µ | γ) := ψ(ρ) if µ ≪ γ and µ = ρ γ, and
Ψ(σ | γ) := +∞ otherwise. Hence we recover a second characterization of the fact
that KFP is the gradient flow of Ψ with respect to Wh.

As another consequence, the entropy Ψ is geodesically λ-convex. This follows
from (2.16). Fix a geodesic µs between µ0 and µ1, follow the evolution of µs by KFP
taking first µ0 and then µ1 fixed, and apply (2.16) with µt := Stµ

s and µ = µ0 or
µ = µ1. Because of the minimality of the energy along the geodesic at time t = 0, by
summing the two resulting inequalities we prove the convexity inequality of Ψ. See
[17, Theorem 3.2] for more details.

As a final observation, let us notice that, directly from the metric formulation
(2.16), it follows that the KFP flow also has the following regularizing properties:

Ψ(ρt) ≤
1

2t
W 2
h (ρ0, γ) and P (ρt) ≤

1

t2
W 2
h (ρ0, γ) ∀ t ≥ 0 .

The first estimate can indeed be obtained by integrating (2.16) (with λ = 0 and
σ = γ) from 0 to t and recalling that t 7→ Ψ(ρt) is decreasing. As for the second one,
we observe that also t 7→ P (ρt) is decreasing by (2.10), so that (2.12) and (2.16) yield

d

dt

(

t2

2
P (ρt)

)

≤ t P (ρt) ≤ Ψ(ρt) ≤ −1

2

d

dt
W 2
h (µt, γ) .

A further integration in time from 0 to t completes the proof. Notice that it is crucial
to start from a measure µ = ρ0 γ at finite distance from γ.

3. Definition and properties of the weighted Wasserstein distance. In
this section we first recall some definitions and results taken from [21]. The measure γ
and the functions φ and ψ are as in Section 2, and we assume that Conditions (2.1)–
(2.4) are satisfied.

3.1. Properties of the potential. Let V : Rd → R be a λ-convex and continu-
ous potential. We assume that λ is nonnegative and λ-convexity means that the map
x 7→ V (x) − λ

2 |x|2 is convex. When V is smooth in R
d, this condition is equivalent

to (2.1). We are assuming that e−V is integrable in R
d, so that we can introduce

the finite, positive, log-concave measure γ defined by (2.2). For simplicity, we shall
assume that γ is a probability measure, i.e. Z = 1, which can always be enforced by
replacing V by V + logZ. The potential V being convex, the integrability of e−V

is equivalent to the property that V (x) ↑ ∞ at least linearly as |x| ↑ ∞; see e.g. [5,
Appendix]. As a consequence, there exist two constants A > 0, B ≥ 0 such that

V (x) ≥ A |x| −B ∀ x ∈ R
d . (3.1)

8



We recall that non smooth, convex potentials V can be approximated from below
by an increasing sequence of convex potentials Vn:

Vn(x) :=
λ

2
|x|2 + inf

y∈Rd

(n

2
|x− y|2 + V (y)− λ

2
|y|2

)

.

Moreover, the potentials Vn are λ-convex and, even in the case λ = 0, they satisfy
conditions (3.1) with respect to constants A and B which are independent of n. In par-
ticular, the log-concave measures γn := e−VnL d weakly∗ and monotonically converge
in C0

b (R
d)′ to γ. By this regularization techniques, many results could be extended

to the case when V is just lower semicontinuous and can take the value +∞.

3.2. Convexity of the action density. As in Section 2, consider g and h on
(0,∞) such that g(ρ) = 1/h(ρ) and φ(ρ,w) = g(ρ) |w|2 = |w|2/h(ρ). The following
result has already been observed in [21] but we reproduce it here for completeness.

Lemma 3.1 (Convexity of the action density). With the notations of Section 2,
the action density φ is convex if and only if h is concave on (0,∞) or, equivalently,
if g satisfies Condition (2.4).

Proof. By standard approximations, it is not restrictive to assume that g, h ∈
C2(0,∞). First of all observe that

g3 h′′ = 2 (g′)2 − g g′′ ,

so that h′′ is nonpositive if and only if 2 (g′)2 ≤ g g′′. Next we evaluate the second
derivative of φ along the direction of the vector z = (x,y) ∈ R× R

d as

〈

D2φ(ρ,w)z, z
〉

= g′′(ρ) |w|2 x2 + 4 g′(ρ)w · xy + 2 g(ρ) |y|2 .

By minimizing with respect to x ∈ R, we get

g′′(ρ) |w|2
〈

D2φ(ρ,w)z, z
〉

≥ 2
[

g′′(ρ) |w|2 g(ρ) |y|2 − 2 (g′(ρ)w · y)2
]

(3.2)

if g′′(ρ) > 0, with equality for the appropriate choice of x. The convexity of φ is thus
equivalent to

g′′(ρ) |w|2 g(ρ) |y|2 ≥ 2 (g′(ρ)w · y)2 ∀ ρ > 0 , ∀ y , w ∈ R
d .

If φ is convex, by choosing y := h(ρ) g′(ρ)w and using h(ρ) g(ρ) = 1, we get

g′′(ρ) |w|2 h(ρ) (g′(ρ))2 |w|2 ≥ 2
[

h(ρ) (g′(ρ))2 |w|2
]2 ∀ ρ > 0 , ∀ w ∈ R

d ,

which yields (2.4). Conversely, the convexity of φ follows from (w · y)2 ≤ |w|2 |y|2.

We can introduce a modulus of convexity as follows. Assume that for some α ∈
(0, 1] we have

g(ρ) g′′(ρ) ≥ (1 + α−1) (g′(ρ))2 ∀ ρ > 0 . (3.3)

By (3.2), we obtain the refined estimate

〈

D2φ(ρ,w)z, z
〉

≥ 2 β φ(ρ,y) ∀ z = (x,y) ∈ R
d+1 , with β :=

1− α

1 + α
. (3.4)

9



Such a refinement has interesting consequences, which have been investigated in [6,
7, 20]. The refined convexity assumption (3.3) is equivalent to

h1/α is concave .

Remark 3.2 (Main example). Our main example is provided by the function

h(ρ) := ρα , 0 ≤ α ≤ 1 , φ(ρ,w) =
|w|2
ρα

,

which satisfies (3.4). When α = 0 we simply get

φ(ρ,w) := |w|2 ,

and for α = 1 we have the 1-homogeneous functional

φ(ρ,w) :=
|w|2
ρ

.

Notice that the above considerations can be generalized to matrix-valued functions
g and h: see [21, Example 3.4].

3.3. The action functional on densities. The action functional Φ induced
by φ has been defined by (2.5), with domain

D(Φ) :=
{

(ρ,w) ∈ L1
γ(R

d)× L1
γ(R

d;Rd) : ρ ≥ 0 , Φ(ρ,w) <∞
}

.

Assuming as in Section 3.2 that φ convex, it is well known that if (ρk)k∈N and (wk)k∈N

are such that (ρk,wk) ∈ D(Φ) for any k ∈ N and if ρk ⇀ ρ in L1
γ(R

d), and wk ⇀
∗

w ∈ L1
γ(R

d;Rd) as n ↑ ∞, then by lower semi-continuity of Φ, we have

lim inf
n↑∞

Φ(ρk,wk) ≥ Φ(ρ,w) .

Lemma 3.3 (Approximation by smooth bounded densities). Consider two func-
tions ρ ∈ L1

γ(R
d) and w ∈ L1

γ(R
d;Rd) such that ρ ≥ 0 and Φ(ρ,w) <∞. Then there

exist two sequences (ρk)k∈N and (wk)k∈N of bounded smooth functions (with bounded
derivatives of arbitrary orders) such that infRd ρk > 0 and

lim
k↑∞

ρk = ρ in L1
γ(R

d) , lim
k↑∞

wk = w in L1
γ(R

d;Rd) ,

∫

Rd

ρk dγ =

∫

Rd

ρ dγ ∀ k ∈ N and lim
k↑∞

∫

Rd

φ(ρk,wk) dγ =

∫

Rd

φ(ρ,w) dγ .

Proof. We first truncate ρ and w from above as follows. Let m :=
∫

Rd ρ dγ

and, for any k ∈ N, mk :=
∫

Rd(ρ ∧ k) dγ, Rk := {x ∈ R
d : ρ(x) ≤ k}. We set

ρk := m−1
k m (ρ ∧ k) and

wk(x) :=

{

w(x) if |w(x)| ≤ k and x ∈ Rk ,

0 otherwise .

10



Clearly ρk → ρ, wk → w pointwise γ a.e. in R
d, so that Fatou’s Lemma yields

lim inf
k↑∞

Φ(ρk,wk) = Φ(ρ,w) . (3.5)

Since ρ ∧ k → ρ in L1
γ(R

d) as k ↑ ∞, we have mk → m and ρk → ρ in L1
γ(R

d). The

dominated convergence theorem also yields wk → w in L1
γ(R

d;Rd). Finally, since
ρk ≥ ρ and |wk| ≤ |w| on Rk, and since g is non increasing,

Φ(ρk,wk) =

∫

Rd

φ(ρk,wk) dγ =

∫

Rk

φ(ρk,wk) dγ

≤
∫

Rk

φ(ρ,w) dγ ≤
∫

Rd

φ(ρ,w) dγ = Φ(ρ,w) ,

so that the “lim inf” in (3.5) is in fact a limit.
Next we perform a lower truncation on ρ. By a diagonal argument, it is sufficient

to approximate the functions ρk and wk we have just introduced, so we can assume
that ρ is essentially bounded by a constant k and we omit the dependence on k. For
δ > 0 we now set ρδ := (ρ+ δ)m/(m+ δ). Observe that

ρδ −m =
m

m+ δ
(ρ−m) and ρ− ρδ =

δ

m+ δ
(ρ−m)

so that m ≤ ρδ ≤ ρ on the set Rcm and, by convexity of g, we get

g(ρδ) ≤ Cδ g(ρ) where Cδ = 1 + δ
|g′(m)| (k −m)

g(k) (δ +m)
.

On the other hand, on the set Rm, we have ρ ≤ ρδ, and then g(ρδ) ≤ g(ρ). As a
consequence,

∫

Rd

φ(ρδ,w) dγ ≤ Cδ

∫

Rd

φ(ρ,w) dγ .

We can then pass to the limit as δ ↓ 0, since ρδ → ρ pointwise.
The last step is to approximate the functions ρ and w, with δ ≤ ρ ≤ k, |w| ≤ k,

by smooth functions. We consider a family of smooth approximations ρ̃ε and wε

obtained by convolution with a smooth kernel. We finally set mε :=
∫

Rd ρ̃ε dγ and, in
this framework, redefine ρε := mρ̃ε/mε. Since (ρε,wε) converges to (ρ,w) pointwise
a.e. in R

d and is uniformly bounded, we can pass to the limit as above when ε ↓ 0.

3.4. The action functional on measures. Since we assumed that h is con-
cave and strictly positive for ρ > 0, h is an increasing map, so that g is decreasing.
We extend h and g to [0,∞) by continuity and we still denote by φ the lower semi-
continuous envelope of φ in the closure [0,∞) × R

d. If h(0) > 0 then g(0) < ∞ and
φ(0,w) = g(0) |w|2. When h(0) = 0 we have g(0) = ∞ and

φ(0,w) =

{

∞ if w 6= 0 ,

0 if w = 0 .

We also introduce the recession functional

φ∞(ρ,w) := sup
λ>0

1

λ
φ(λρ, λw) = lim

λ↑∞

1

λ
φ(λρ, λw) ,

11



which is still a convex and lower semicontinuous function with values in [0,∞], and
1-homogeneous. It is determined by the behaviour of h(ρ) as ρ ↑ ∞. If we set

h∞ := lim
ρ↑∞

h(ρ)

ρ
=:

1

g∞
,

we have

φ∞(ρ,w) =

{

∞ if w 6= 0

0 if w = 0
when h∞ = 0 ,

and

φ∞(ρ,w) =

{

|w|2

h∞ρ = g∞ |w|2

ρ if ρ 6= 0

∞ if ρ = 0 and w 6= 0
when h∞ > 0 .

Let µ ∈ M+(Rd) be a nonnegative Radon measure and let ν ∈ M(Rd;Rd) be a
vector Radon measure on R

d. We write their Lebesgue decomposition with respect
to the reference measure γ as

µ := ρ γ + µ⊥ , ν := w γ + ν⊥ .

We can always introduce a nonnegative Radon measure σ ∈ M+(Rd) such that µ⊥ =
ρ⊥σ ≪ σ, ν⊥ = w⊥σ ≪ σ, e.g. σ := µ⊥ + |ν⊥| and define the action functional

Φ(µ,ν | γ) :=
∫

Rd

φ(ρ,w) dγ +

∫

Rd

φ∞(ρ⊥,w⊥) dσ .

Since φ∞ is 1-homogeneous, this definition is independent of σ. As we have done up
to now, we shall simply write Φ(µ,ν) = Φ(µ,ν | γ) when there is no ambiguity on the
reference measure γ.

Remark 3.4. If h has a sublinear growth, then h∞ = 0 and, as a consequence,
if Φ(µ,ν) < +∞, then we have

ν = w · γ ≪ γ and Φ(µ,ν) =

∫

Rd

φ(ρ,w) dγ ,

so Φ(µ,ν) is independent of the singular part µ⊥. When h has a linear growth,
i.e. h∞ > 0, if Φ(µ,ν) < +∞, then we have

ν⊥ = w⊥ · µ⊥ ≪ µ⊥ .

In both cases, one can choose σ = µ⊥, so that

ν = w · γ ≪ γ +w⊥ · µ⊥

and if g∞ = 1/h∞ is finite, then we have

Φ(µ,ν | γ) =
∫

Rd

φ(ρ,w) dγ + g∞
∫

Rd

|w⊥|2 dµ⊥ ,

while the last term simply drops if h∞ = 0.
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Lemma 3.5 (Lower semicontinuity, regular approximation of the action func-
tional). The action functional is lower semicontinuous with respect to the weak con-
vergence of measures, i.e. if (γn), (µn) and (νn) are sequences such that γn ⇀ γ
weakly in M+(Rd), µn ⇀ µ weakly in M+(Rd) and νn⇀

∗ν in M(Rd;Rd) as n ↑ ∞,
then

lim inf
n↑∞

Φ(µn,νn | γn) ≥ Φ(µ,ν | γ) .

Moreover, for every µ ∈ M+(Rd) and ν ∈ M(Rd;Rd) such that Φ(µ,ν) < ∞, there
exist sequences (µn) and (νn) for which

µn := ρn γ with ρn ∈ C0
b (R

d) and inf ρn > 0 , νn := wn γ with wn ∈ C0
b (R

d;Rd)

such that

µn ⇀ µ and νn ⇀ ν , lim
n↑∞

∫

Rd

φ(ρn,wn) dγ = Φ(µ,ν | γ) . (3.6)

Proof. The first statement is a well known fact about lower semicontinuity of
convex integrals (see e.g. [1]). Concerning the approximation property (3.6), general
relaxation results provide a family of approximations in L1

γ(R
d). We can then apply

Lemma 3.3 and a standard diagonal argument.

3.5. The weighted Wasserstein distance. Denote by B(Rd) the collection of
all Borel subsets of Rd, by M+(Rd) the collection of all finite positive Borel measures
defined on R

d and by P(Rd) the convex subset of all probability measures i.e. all
µ ∈ M+(Rd) such that µ(Rd) = 1. If M(Rd;Rd) is the set of the vector valued Borel
measures ν : B(Rd) → R

d with finite variation, i.e. such that

|ν|(B) := sup
{

∑

j≤n

|ν(Bj)| :

B =
⋃

j≤n

Bj , Bj ∈ B(Rd) pairwise disjoint , n <∞
}

<∞

for any B ∈ B(Rd), then |ν| is in fact a finite positive measure in M+(Rd) and ν

admits the polar decomposition ν = w |ν| where the Borel vector field w belongs to
L1
|ν|(R

d;Rd). We can also consider ν as a vector (ν1,ν2, · · · ,νd) of d measures in

M(Rd;R).

For any T > 0, let CE(0, T ;Rd) be the set of time dependent measures (µt)t∈[0,T ],
(νt)t∈(0,T ) such that

1. t 7→ µt is weakly
∗ continuous in M

+
loc(R

d),

2. (νt)t∈(0,T ) is a Borel family with
∫ T

0
|νt|(BR) dt <∞ for any R > 0,

3. (µ,ν) is a distributional solution of

∂tµt +∇ · νt = 0 in R
d × (0, T ) .

As in [21], we define the weighted Wasserstein distance as follows.
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Definition 3.6. The (h, γ)-Wasserstein distance between µ0 and µ1 ∈ M
+
loc(R

d)
is defined by

Wh,γ(µ0, µ1) := inf
{[

∫ 1

0 Φ(µt,νt | γ) dt
]1/2

:

(µ,ν) ∈ CE(0, 1;Rd) , µt=0 = µ0 , µt=1 = µ1

}

(3.7)

with Φ(µ,ν | γ) := Φ(ρ,w) + Φ∞(w⊥) if µ = ρ γ + µ⊥ and ν = w γ + w⊥ µ⊥,
Φ(µ,ν | γ) := ∞ otherwise, and Φ∞(w) := limλ↑∞ λφ(λ,w).

We denote by Mh,γ [σ] the set of all measures µ ∈ M
+
loc(R

d) which are at finite
Wh,γ-distance from σ.

Notice that in [21] we were using the notation Wφ,γ instead of Wh,γ . Whenever
there is no ambiguity on the choice of the measure γ, we shall simply write Wh. The
next result is taken from [21, Theorem 5.6 and Proposition 5.14]

Theorem 3.7 (Lower semicontinuity). If φ satisfies (2.4) and (2.5), the map
(µ0, µ1) 7→ Wh,γ(µ0, µ1) is lower semicontinuous with respect to the weak ∗ conver-
gence in M

+
loc(R

d). More generally, suppose that γn⇀∗γ in M
+
loc(R

d), hn is mono-
tonically decreasing w.r.t. n and pointwise converging to h, and µn0⇀

∗µ0, µ
n
1⇀

∗µ1 in
M

+
loc(R

d) as n ↑ ∞. Then

lim inf
n↑∞

Whn,γn(µn0 , µ
n
1 ) ≥Wh,γ(µ0, µ1) .

If moreover γn ≥ γ we have

lim
n→+∞

Whn,γn(µ0, µ1) =Wh,γ(µ0, µ1) .

It is possible to reparametrize the path connecting µ0 to µ1 in the definition of Wh,γ

and establish that, for any T > 0,

Wh,γ(σ, η) := inf
{√

T
[

∫ T

0 Φ(µt,νt | γ) dt
]1/2

: (µ,ν) ∈ CE(0, T ;σ → η)
}

where CE(0, T ;σ → η) denotes the set of the paths (µ,ν) ∈ CE(0, T ;Rd) such that
µt=0 = σ and µt=T = η. By [21, Theorem 5.4 and Corollary 5.18], we have the

Theorem 3.8 (Existence of geodesics). Whenever the infimum in (3.7) has a
finite value, it is attained by a curve (µ,ν) ∈ CEφ(0, 1;Rd) such that

Φ(µt,νt | γ) =W 2
h,γ(µ0, µ1) ∀ t ∈ (0, 1) L

1 a.e.

In this case we have the equivalent characterization

Wh,γ(σ, η) = min
{

∫ T

0

[

Φ(µt,νt | γ)
]1/2

dt : (µ,ν) ∈ CE(0, T ;σ → η)
}

.

The curve (µt)t∈[0,1] associated to a minimum for (3.7) is a constant speed mimimal
geodesic:

Wh,γ(µs, µt) = |t− s|Wh,γ(µ0, µ1) ∀ s , t ∈ [0, 1] .

We may notice that the characterization ofWh,γ(σ, η) in terms of
∫ T

0

√

Φ(µt,νt | γ) dt
14



allows to consider the case T = +∞. By [2, Chap. 1] (also see [21, p. 222]), one
knows that

Wh,γ(µ0, µT ) ≤
∫ T

0

|µ′
t| dt with |µ′

t| := lim
h→0

Wh,γ(µt+h, µt)

h

for any absolutely continuous curve t 7→ µt such that µt=0 = µ0 and µt=T = µT .

Now let us come back to the formal point of view of Section 2 and establish
(2.15) in this framework. Assume that ρt is given by KFP and wt = Dρt. The curve
µt = ρt γ connects µ0 = ρ0 γ with µ∞ = γ and, using

√

P (ρt) =
√

Φ(ρt,wt | γ) = |µ′
t| ,

it follows that

Wh,γ(ρ0, γ) ≤
∫ ∞

0

√

P (ρt) dt =

∫ ∞

0

|µ̇t| dt

as already noted in Section 2 (equality case in (2.14)). On the other hand, for any
(µ,ν) ∈ CE(0, T ;µ0 → µT ), T ∈ (0,∞), we have |µ̇t| ≤

√

Φ(µt,νt) and so

∫ T

0

|µ̇t| dt ≤
∫ T

0

√

Φ(µt,νt) dt .

By taking first the infimum (µ,ν) ∈ CE(0, T ;µ0 → µT ) and then the limit T → ∞,
we also find

∫ ∞

0

|µ̇t| dt ≤Wh,γ(ρ0, γ) ,

thus proving the equality in the above inequality. This completes the proof of (2.15).

4. Entropy and entropy production. Let us consider now a function ψ such
that ψ′′(x) = g(x) for any x > 0. Among all possible choices of ψ, we consider
in particular the convex functions ψa : [0,∞) → [0,∞) depending on a > 0 and
characterized by the conditions

ψ′′
a (x) = g(x) , ψa(a) = ψ′

a(a) = 0 , i.e. ψa(x) =

∫ x

a

(x− r) g(r) dr .

Observe that ψa ∈ C2(0,∞) has a strict minimum at a > 0 and it satisfies the
transformation rule

ψa(x) = ψ(x) − ψ(a)− ψ′(a) (x− a) ∀ a > 0 ,

independently of the choice of ψ (for a given function g). When g(x) = 1/x we obtain
the logarithmic entropy density E(x) := x log x and the family

Ea(x) :=

∫ y

a

(y − r)
1

r
dr = x log x− a log a− (1 + log a) (x− a) ,

which provides useful lower/upper bounds for ψ. In fact, h being concave, if h(0) = 0,
then h(x) ≥ h(a)x if 0 < x < a, so that

g(x) ≤ g(a)

x
and ψ(x) ≤ g(a)Ea(x) ∀ x ∈ (0, a] .

15



On the other hand, when x ≥ a, we have h(x) ≤ h(a)x, so that

g(x) ≥ g(a)

x
and ψ(x) ≥ g(a)Ea(x) ∀ x ∈ [a,+∞) , (4.1)

thus showing that ψ(x) has a superlinear growth as x ↑ ∞.
We can therefore introduce the relative entropy functional

Ψ(ρ) :=

∫

Rd

ψa(ρ(x)) dγ(x) =

∫

Rd

(

ψ(ρ(x)) − ψ(a)
)

dγ with a =

∫

Rd

ρ dγ .

In the particular case ψ = E, we set

H(ρ) :=

∫

Rd

ρ log ρ dγ − a log a with a =

∫

Rd

ρ dγ .

Since ψ is convex and superlinearly increasing, if supnΨ(ρn) < ∞, then there exists
a subsequence weakly converging to ρ in L1

γ(R
d) and

lim inf
n↑∞

Ψ(ρn) ≥ Ψ(ρ) .

Remark 4.1. If the function ψ satisfies ψ′′ = g, ψ(0) = 0 and if (2.4) holds,
then ψ also satisfies McCann’s conditions, i.e. the map x 7→ ex ψ(e−x) is convex and
non increasing on (0,∞) or, equivalently,

xψ′ − ψ ≥ 0 and x2 ψ′′ − xψ′ + ψ ≥ 0 ∀ x > 0 .

The convexity of ψ indeed yields xψ′(x) − ψ(x) ≥ −ψ(0) = 0. Consider the
function ϑ(x) := x2 ψ′′(x) − xψ′(x) + ψ(x) and observe that limx↓0 ϑ(x) = 0, since
ψ′′ = 1/h and h is concave so that, in particular, h(x) ≥ c x near x = 0, for some
positive constant c. On the other hand, we have

ϑ′(x) = x2 g′(x) + x g(x) = x
d

dx

(

x

h(x)

)

and the function x 7→ h(x)/x being positive, non increasing, we deduce that ϑ′(x) ≥ 0,
so that ϑ ≥ 0.

Let us introduce the Sobolev spaces

W 1,p
γ (Rd) :=

{

ρ ∈W 1,p
loc (R

d) :

∫

Rd

(

|ρ|p + |Dρ|p
)

dγ <∞
}

.

For ρ ∈W 1,1
γ (Rd), ρ ≥ 0, we define the entropy production functional as

P (ρ) := Φ(ρ,Dρ) with domain D(P ) :=
{

ρ ∈W 1,1
γ (Rd) : ρ ≥ 0 , P (ρ) <∞

}

.

We also introduce the absolutely continuous functions

f(r) :=

∫ r

0

√

g(ξ) dξ , Lψ(r) := r ψ′(r) − ψ(r) ,

and observe that

d

dr
Lψ(r) = r ψ′′(r) = r g(r) =

r

h(r)
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is bounded if and only if h(r) has a linear growth as r ↑ ∞. In the case h(r) = r,
ψ = E, to the entropy functional H corresponds the entropy production functional

I(ρ) :=

∫

Rd

|Dρ|2
ρ

dγ .

Proposition 4.2. Let ρ be nonnegative function in L1
γ(R

d). Then ρ ∈ W 1,1
γ (Rd)

and P (ρ) <∞ if and only if Df(ρ) ∈ L2
γ(R

d;Rd) and in this case we have

P (ρ) =

∫

Rd

|Df(ρ)|2 dγ .

If ρ ∈ D(P ) and h(r) ≥ h r for some constant h > 0, then Lψ(ρ) ∈W 1,1
γ (Rd),

∫

Rd

|DLψ(ρ)|2
ρ

dγ ≤ h
−1P (ρ) and P (ρ) ≤ h

−1
I(ρ) . (4.2)

Moreover, the functional ρ 7→ P (ρ) is lower semicontinuous with respect to the weak
convergence in L1

γ(R
d), i.e. if a sequence (ρn)n∈N weakly converges to some ρ in

L1
γ(R

d) and supn∈N
P (ρn) <∞, then ρ ∈W 1,1

γ (Rd) and

lim inf
n↑∞

P (ρn) ≥ P (ρ) . (4.3)

Proof. Identity (4.3) and DLψ(ρ) = ρ g(ρ)Dρ are straightforward if ρ takes its
values in a compact interval of (0,∞). The general case follows as in Lemma 3.3 by
a standard truncation argument, while the lower semicontinuity is a consequence of
convexity.

5. The KFP flow and its first variation.

5.1. Variational solutions to the KFP flow. As in Section 2, let us introduce
the differential operators

∇γ · v := eV ∇ · (e−V v) = ∇ · v − v ·DV ,

∆γρ :=∇γ · (Dρ) = ∆ρ−Dρ ·DV ,

which, with respect to the measure γ, satisfy the following “integration by parts
formulae” against test functions ζ ∈ C∞

c (Rd):

∫

Rd

v ·Dζ dγ = −
∫

Rd

∇γ · v ζ dγ and

∫

Rd

Dv ·Dζ dγ = −
∫

Rd

∆γv ζ dγ .

We consider the Kolmogorov-Fokker-Planck equation

∂tρt −∆γρt = 0 in (0,∞)× R
d . (5.1)

For simplicity, we will consider equations in the whole Rd (corresponding to the finite-
ness assumption on the potential V ); necessary adaptations when this is not the case
are straightforward and left to the reader. We will also assume that

the potential V is smooth with bounded second derivatives . (5.2)
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Based on the integration by parts formula, the variational formulation of (5.1) in the
Hilbert space L2

γ(R
d) relies on the symmetric, closed Dirichlet form

aγ(ρ, η) :=

∫

Rd

〈Dρ,Dη〉 dγ ∀ ρ , η ∈W 1,2
γ (Rd) ,

whereW 1,2
γ (Rd) is endowed with its natural norm ‖ρ‖2

W 1,2
γ (Rd)

:= ‖ρ‖2L2
γ(R

d)+ aγ(ρ, ρ).

Using smooth approximations, it is not difficult to prove that W 1,2
γ (Rd) is dense in

L2
γ(R

d). The abstract theory of variational evolution equation and the log-concavity
of the measure γ yield the following result (see e.g. [4, Thm. 6.7]).

Proposition 5.1. Assume that (2.1)–(2.4) hold. For every ρ0 ∈ L2
γ(R

d), the
solution of (5.1) has the following properties:

1. There exists a unique ρt = Stρ0 ∈W 1,2
loc

(

0,∞;L2
γ(R

d)
)

, t > 0, such that

d

dt
〈ρt, η〉L2

γ(R
d) + aγ(ρt, η) = 0 ∀ η ∈ W 1,2

γ (Rd) , lim
t↓0

ρt = ρ0 in L2
γ(R

d) .

(5.3)
If ρmin ≤ ρ0 ≤ ρmax, then ρt satisfies the same uniform bounds. The semi-
group (St)t≥0 is an analytic Markov semigroup in L2

γ(R
d) which can be ex-

tended by continuity to a contraction semigroup in Lpγ(R
d) for every p ∈ [1,∞)

and to a weakly ∗ continuous semigroup in L∞
γ (Rd).

2. For every ρ, σ ∈ L2
γ(R

d), we have

∫

Rd

(

Stρ
)

σ dγ =

∫

Rd

ρ
(

Stσ
)

dγ ∀ t ≥ 0 .

3. For every t > 0, St maps L∞
γ (Rd) into Cb(R

d) and Lipb(R
d) into itself, with

the uniform bound

[Stρ]Lip(Rd) ≤ [ρ]Lip(Rd) ∀ t ≥ 0 , ∀ ρ ∈ Lipb(R
d) .

4. If ρ0 ≥ 0,
∫

Rd |x|2 ρ0 dγ < ∞ and H(ρ0) < ∞, then the map t 7→ H(ρt) is

convex, ρt ∈ W 1,1
γ (Rd) for every time t > 0, and

sup
t∈[0,T ]

∫

Rd

|x|2ρt dγ <∞ ,
d

dt
H(ρt) = −I(ρt) ,

d

dt

(

e2λt I(ρt)
)

≤ 0 .

Notice that the Assumption ρ0 ∈ L2
γ(R

d) is not needed in Property 4, according
to [4, Thm. 6.7].

5.2. Measure valued solutions to the FP flow. We first recall some basic
results on measure-valued solutions of the Fokker-Planck (FP) equation

∂tµt = ∆µt +∇ · (DV µt) (t, x) ∈ (0,+∞)× R
d . (5.4)

Solutions of (5.4) are understood in the sense of distributions, i.e. for any T > 0 and
ϕ ∈ C∞

c ([0, T ]× R
d), we have

∫

Rd

ϕT dµT =

∫

Rd

ϕdµ0 +

∫ T

0

∫

Rd

(

∂tϕt +∆ϕt −DV ·Dϕt

)

dµt dt . (5.5)
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For any µ ∈ M+(Rd), we denote by mp(µ), p ∈ [1,∞), the p-moment of µ, i.e.
mp(µ) :=

∫

Rd |x|p dµ(x). By P2(R
d) we denote the space of probability measures

on R
d with finite second moment m2. The relative entropy of µ with respect to γ is

defined as

H(µ | γ) :=
∫

Rd

ρ log ρ dγ if µ≪ γ and µ = ρ γ , H(µ | γ) := +∞ otherwise .

Given two probability measures µ and ν in P(Rd), the classical Wasserstein distance
W2 is defined as W2(µ, ν) := inf{[

∫

Rd×Rd |y − x|2 dΣ]1/2 : Σ ∈ Γ(µ, ν)}. Here Γ(µ, ν)
is the set of all couplings between µ and ν: it consists of all probability measures Σ on
R
d ×R

d whose first and second marginals are respectively µ and ν, i.e. Σ(B ×R
d) =

µ(B) and Σ(Rd ×B) = ν(B) for any B ∈ B(Rd). Notice that the notation W2 is not
consistent with the one for weighted distances Wh; we shall however use it as it is
classical.

For a proof of the next results see e.g. [5, Sect. 3].

Proposition 5.2 (Uniqueness and stability of the solutions of FP). Let µ0 ∈
P2(R

d).
1. The FP equation (5.5) has a unique solution µt = Stµ0 in the class of weakly

continuous maps t 7→ µt ∈ M
+(Rd) with supt∈(0,T ) m2(µt) < +∞.

2. The unique solution µt is continuous with respect to the Wasserstein distance
W2 and Lipschitz continuous in all compact intervals [t0, t1] ⊂ (0,+∞).

3. It is characterized by the family of variational inequalities

1

2

d

dt
W 2

2 (µt, ν) +
λ

2
W 2

2 (µt, ν) +H(µt | γ) ≤ H(ν | γ) ∀ ν ∈ P2(R
d) .

4. In addition, it is stable: µn0 → µ0 in P2(R
d) implies that µnt → µt in P2(R

d)
for all t ≥ 0.

Notice that the measure γ provides a stationary solution of (5.4). All solutions
µt weakly converge to γ as t→ +∞. Finally, µt is absolutely continuous with respect
to γ for any t > 0, with density ρt, and ρt is a solution of the KFP flow.

5.3. Variational solutions to the modified KFP equation. We consider the
first variation of the KFP flow, i.e. the modified Kolmogorov-Fokker-Planck equation

∂twt −∆γwt +D2V wt = 0 in (0,∞)× R
d , lim

t↓0
wt = w0 in L2

γ(R
d;Rd) (5.6)

for the vector field w : (0,∞)× R
d → R

d. In the Hilbert space W := W 1,2
γ (Rd;Rd),

we consider the continuous (recall (5.2)) bilinear form

aγ(v,w) :=

∫

Rd

(

Dv : Dw +D2V v ·w
)

dγ .

We look for solutions w ∈ W 1,2
loc ((0,∞);L2

γ(R
d;Rd)) ∩ L2

loc([0,∞);W ) solving the
variational formulation

d

dt

∫

Rd

wt · ζ dγ + aγ(wt, ζ) = 0 ∀ ζ ∈ W . (5.7)

Observe that vector fields in C1
c (R

d;Rd) belong to W . Actually the space of smooth
compactly supported functions C∞

c (Rd;Rd) is dense in W , and W itself is dense in
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L2
γ(R

d;Rd). Notice moreover that if ζ : R → [0,∞) is a smooth convex function

with bounded second order derivatives and ζ(0) = 0, and z(w) := ζ′(|w|)
|w| w (with

z(0) = 0), an easy calculation shows that solutions of (5.7) satisfy

− d

dt

∫

Rd

ζ(|wt|) dγ = aγ(wt, z(wt)) ≥ 0 a.e. in (0,∞).

With these observations in hand, we can apply the variational theory of evolution
equations and a simple regularization argument to prove the next result.

Proposition 5.3. For every w0 ∈ L2
γ(R

d;Rd), there exists a unique solution

w = Rw0 of (5.7) in W 1,2
loc ((0,∞);L2

γ(R
d;Rd))∩L2

loc([0,∞);W ) with limt↓0 wt = w0

in L2
γ(R

d;Rd). The semigroup R is symmetric

∫

Rd

Rtw · z dγ =

∫

Rd

w ·Rtz dγ ∀ w , z ∈ L2
γ(R

d;Rd) , ∀ t > 0 ,

and satisfies
∫

Rd

ζ
(

|Rtw0|
)

dγ ≤
∫

Rd

ζ
(

|w0|
)

for every w0 ∈ L2
γ(R

d;Rd)

and every convex function ζ : R → [0,∞) with ζ(0) = 0. In particular R can be
extended by density to a contraction semigroup in Lpγ(R

d;Rd), p ∈ [1,∞].

The link between (5.1) and (5.6) is enlightened by the next result.

Theorem 5.4. If ρt is a variational solution of the KFP equation (5.1) with
initial datum ρ0 ∈ W 1,2

γ (Rd), then wt := Dρt belongs to C0([0,∞);L2
γ(R

d)) and it
is the solution of the modified KFP equation (5.6) with initial datum w0 := Dρ0. In
particular we have

∫

Rd

DStρ ·w dγ =

∫

Rd

Dρ ·Rtw dγ ∀ ρ ∈W 1,2
γ (Rd) , ∀ w ∈ L2

γ(R
d;Rd) .

The same result holds if ρ0 belongs to W 1,1
γ (Rd).

Proof. Since D(∆γ) is dense in W 1,2
γ (Rd), we can assume that ρ0 ∈ D(∆γ).

Then the regularity result of Proposition 5.1 shows that ρt ∈ D(∆γ) for every t ≥ 0.
Setting wt := Dρt, we know (see e.g. the argument in the proof of [22, Lemma 5.2])
that aγ(wt,wt) ≤ ‖∆γρ0‖L2

γ(R
d) < +∞. For a fixed ζ ∈ C∞

c (Rd;Rd), we can then
evaluate

d

dt

∫

Rd

wt · ζ dγ =
d

dt

∫

Rd

Dρt · ζ dγ = − d

dt

∫

Rd

ρt∇γ · ζ dγ =

∫

Rd

Dρt ·D(∇γ · ζ) dγ .
(5.8)

With the notations ∂i = ∂/∂xi and ∂ij = ∂2/∂xi∂xj for i, j = 1, 2. . . d, let us observe
that

(

D∇γ · ζ
)

j
=

∑

i

∂j
(

∂iζi − ζi ∂iV
)

=
∑

i

∂2ijζi − ∂jζi ∂iV − ζi ∂
2
ijV

and

Dρt ·D(∇γ · ζ) =
∑

i,j

∂jρt ∂
2
ijζi − ∂jρt ∂jζi ∂iV − ∂jρt ζi ∂

2
ijV .
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Inserting this expression in (5.8) and integrating by parts the first term we get

∫

Rd

Dρt ·D(∇γ · ζ) dγ

=
∑

i,j

∫

Rd

(

∂jρt ∂
2
ijζi dγ −

∑

i,j

∫

Rd

(

∂jρt ∂jζi ∂iV + ∂jρt ζi ∂
2
ijV

)

dγ

=
∑

i,j

∫

Rd

(

− ∂2ijρt ∂jζi + ∂iV ∂jρt ∂jζi

)

dγ

−
∑

i,j

∫

Rd

(

∂jρt ∂jζi ∂iV + ∂jρt ζi ∂
2
ijV

)

dγ

= −
∑

i,j

∫

Rd

(

− ∂2ijρt ∂jζi ∂jρt ζi ∂
2
ijV

)

dγ

= −
∫

Rd

(

Dwt : Dζ +D2wt · ζ
)

dγ = −aγ(wt, ζ) .

Combined with (5.8), this shows that wt := Dρt satisfies the variational formulation
of (5.6). The case of ρ0 ∈ W 1,1

γ (Rd) follows by a standard approximation procedure,
the fact that DStρ0 = RtDρ0, and the L1

γ-contraction property of R.

5.4. Measure valued solutions to the modified KFP equation. Exactly
like the (K)FP equation, the modified system can be extended to vector-valued mea-
sures initial data. To wt, we associate the vector valued measures νt := wt γ ∈
M(Rd;Rd) which satisfy the system

∂tνt = ∆νt +∇ · (DV ⊗ νt)−D2V νt ,

in the weak sense, i.e.

d

dt

∫

Rd

ζ · dνt =
∫

Rd

(

∆ζ −Dζ ⊗DV −D2V ζ
)

· dνt ∀ ζ ∈ C2
c (R

d) . (5.9)

The semigroup can be extended to initial data which are vector valued measures with
finite total variation using equi-integrability and moment estimates taken from [21].

Proposition 5.5 (Equi-integrability and moment estimates). Let ζ be a non-
negative Borel function such that µ(ζ2) =

∫

Rd ζ
2 dµ and γ(ζ2) =

∫

Rd ζ
2 dγ are finite.

If Φ(µ,ν) <∞, we have

(

∫

Rd

ζ d |ν|
)2

≤ Φ(µ,ν) γ(ζ2)h
(

µ(ζ2)/γ(ζ2)
)

.

In particular, for every Borel set A ∈ B(Rd) we have

(

|ν|(A)
)2

≤ Φ(µ,ν) γ(A)h
(

µ(A)/γ(A)
)

(5.10)

which in particular yields (γ(Rd) = 1)

(

|ν|(Rd)
)2

≤ Φ(µ,ν)h
(

µ(Rd)
)

.
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If moreover m2(µ) <∞, we can bound the first moment of |ν| by

m1(|ν|) =
∫

Rd

|x| d |ν| ≤
(

Φ(µ,ν)m2(γ)h
(

m2(µ)/m2(γ)
)

)1/2

. (5.11)

Theorem 5.6. For every ν0 ∈ M(Rd;Rd) with m1(|ν0|) < +∞, there exists a
unique solution νt = Rtν0 in the class of weakly continuous maps t 7→ νt ∈ M(Rd;Rd)
with supt∈[0,T ] m1(|νt|) < +∞, for every final time T > 0. When ν0 = w0 γ then
Rtν0 = Rtw0 γ. The map ν0 7→ Rν0 is stable in the following sense: if

νn0⇀
∗ν0 weakly∗ in M(Rd;Rd) with sup

n
m1(|νn0 |) < +∞

then Rtν
n
0⇀

∗
Rtν0 in M(Rd;Rd).

Proof. We divide the proof in three steps.

Step 1. Let us first associate to ν = w γ ∈ M(Rd;Rd) the probability measure

υ :=
1

M

1
√

1 + |x|2
|ν| = 1

M

|w|
√

1 + |x|2
γ ∈ P(Rd) , (5.12)

where the constant M is a renormalization factor such that υ(Rd) = 1. Observe that
if m1(|ν|) =

∫

Rd |x| |w(x)| dγ is finite, then υ ∈ P2(R
d) and

m2(υ) ≤
1

M
m1(|ν|) . (5.13)

We also choose the action density to be φ2(ρ,w) := |w|2/ρ corresponding to h(ρ) = ρ,
and observe that the corresponding functional writes

Φ2(υ,w) =M

∫

Rd

√

1 + |x|2 |w(x)| dγ ≤M
(

|ν|(Rd) +m1(|ν|)
)

. (5.14)

Proposition 5.7. Let us suppose that w ∈ L1
γ(R

d;Rd) with m1(|ν|) < +∞ and
set ν := w γ, υ as in (5.12), wt = Rtw, νt = wt γ, υt = Stυ. Then

|νt|(Rd) ≤ |ν|(Rd) , m1(|νt|) ≤ |ν|(Rd) + 2m1(|ν|) + 4M m2(γ), (5.15)

and for any t > 0, we have

(

|νt|(A)
)2

≤M
(

|ν|(Rd) +m1(|ν|)
)

υt(A) ∀ A ∈ B(Rd) . (5.16)

Proof. The first inequality of (5.15) follows by the L1
γ-contraction property of R.

Since the FP flow contracts the Wasserstein distance by Proposition 5.2 and since γ
is a stationary solution, the triangle inequality for the Wasserstein distance and the
fact that

√

m2(µ) =W2(µ, δ0) yield

√

m2(υt) ≤ W2(υt, γ) +
√

m2(γ) ≤ W2(υ, γ) +
√

m2(γ) ≤
√

m2(υ) + 2
√

m2(γ) .

On the other hand, (5.11) yields

m1(|νt|) ≤
√

m2(υt)
√

Φ2(υt,νt) ≤
(

√

m2(υ) + 2
√

m2(γ)
)

√

Φ2(υ,ν) .
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Here we used the fact that Φ2(υt,νt) ≤ Φ2(υ,ν). This will appear later as a con-
sequence of Theorem 6.1, and is independent of the present result. Combined with
(5.13) and (5.14), this proves the estimate on m1(|νt|).

Applying (5.10) and (5.14), we get (5.16).

Step 2: existence. Let us approximate a given ν0 ∈ M(Rd;Rd) with m1(|ν0|) < +∞
by a sequence νk = wk γ⇀∗ν0 as k → ∞ in M(Rd;Rd) with wk ∈ L2

γ(R
d;Rd)

and m1(|νk|) → m1(|ν0|). We set νkt := wk
t γ with wk

t = Rtw
k so that νkt solves

(5.9). Thanks to Proposition 5.7, we know that the first order moment of νkt are
uniformly bounded. This is sufficient to pass to the limit (up to extraction of a
suitable subsequence) in (5.9) and to find a solution νt which is weakly∗ continuous
in M(Rd;Rd) and satisfies the initial condition in the sense that νt⇀

∗ν0 in M(Rd;Rd)
as t ↓ 0.

Step 3: uniqueness and stability. It follows by a standard duality argument, like
in the case of Equation (5.6). If ν1

t and ν2
t are two weakly continuous solutions of

(5.9), their difference σt := ν1
t − ν2

t solves

∫

Rd

ζT · dσT =

∫ T

0

∫

Rd

(

∂tζt +∆ζt −Dζt ⊗DV −D2V ζt

)

· dσt dt (5.17)

for every T > 0 and ζ ∈ C∞
c ([0, T ]× R

d;Rd). By a mollification technique, it is not
difficult to check that (5.17) also holds for every function ζ ∈ C([0, T ]×R

d;Rd) with
∂tϕ, Dζ and D2ζ continuous and bounded in [0, T ]× R

d.
Next, we introduce a family of smooth convex potentials Vn with bounded deriva-

tives of arbitrary orders, which satisfies a uniform Lipschitz condition

|DVn(x) −DVn(y)| ≤ L |x− y| ∀ x, y ∈ R
d ,

for some positive constant L which is independent of n and such that

Vn → V , DVn → DV , D2Vn → D2V pointwise as n→ ∞ .

For a given η ∈ C∞
c (Rd;Rd), we consider the solution ζt of the time reversed (adjoint)

parabolic equation

∂tζt +∆ζt −Dζt ·DV −D2V Dζt = 0 in (0, T )× R
d , ζT = η .

Using a maximum principle that can be found in [23] and the fact that the first and
second order spatial derivatives of ζ solve an analogous equation, standard parabolic
regularity theory shows that ζ is sufficiently regular to be used as a test function in
(5.17) and satisfies the uniform bound (observe that the second and third derivatives
of Vn are still uniformly bounded)

sup
t,x

|ζn|+ |Dζn| ≤ C < +∞ .

This leads to

∣

∣

∣

∫

Rd

η · dσT
∣

∣

∣
≤ C

∫ T

0

∫

Rd

(

|DV −DVn|+ |D2V −D2Vn|
)

d |σt| dt .

Since the first order moment of |σt| is uniformly bounded, we can pass to the limit
as n → ∞ obtaining

∫

Rd η · dσT = 0. As η is arbitrary, we conclude that ν1
T = ν2

T .
The stability is then a simple consequence of uniqueness.
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6. Action decay along the KFP flow and consequences. We can prove now
our main estimate, which is a refined version of Theorem 2.1, under the assumption
that

The function h is concave and, for some β ∈ [0, 1),

(1− β)hh′′ + 2 β (h′)2 ≤ 0 holds in the sense of distributions.
(6.1)

Notice that (6.1) is equivalent to (3.3) with β := (1− α)/(1 + α).

Theorem 6.1. Assume that (2.1) and (2.3) hold, and let (ρ,w) ∈ L1
γ(R

d,R+)×
L1
γ(R

d,Rd) be such that Φ(ρ,w) <∞. If (6.1) is satisfied, then

Φ(Stρ,Rtw) + 2 β

d
∑

i=1

∫ t

0

Φ(Ssρ , ∂iRsw) e2λ(s−t) ds ≤ e−2λtΦ(ρ,w) ∀ t ≥ 0 .

Proof. We first prove the result with the additional assumptions that 0 < ρmin ≤
ρ ≤ ρmax and |w| ≤ wmax γ a.e. in R

d. Assume that h is of class C2(0,∞). It
follows that ρt = Stρ and wt = Rtw satisfy the same bounds and, for all t > 0, ρt,
∂tρt ∈ W 1,2

γ (Rd) and wt, ∂twt ∈ W 1,2
γ (Rd;Rd). The function φ is of class C2 in the

strip

Q := [ρmin, ρmax]× {w ∈ R
d : |w| ≤ wmax}

and its differential Dφ(ρ,w) can be decomposed as

Dρφ(ρ,w) = g′(ρ) |w|2 , Dwφ(ρ,w) = 2 g(ρ)w .

Since g(ρ) and g′(ρ) are bounded, the differential is also in L2
γ(R

d;Rd+1). As a
consequence, the time derivative of t 7→ Φ(ρt,wt) exists and

d

dt
Φ(ρt,wt) =

∫

Rd

(

g′(ρt) |wt|2∂tρt + 2 g(ρt)wt · ∂twt

)

dγ .

In order to apply (5.3) and (5.7) we have to verify that all components of Dφ(ρt,wt)
are in W 1,2

γ (Rd). We have already seen that they are in L2(Rd). Let us compute their
x-derivative:

D (Dρφ(ρt,wt)) = g′′(ρt)|wt|2 Dρt + 2 g′(ρt)wt ·Dwt ,

D (D
w

iφ(ρt,wt)) = 2 g′(ρt)w
i
tDρt + 2 g(ρt)Dwi

t for any i = 1 , 2 , . . . d .

The above functions are in L2
γ(R

d), since g(ρt), g
′(ρt), g

′′(ρt) and wt are bounded, so
we get

d

dt
Φ(ρt,wt) = −

d
∑

i=1

∫

Rd

〈

D2φ(ρt,wt)(∂iρt, ∂iwt), (∂iρt, ∂iwt)
〉

dγ

− 2

∫

Rd

g(ρt)D
2V wt ·wt dγ .

Recalling (3.4) and the convexity assumption on V , we find

d

dt
Φ(ρt,wt) ≤ −2 β

d
∑

i=1

Φ(ρt, ∂iwt)− 2λΦ(ρt,wt) .
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It follows from Gronwall’s lemma that for all s ∈ (0, t),

e2λtΦ(ρt,wt) + 2 β

d
∑

i=1

∫ t

s

Φ(ρr, ∂iwr) e
2λr dr ≤ e2λs Φ(ρs,ws) .

The result follows by passing to the limit as s ↓ 0 and recalling that φ is continuous
and bounded on Q and ρs, ws converge to ρ, w as s ↓ 0 in L2

γ(R
d) and L2

γ(R
d;Rd)

respectively. The general result for an arbitrary concave function h easily follows by
approximating h by a decreasing family of smooth concave functions in the interval
[ρmin, ρmax]. Finally, the general case ρ ∈ L1

γ(R
d), w ∈ L1

γ(R
d;Rd), without upper

and lower bounds, follows by approximation, using Lemmas 3.3 and 3.5.

We can extend the results of Theorem 6.1 to measure valued initial data.

Corollary 6.2. Assume that (2.1)–(2.4) hold. Let µ ∈ P2(R
d) and ν ∈

M(Rd;Rd) with m1(|ν|) < +∞. Then for every t > 0 we have µt = Stµ = ρt γ,
νt = Rtν = wt γ with ρt ∈ W 1,1

γ (Rd), wt ∈W 1,1
γ (Rd;Rd) if β > 0, and

Φ(ρt,wt) + 2β

n
∑

i=1

∫ t

0

Φ(ρs, ∂iws) e
2λ(s−t) ds ≤ e−2λtΦ(µ,ν | γ) ∀ t > 0 .

Proof. This follows directly from the measure formulation of the KFP flow (Propo-
sition 5.2 and Theorem 5.6).

Let us now consider the entropy functional Ψ(ρ) :=
∫

Rd ψ(ρ) dγ, for a function ψ
as in Section 4.

Theorem 6.3. Let ρ ∈ D(Ψ) with
∫

Rd |x|2 ρ dγ < ∞ and let ρt := Stρ. Then
Ψ(ρt) <∞ and P (ρt) <∞ for every t > 0, and we have

d

dt
Ψ(ρt) = −P (ρt) and

d

dt
P (ρt) + 2λP (ρt) ≤ 0 .

As a consequence, we have

Ψ(ρt) ≤ e−2λtΨ(ρ) , t P (ρt) ≤ (1 + 2λt) e−2λtΨ(ρ) , P (ρt) ≤ e−2λt P (ρ)

for any t ≥ 0 and the following entropy – entropy production inequality, or general-
ized Poincaré inequality, holds

Ψ(ρ) ≤ 1

2λ
P (ρ) , ∀ ρ ∈ D(Ψ) such that

∫

Rd

|x|2 ρ dγ <∞ .

Proof. It is not restrictive to assume that
∫

Rd ρ dγ = 1. We first prove Theorem 6.3
for a function h which grows at least linearly at ∞, and therefore satisfies h(r) ≥ h r
for some constant h > 0. The general result follows by writing h as the limit of a
decreasing sequence of such concave functions hn, observing that the corresponding
actions φn and entropies ψn converge increasingly to φ and ψ respectively.

By (4.1) we know that H(ρ) is finite and therefore we have

∫ ∞

0

I(ρt) dt ≤ H(ρ) <∞ and

∫ ∞

0

|DLψ(ρt)|2
ρt

dγ <∞ ,
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where the second estimate follows from (4.2).
Applying the chain rule for convex functionals in Wasserstein spaces (see for

instance [3, p. 233], we obtain that the map t 7→ Ψ(ρt) is absolutely continuous and

− d

dt
Ψ(ρt) =

∫

Rd

D Lψ(ρt)

ρt
· Dρt
ρt

ρt dγ = P (ρt) .

By combining Theorems 5.4 and 6.1 applied with wt := Dρt and differentiating
with respect to t, we get that − d

dtP (ρt) ≥ 2λP (ρt). All other estimate are easy
consequences that have already been established in Section 1.

7. Contraction of the h-Wasserstein distance and KFP as a gradient
flow. Consider the space Ph,γ(R

d) of probability measures at finite Wh,γ distance
from γ. From (3.1), we know that γ has finite quadratic moments and, as a con-
sequence of [20, Theorem 5.9], any measure in Ph,γ(R

d) also has finite quadratic
moments. The same result holds for moments of higher order.

Theorem 7.1. For every σ, η ∈ Ph,γ(R
d), we have

Wh,γ(Stσ , Stη) ≤ e−λtWh,γ(σ, η) ∀ t ≥ 0 .

Proof. It is a straightforward consequence of Corollary 6.2 and Theorem 3.8.

Theorem 7.2. For every µ ∈ Ph,γ(R
d), we have

1

2

d

dt
W 2
h,γ(Stµ, σ) +

λ

2
W 2
h,γ(Stµ, σ) + Ψ(Stµ | γ) ≤ Ψ(σ | γ) ∀ σ ∈ D(Ψ) . (7.1)

Proof. Let us first notice that since Ph,γ(R
d) is stable under the action of the

semigroup (St), it is sufficient to prove (7.1) only at t = 0, under the assumption
that µ writes as Sτ µ̃, for some τ > 0. We make the additional assumption on the
function h that there exists some h > 0 for which

h(r) ≥ h r ∀ r > 0 . (7.2)

This assumption will be removed later in the proof. Let ε > 0 fixed and (ρs,ws) ∈
L1(Rd)× L1(Rd,Rd), s ∈ [0, 1], be an admissible curve connecting σ to µ such that

W 2
h,γ(µ, σ) ≤ EΦ(ρ

s,ws) ≤W 2
h,γ(µ, σ) + ε ,

where EΦ(ρ
s,ws) :=

∫ 1

0
Φ(ρs,ws) ds. For any κ > 0, we take ρsκ = ρs + κ ≥ κ. Since

h is non decreasing, we still have

EΦ(ρ
s
κ,w

s) ≤W 2
h,γ(µ, σ) + ε . (7.3)

Notice that, thanks to [21, Theorem 5.17] (also see Theorem 3.8), it is possible to
assume that

EΦ(ρ
s
κ,w

s) = Φ(ρsκ,w
s) (7.4)

is constant with respect to s ∈ [0, 1]. For t > 0, we set
{

ρs,tκ = Sstρ
s
κ ,

ws,t
κ = Rstw

s − tDρs,tκ .
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It is clear that (ρs,tκ ,ws,t
κ ) connects σ+κγ to St(µ+κγ) = Stµ+κγ. Note that, thanks

to the maximum principle, we have ρs,tκ ≥ κ. We claim that it is admissible. Indeed,

∂sρ
s,t
κ = Sst(∂sρ

s
κ) + t ∂τ (Sτρ

s
κ)|τ=st

= −Sst(∇γ ·ws) +∇γ · (tDρs,tκ ) ,

since (ρsκ,w
s) is admissible. Hence,

∂sρ
s,t
κ = ∇γ ·

(

−Rstw
s + tDρs,tκ

)

= −∇γ · (ws,t
κ ) .

It follows from the definition of W 2
h,γ that

W 2
h,γ(Stµ+ κγ, σ + κγ) ≤ EΦ(ρ

s,t
κ ,ws,t

κ ) ,

hence, with (7.3) and (7.4), we obtain

1

2

[

W 2
h,γ(Stµ+ κγ, σ + κγ)−W 2

h,γ(µ, σ)
]

≤ 1

2

[

EΦ(ρ
s,t
κ ,ws,t

κ )− EΦ(ρ
s
κ,w

s)
]

+
ε

2
.

(7.5)
By definition of EΦ, we have

EΦ(ρ
s,t
κ ,ws,t

κ ) =

∫ 1

0

Φ
(

Sstρ
s
κ,Rstw

s − tDρs,tκ
)

ds ,

where

Φ
(

Sstρ
s
κ,Rstw

s − tDρs,tκ
)

=

∫

Rd

|Rstw
s − tDρs,tκ |2

h(ρs,tκ )
dγ

=

∫

Rd

|Rstw
s|2

h(ρs,tκ )
dγ − 2t

∫

Rd

Dρs,tκ ·Rstw
s

h(ρs,tκ )
dγ + t2

∫

Rd

|Dρs,tκ |2

h(ρs,tκ )
dγ

≤
∫

Rd

|Rstw
s|2

h(ρs,tκ )
dγ − 2t

∫

Rd

Dρs,tκ ·ws,t
κ

h(ρs,tκ )
dγ ,

and hence,

EΦ(ρ
s,t
κ ,ws,t

κ ) ≤ EΦ(Sstρ
s
κ,Rstw

s)− 2t

∫ 1

0

∫

Rd

Dρs,tκ ·ws,t
κ

h(ρs,tκ )
dγ ds . (7.6)

Lemma 7.3. If (7.2) holds, then we have

∫ 1

0

∫

Rd

Dρs,tκ ·ws,t
κ

h(ρs,tκ )
dγ ds = Ψ(Stµ+ κγ | γ)−Ψ(σ + κγ | γ) . (7.7)

Proof. Recall that ρs,tκ = Sstρ
s
κ, with ρ

s
κ ∈ L1

γ(R
d). Then, acting as in the proof

of Proposition 4.2, we get that

∫ 1

τ

∫

Rd

|Dρs,tκ |2

ρs,tκ
dγ ds < ∞ ∀ τ > 0 . (7.8)
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The assumption (7.2) on h then leads to

∫ 1

τ

∫

Rd

|DLψ(ρ
s,t
κ )|2

ρs,tκ
dγ ds ≤ 1

h2

∫ 1

τ

∫

Rd

|Dρs,tκ |2

ρs,tκ
dγ ds < ∞ .

The next step consists in proving that

∫ 1

τ

∫

Rd

|ws,t
κ |2

ρs,tκ
dγ ds < ∞ . (7.9)

Note that ρs,tκ ≥ κ and the concavity of h implies that

h(ρs,tκ ) ≤ h(κ)

κ
ρs,tκ ,

hence

∫ 1

τ

∫

Rd

|Rstw
s|2

ρs,tκ
dγ ds ≤ h(κ)

κ

∫ 1

τ

∫

Rd

|Rstw
s|2

h(ρs,tκ )
dγ ds

≤ h(κ)

κ

∫ 1

τ

∫

Rd

|ws|2
h(ρsκ)

dγ ds <∞

since the KFP flow decreases the action. The bound (7.9) immediately follows from
the previous one and (7.8). As a consequence, we can apply the chain rule in Wasser-
stein space, which implies that the function s 7→ Ψ(ρs,tκ ) is absolutely continuous on
[τ, 1] and, for all s ∈ [τ, 1],

d

ds

∫

Rd

ψ(ρs,tκ ) dγ =

∫

Rd

DLψ(ρ
s,t
κ )

ρs,tκ
· w

s,t
κ

ρs,tκ
ρs,tκ dγ =

∫

Rd

Dρs,tκ ·ws,t
κ

h(ρs,tκ )
dγ . (7.10)

Integrating (7.10) on [τ, 1] and letting τ go to 0 finally leads to (7.7).

Let us go back to the proof of Theorem 7.2. We put (7.5) and (7.6) together and
obtain

1

2

[

W 2
h,γ(Stµ+ κγ, σ + κγ)−W 2

h,γ(µ, σ)
)

≤ 1

2
[EΦ(Sstρ

s
κ,Rstw

s)− EΦ(ρ
s
κ,w

s)] + t [Ψ(σ + κγ | γ)−Ψ(Stµ+ κγ | γ)] + ε

2
.

We then use the main estimate in Theorem 6.1 with β = 0 and (7.4) to write

1

2
[EΦ(Sstρ

s
κ,Rstw

s)− EΦ(ρ
s
κ,w

s)] ≤ −1

2
Iλ(t)EΦ(ρ

s
κ,w

s)

≤ −1

2
Iλ(t)W

2
h,γ(Stµ+ κγ, σ + κγ) ,

where Iλ(t) :=
∫ 1

0

(

1− e−2λts
)

ds. It follows that

1

2

[

W 2
h,γ(Stµ+ κγ, σ + κγ)−W 2

h,γ(µ, σ)
]

+
1

2
Iλ(t)W

2
h,γ(Stµ+ κγ, σ + κγ)

≤ t [Ψ(σ + κγ | γ)−Ψ(Stµ+ κγ | γ)] + ε

2
.
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If we first let ε and then κ go to 0 in the above estimate, we get that

1

2

[

W 2
h,γ(Stµ, σ)−W 2

h,γ(µ, σ)
]

+
1

2
Iλ(t)W

2
h,γ(Stµ, σ) ≤ t [Ψ(σ | γ)−Ψ(Stµ | γ)]

(7.11)
as soon as h satisfies the assumption (7.2). Now, any concave and non decreas-
ing function h can be decreasingly approched by a sequence (hn) satisfying (7.2),
and the corresponding entropies converge increasingly. Then, with Theorem 3.7, In-
equality (7.11) turns out to be valid for any general h. To complete the proof of
Theorem 7.2, it just remains to divide (7.11) by t and let t go to 0.
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