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Abstract

A well-known method of transferring the population of a quantum system from an eigenspace of the free Hamiltonian to another
is to use a periodic control law with an angular frequency equal to the difference of the eigenvalues. For finite dimensional
quantum systems, the classical theory of averaging provides a rigorous explanation of this experimentally validated result.
This paper extends this finite dimensional result, known as the Rotating Wave Approximation, to infinite dimensional systems
and provides explicit convergence estimates.
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1 Introduction

1.1 Effective control of quantum systems

The state of a quantum system evolving on a finite di-
mensional Riemannian manifold Ω is described by its
wave function, that is, a point in the unit sphere of
L2(Ω,C). In the absence of interaction with the environ-
ment and with a suitable choice of units, the time evo-
lution of the wave function is given by the Schrödinger
equation

i
∂ψ

∂t
= −

1

2
∆ψ + V (x)ψ(x, t),

where ∆ is the Laplace-Beltrami operator on Ω (with
suitable boundary conditions) and V : Ω → R is a real
function (usually called potential) accounting for the
physical properties of the system. When subjected to an
excitation by an external electric field (e.g. a laser), the
Schrödinger equation reads

i
∂ψ

∂t
= −

1

2
∆ψ + V (x)ψ(x, t) + u(t)W (x)ψ(x, t), (1)

where W : Ω → R is a real function accounting for the
physical properties of the laser and u is a real function
of the time accounting for the intensity of the laser.

⋆ This paper was not presented at any IFAC meeting.
Tel: + 33 3 83 68 45 81, Fax: + 33 3 83 68 45 34

Email address: Thomas.Chambrion@inria.fr (Thomas
Chambrion).

A natural question, with many practical implications, is
whether there exists a control u that steers the quantum
system from a given initial wave function to a given tar-
get wave function (controllability issue) and, more im-
portant, how to build this control law (effective design
of controls).

Considerable effort has been expended by different com-
munities on studying the controllability of (1). We refer
to Nersessyan [Ner10], Beauchard & Mirrahimi [BM09],
Mirrahimi [Mir09], Boscain & Laurent [BL10] and
Boscain, Caponigro, Chambrion & Sigalotti [BCCS12]
for a description of the known theoretical results con-
cerning the existence of controls steering a given source
to a given target. As proved by Nersessyan [Ner10] and
Mason & Sigalotti [MS10], approximate controllability
is a generic property for systems of the type (1).

A number of effective control algorithms have been ob-
tained by various authors, see among many others War-
ren, Rabitz & Dahleh [WRD93], Blümel, Fishman &
Smilansky [BFS86], Ohtsuki, Kono&Fujiyama [OKF98]
or Belhadj, Salomon & Turinici [BST08]. Most of the
controls used in practice exhibit a remarkable pattern of
periodic shape, with a frequency corresponding to the
transitions of the quantum system (see for instance Sa-
lomon, Dion & Turinici [SDT05]).

1.2 Averaging techniques in quantum mechanics

The fact that a small amplitude periodic excitation with
suitable frequency is sufficient, in general, to induce a
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transfer of quantum population from one energy level to
another has prompted much attention.

The situation is now well understood for quantum sys-
tems with finitely many energy levels. These systems ap-
pear, for instance, as truncations of infinite dimensional
systems. In this case, system (1) reads ẋ = (A + uB)x
where A and B are N ×N skew-hermitian matrices. Let
us briefly recall the method of the proof.

The mathematical concept of averaging of dynami-
cal systems was introduced more than a century ago
and has now developed into a well-established the-
ory, see for instance the books of Guckenheimer &
Holmes [GH83], Bullo & Lewis [BL05] or Sanders, Ver-
hulst & Murdock [SVM07]. It was observed that, for
regular F and small ε, the trajectories of the system
ẋ = εF (x, t, ε) remain ε close, for time of order 1/ε, to

the trajectories of the average system ẋ = F̃ (x) where

F̃ (x) = limt→∞ 1/t
∫ t

0
F (x, t, 0).

In quantum physics, this procedure has been known as
the rotating wave approximation for several decades, see
Fox & Eidson [FE87] or Vandersypen & Chuang [VC05].
Assuming without loss of generality that A is diagonal
with eigenvalues iλ1, . . . , iλN , define, for every n in N,
yn : t 7→ e−tAxn where xn is the solution of ẋ = (A +
u∗(t)B/n)x. The mapping yn is absolutely continuous
and satisfies ẏn = (u∗(t)/n)e−AtBeAtyn. The conclusion
follows from standard averaging theory by computing

the average matrix limt→∞ 1/(nt)
∫ t

0
u∗(τ)e−AτBeAτdτ

whose all entries are zero but maybe entry (j, k) if u∗ is
2π/|λj − λk|-periodic.

By contrast with this finite dimensional result, the situ-
ation is much more intricate when the ambiant space has
infinite dimension and the problem involves unbounded
operators, which is precisely the case for the Schrödinger
equation (1) when dimΩ ≥ 1 and A = i∆/2. The above
averaging method fails because of serious regularity is-
sues. For instance, the mapping t 7→ etA is no longer
Lipschitz continuous. If moreover B is unbounded, that
is, if function W in (1) is not in L∞(Ω,R), then, for
any given t, the mapping x 7→ e−tABetAx is not even
continuous: this is what prevents the direct application
of the averaging results in Banach spaces presented by
Artstein [Art10]. For these reasons, most of the available
averaging results for infinite dimensional quantum sys-
tems deal with constant controls only, as in the papers
of Kummer [Kum71] or Scherer [Sch94].

1.3 Framework and notation

We first reformulate the problem (1) in a more abstract
framework. In a separable Hilbert spaceH endowed with
norm ‖ · ‖ and Hilbert product 〈·, ·〉, we consider the

following evolution problem:

dψ

dt
= (A+ u(t)B)ψ(t) u(t) ∈ U (2)

where (A,B,U) satisfies Assumption 1.

Assumption 1 (A,B,U) is a triple where (A,B) is a
pair of linear operators and U is a subset of R such that

(1) for every n in N, U ⊂ nU ;
(2) A is skew-adjoint with domain D(A);
(3) there exists an Hilbert basis (φk)k∈N of H and a

family (iλk)k∈N in iR such that Aφk = iλkφk for
every k in N;

(4) B is skew-symmetric, possibly unbounded with do-
main D(B);

(5) for every k in N, φk belongs to D(B);
(6) for every u in U ,A+uB is essentially skew-adjoint.

Assumption 1.6 ensures that, for every constant u in U ,
A+uB generates a group of unitary propagators. Hence,
for every initial time t0 in R and initial condition ψ0 in
H , for every piecewise constant control u taking value
in U , we can define the solution t 7→ Υu(t, t0)ψ0 of (2)
taking value ψ0 at time t0. We simply note Υu(t, t0)ψ0 =
Υu

t ψ0 when t0 = 0.

Remark 1 To the best of the author’s knowledge, in the
general frame of Assumption 1, no definition of solu-
tions of (2) is available for controls that are not piece-
wise constant. With some extra regularity assumptions
(for instance, when B is bounded, see Section 3.4), one
can define the solution of (2) for more general controls.

1.4 Main result

Definition 1 Let (A,B,U) satisfy Assumption 1. A
point (j, k) of N2 is a non-degenerate transition of
(A,B) if (i) j 6= k, (ii) 〈φj , Bφk〉 6= 0 and (iii) for every
l,m in N, |λj − λk| = |λl − λm| implies {j, k} = {l,m}
or {j, k} ∩ {l,m} = ∅ or 〈φl, Bφm〉 = 0.

Theorem 1 Let (A,B,U) satisfy Assumption 1, (j, k)
a non-degenerate transition of (A,B) and u∗ : R+ →
U be a piecewise constant function, periodic with period

T = 2π
|λj−λk|

. Assume that

∫ T

0

u∗(τ)ei(λl−λm)τdτ = 0 for

every l,m such that |λl − λm| ∈ (N \ {1})|λj − λk| and
〈φl, Bφm〉 6= 0 and {l,m} ∩ {j, k} 6= ∅.

If

∫ T

0

u∗(τ)ei(λj−λk)τdτ 6= 0, then there exists T ∗ > 0

such that the sequence

(∣∣∣∣
〈
φk,Υ

u∗

n

nT∗(φj)

〉∣∣∣∣
)

n∈N

tends

to 1 as n tends to infinity.
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1.5 Content of this paper

This paper comprises three parts. The first one (Section
2) is concerned with a finite dimensional version of The-
orem 1. As already mentioned, the convergence result is
classical. A time reparametrization (Section 2.2) is in-
troduced, which leads to explicit estimates better than
those currently available in the literature.

The second part (Section 3) contains a general proof of
Theorem 1, valid in the general framework of Assump-
tion 1. It provides the first available time estimates for
the approximate controllability of general bilinear quan-
tum systems when the free Hamiltonian admits a dense
family of eigenvectors.

Finally, Section 4 presents an extension of Theorem 1
to the case of the Morse quantum oscillator. The main
feature of this system is that the spectrum of the free
Hamiltonian has a continuous part.

2 Finite dimensional estimates

2.1 Finite dimensional framework

Let N be an integer and A(N), B(N) be two skew-
adjoint matrices of order N . Without lost of generality,
we may assume that A(N) is diagonal with eigenval-
ues iλ1, iλ2, . . . , iλN . We denote with (φj)1≤j≤N the
canonical basis of CN , with 〈·, ·, 〉 the canonical Hermi-
tian product of CN , with

(
bjk = 〈φj , B(N)φk〉

)
1≤j,k≤N

the entries of B(N) and with π
(N)
l : CN → CN the

projection π
(N)
l : x 7→

∑
m≤l〈φm, x〉φm on the first l

components in CN .

For every piecewise constant function u : R → R, we
denote with Xu

(N)(t, s) the propagator between times s

and t of the system

ẋ = (A(N) + u(t)B(N))x(t). (3)

In other words, t 7→ Xu
(N)(t, s)x0 is the unique solution

of (3) with initial condition x(s) = x0. It is classical that,
for every t, s in R, for every x0 in CN , the mapping u 7→
Xu

(N)(t, s)x0 admits a Lipschitz-continuous continuation

to L1
loc(R,R).

The aim of this section is to prove the following result.

Proposition 2 Let u∗ : R+ → R be a locally integrable
function. Assume that λ1 6= λ2 and that, for every l,m ≤
N , |λl − λm| = |λ2 − λ1| implies {l,m} = {1, 2} or
blm = 0 or {l,m} ∩ {1, 2} = ∅.

Assume that u∗ is periodic with period T = 2π
|λ2−λ1|

and

that

∫ T

0

u∗(τ)ei(λl−λm)τdτ = 0 for every {l,m} such that

{l,m} ∩ {1, 2} 6= ∅ and λl − λm ∈ (Z \ {±1})(λ1 − λ2)
and blm 6= 0.

If

∫ T

0

u∗(τ)ei(λ2−λ1)τdτ 6= 0, then, for every n inN, there

exists T ∗
n in (nT ∗ − T, nT ∗ + T ) such that

1− |〈φ2, X
u
n

(N)(T
∗
n , 0)φ1〉|

(1 + 2K‖B(N)‖)I
≤

(1 + C)‖π
(N)
2 B(N)‖

n
, (4)

with

T ∗ =
πT

2|b1,2|
∣∣∣
∫ T

0
u∗(τ)ei(λ1−λ2)τdτ

∣∣∣
, I =

∫ T

0

|u∗(τ)|dτ,

K =
IT ∗

T
,C = sup

(j,k)∈Λ

∣∣∣∣∣∣

∫ T

0
u∗(τ)ei(λj−λk)τdτ

sin
(
π

|λj−λk|
|λ2−λ1|

)

∣∣∣∣∣∣
,

where Λ is the set of all pairs (j, k) in {1, . . . , N}2 such
that bjk 6= 0 and {j, k} ∩ {1, 2} 6= ∅ and |λj − λk| /∈
Z|λ2 − λ1|.

Corollary 3 With the notations of Proposition 2,

|〈φ2, X
u
n

(N)(nT
∗, 0)φ1〉| tends to 1 as n tends to infinity.

The convergence result (Corollary 3) is classical. The
novel element here is that the bilinear structure allows
us to give explicit estimates (4) for the convergence rate.

Most of the rest of this section is devoted to the proof
of Proposition 2. A technical time reparametrization
(Section 2.2) is introduced. The main ingredient of the
proof is an averaging procedure (Section 2.3), that is
performed first on piecewise constant controls and then
extended to irregular controls. Finally, we introduce the
notion of efficiency in Section 2.4.

2.2 Time reparametrization

We note PC the set of the piecewise constant func-
tions for which there exist two sequences (uj)1≤j≤p and
(tj)1≤j≤p with value in (0,+∞) such that

u =
∑

1≤j≤p+1

ujχ[τj ,τj+tj),

where χ is the characteristic function and the sequence
(τj)1≤j≤p+1 is defined by induction: τ1 = 0, τj+1 = τj +
tj . An element u of PC will be denoted (uj , tj)1≤j≤p.
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The involutary mapping P : (uj , tj)1≤j≤p ∈ PC 7→
(1/uj, ujtj)1≤j≤p ∈ PC can be used as a time

reparametrization to replace the system (3) by the
control system in CN

dx

dt
= (u(t)A(N) +B(N))x(t), (5)

whose propagator between time s and t will be denoted
with X̌u

(N)(t, s).

Proposition 4 For every x0 in CN and every u in PC,

X̌Pu
(N)(

∫ t

0
u(τ)dτ , 0)x0 = Xu

(N)(t, 0)x0.

Proof: This follows from the equality et(A
(N)+uB(N)) =

etu(
1
u
A(N)+B(N)), valid on every interval where u is con-

stant. 2

2.3 Averaging procedure

Let u∗ be a non vanishing piecewise constant function,
T -periodic, as in the hypotheses of Proposition 2. For
every n in N, define the non-vanishing T -periodic func-

tion un = u∗/n. For every n in N,
∫ nT

0
|un(τ)|dτ =∫ T

0
|u∗(τ)|dτ .

We perform now the time reparametrization set out

in Section 2.2. The function t 7→
∫ t

0
|un(τ)|dτ is non-

decreasing. We denote with vn its reciprocal function

and define also I =
∫ T

0 |u
∗(τ)|dτ . For every t in R+,

vn (t+ I/n) = vn(t) + T and P|un| is the I/n periodic
derivative (defined almost everywhere) of vn.

Fix x0 in CN and note with t 7→ xn(t) the solution of

ẋ = (A(N) + un(t)B
(N))x(t) (6)

with initial condition x(0) = x0.

The set [0, T ] can be written as a finite union of disjoint
intervals

[0, T ] = J+
1 ∪ J−

1 ∪ . . . ∪ J+
p ∪ J−

p ,

such that u∗ takes positive (respectively, negative) val-
ues on J+ = ∪p

l=1J
+
l (respectively, J− = ∪p

l=1J
−
l ).

Defining the sets G+
n = v

[−1]
n (J+) = {l ∈ R+|∃s ∈

J+,
∫ s

0
|un(τ)|dτ = l} and G−

n = v
[−1]
n (J−) = {l ∈

R+|∃s ∈ J−,
∫ s

0
|un(τ)|dτ = l}, we obtain the dynamics

of yn = xn ◦ vn, valid for almost every t:

dyn
dt

=

{
(P(|un|)(t)A(N) +B(N))yn(t) if t ∈ G+

n

(P(|un|)(t)A(N) −B(N))yn(t) if t ∈ G−
n

(7)

Finally, for every t, we define zn(t) = e−vn(t)Ayn(t)
(note that, for every t, for every l in N, |〈φl, zn(t)〉| =
|〈φl, yn(t)〉|), and the time varying N ×N matrix Mn

Mn : t 7→ sg(un ◦ vn)e
−vn(t)A

(N)

B(N)evn(t)A
(N)

.

From (7), we deduce the dynamics of zn, valid for almost
every t in G+

n ∪G−
n :

dzn
dt

=Mn(t)zn(t). (8)

We note Zn
t the propagator associated with (8). Note

that, for every k, the mapping t 7→ 〈φk, zn〉 is Lipschitz
continuous with Lipschitz constant ‖Bφk‖.

LetM † be the constantN×N matrix whose entries, for
1 ≤ j, k ≤ N , are defined by

m†
j,k =

bj,k
I

∫ I

0

exp (i(λj − λk)v
∗(τ)) dτ

if T (λj − λk) ∈ 2πZ and m†
j,k = 0 if T (λj − λk) /∈

2πZ. Define the N × N matrix Hn(t), with entries
(hnjk(t))1≤j,k≤N , by Hn(t) =Mn(t)−M †.

Lemma 5 For every t inR+, for every n inN, for every
j, k ≤ N such that |λj − λk| /∈ Z|λ2 − λ1|,

∣∣∣∣
∫ t

0

hnjk(τ)dτ

∣∣∣∣ ≤
|bjk|

n




∣∣∣∣∣∣

∫ T

0 u∗(τ)eiτ(λj−λk)dτ

sin
(
π

λj−λk

λ2−λ1

)

∣∣∣∣∣∣
+ I


 .

(9)
For every t in R+, for every n in N, for every j, k ≤ N
such that {j, k} 6= {1, 2} and |λj − λk|/|λ2 − λ1| ∈ Z,

∣∣∣∣
∫ t

0

hnjk(τ)dτ

∣∣∣∣ ≤
2|bjk|I

n
. (10)

Proof:For every t, define the integer s = ⌊ tn
I ⌋. For every

j, k, n, t, we have

∣∣∣∣∣

∫ t

sI/n

sg(un ◦ vn)e
i(λj−λk)vn(τ)dτ

∣∣∣∣∣ ≤
I

n
.
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For every j, k such that T (λj − λk) /∈ 2πZ,

∣∣∣∣∣

∫ sI/n

0

sg(un ◦ vn)e
i(λj−λk)vn(τ)dτ

∣∣∣∣∣

≤

∣∣∣∣∣

s∑

m=1

∫ I/n

0

sg(un ◦ vn)e
i(λj−λk)(vn(τ)+mT )dτ

∣∣∣∣∣

≤

∣∣∣∣∣

∫ I/n

0

sg(un ◦ vn)e
i(λj−λk)vn(τ)

s∑

m=1

ei(λj−λk)mTdτ

∣∣∣∣∣

≤
1

n




2
∣∣∣
∫ T

0u
∗(τ)ei(λj−λk)τdτ

∣∣∣
|1− exp(iT (λj − λk))|



 .

If T (λj − λk) ∈ 2πZ, then

s∑

m=1

∫ I/n

0

sg(un◦ vn)e
i(λj−λk)(vn(τ)+mT )dτ

= s

∫ I/n

0

sg(un◦ vn)e
i(λj−λk)vn(τ)dτ

=
s

n

∫ I

0

sg(u∗◦ v∗)ei(λj−λk)v
∗(τ)dτ.

Hence
∣∣∣∣∣

∫ sI/n

0

sg(un ◦ vn)e
i(λj−λk)vn(τ)dτ

−
t

I

∫ T

0

u∗(τ)ei(λj−λk)τdτ

∣∣∣∣∣ ≤
I

n
. 2

Recall that, for every n in N and every t ≥ 0,

żn =M †zn +Hn(t)zn,

or, using the variation of the constant formula,

zn(t) = etM
†

zn(0) +

∫ t

0

e(t−s)M†

Hn(s)zn(s)ds.

Integrating by part, we get for every t ≥ 0,

zn(t) = etM
†

zn(0) +

[
e(t−s)M†

(∫ s

0

Hn(τ)dτ

)
zn(s)

]t

0

+

∫ t

0

M †e(t−s)M†

(∫ s

0

Hn(τ)dτ

)
zn(s)ds

−

∫ t

0

e(t−s)M†

(∫ s

0

Hn(τ)dτ

)
żn(s)ds. (11)

The equalityXun

(N)(t, 0) = etA
(N)

◦Zun

(N)(v
[−1]
n (t), 0) gives

estimates for the convergence of the propagators Xun :

for every n in N, for every t ≤ v
[−1]
n (K), for every x0 in

CN , (I, K and C are defined as in Proposition 2)

‖Xun

(N)(t, 0)x0 − etA
(N)

ev
[−1]
n (t)M†

x0‖

I(C + 1)‖M †‖

≤
1 +K(‖M †‖+ sups≤t ‖B

(N)Xun

(N)(s, 0)x0‖)

n
, (12)

or

‖Xun

(N)(t, 0)− etA
(N)

ev
[−1]
n (t)M†

‖

I(C + 1)‖B(N)‖
≤

1 + 2K‖B(N)‖

n
. (13)

Projecting (11) on the two first components of CN , we
get

∥∥∥π(N)
2 zn(t)− π

(N)
2 etM

†

zn(0)
∥∥∥

≤

∥∥∥∥π
(N)
2

∫ t

0

Hn(τ)dτ

∥∥∥∥ + t
∥∥∥π(N)

2 M †
∥∥∥
∥∥∥∥π

(N)
2

∫ t

0

Hn(τ)dτ

∥∥∥∥

+t

∥∥∥∥π
(N)
2

∫ t

0

Hn(τ)dτ

∥∥∥∥ ‖B(N)‖. (14)

Note that |〈φ2, eKM†

φ1〉| = 1. Equation (4) follows from
(14) with t = K and

T ∗
n = vn(K) = v∗


 nπI

2|b1,2|
∣∣∣
∫ T

0
u∗(τ)ei(λ2−λ1)τdτ

∣∣∣


 .

Knowing that v∗ is non-decreasing and v∗(lI) = lT for
every l inN, we deduce that, for every n inN, nT ∗−T ≤
T ∗
n ≤ nT ∗ + T , with T ∗ defined as in the statement of

Proposition 2.

Note finally that, for every s, t in R such that s ≤ t,

∣∣|〈φ2, xn(t)〉| − |〈φ2, xn(s)〉|
∣∣ ≤ ‖Bφ2‖

n

∫ t

s

|u(τ)dτ.

This completes the proofs of Proposition 2 and Corol-
lary 3 in the case where u∗ is a non vanishing piecewise
constant function.

If u∗ is a locally integrable T -periodic function, let
(u∗,l)l∈N be a sequence of non-vanishing piecewise
constant T -periodic functions converging to u∗ in the
distribution sense with ‖u∗,l‖L1([0,T ]) ≤ |u|([0, T ])

for every l. We define, for every n, un,l = u∗,l

n ,

vn,l : t 7→
∫ t

0
P|un,l|(τ)dτ and Mn,l(t) = sg(un,l ◦

vn,l(t))e
−vn,l(t)AB(N)evn,l(t)A. For every t, the matrix

5



∫ t

0
Ml,l(τ)dτ tends to tM †, uniformly with respect to t

in a compact set, as l tends to infinity. Hence the solu-
tions of ẋ = Ml,l(t)x tend to the solutions of ẋ = M †x,
uniformly with respect to the time in a compact inter-
val, as l tends to infinity. That concludes the proof of
Proposition 2.

2.4 Efficiency of the transfer

Continuing with the notation of the last paragraph, for
every non identically zero, 2π

|λj−λk|
-periodic function u∗,

we define the efficiency of u∗ with respect to the transi-
tion (j, k) as the real quantity:

E(j,k)(u∗) =

∣∣∣∣
∫ 2π

|λj−λk|

0 u∗(τ)ei(λj−λk)τdτ

∣∣∣∣
∫ 2π

|λj−λk|

0 |u∗(τ)|dτ

.

For every u, 0 ≤ E(j,k)(u) ≤ 1. For every {j, k},
supuE

(j,k)(u) = 1. The supremum is reached with a
periodic sum of Dirac masses.

An intuitive explanation of the efficiency could be the
following: asymptotically, the L1 norm of the control
needed to induce the transition between levels j and
k using periodic controls of the form un is equal to
π/(2|bj,k|E(j,k)(u∗)).

The system (2) being given, the design of an effective
control law fulfilling the hypotheses of Theorem 1 is an
important practical issue. To generate a transfer from
level j to level k, one should choose a control u such that
E(j,k)(u) be as large as possible and E(l1,l2)(u) be zero
(or arbitrarily close to zero) for every l1, l2 such that
λl1 −λl2 ∈ (λj −λk)Z. The algorithm we have described

in [BCCS12] allows us to build u such that E(j,k)(u) >
0.43, with E(l1,l2)(u) arbitrarily small for every finite
number of pairs {l1, l2} satisfying {l1, l2} 6= {j, k} and
|λl1 − λl2 | 6= |λj − λk|. Some other examples, including
also examples of ineffective controls with zero efficiency,
are studied in [BCC11b].

3 Infinite dimensional estimates

We come back to the general case of Assumption 1. To
ensure that the system (2) is well-posed, we consider
only piecewise constant functions u∗. The method of the
proof is directly inspired by [BCCS12]: the original infi-
nite dimensional system (2) is approached by a suitable
Galerkin approximation, which allows us to apply the
finite dimensional results of Section 2.

3.1 Galerkin approximation

Let (A,B,U) satisfy Assumption 1. We define bjk =
〈φj , Bφk〉 for j, k in N. For every N in N, we define πN :

ψ ∈ H 7→
∑

j≤N 〈φj , ψ〉φj ∈ H and the compressions

A(N) = πN ◦ A ◦ πN and B(N) = πN ◦ B ◦ πN . Note
that A(N) and B(N) are finite rank operators defined in
an infinite dimensional space. With an obvious abuse of
notation, we extend the finite dimensional propagator
Xu

(N) defined in Section 2.1 to the infinite dimensional

space H .

Let u∗ : R → U , j, k be given as in the hypotheses of
Theorem 1. Up to a reordering, we may assume j = 1
and k = 2 without loss of generality.

Define

K =
π

2|b12|

1

Eff (1,2)(u∗)
.

Fix ε > 0. Since φ1 and φ2 belong to the domain of B,
the sequences (b1,l)l∈N and (b2,l)l∈N are in ℓ2. Hence,
there exists N in N such that ‖π2B(1 − πN )‖ = ‖(1 −
πN )Bπ2‖ < ε/K.

Consider system (2) with control un := u∗/n in projec-
tion on span(φ1, . . . , φN ):

πN
d

dt
Υun

t φ1 = (A(N) + un(t)B
(N))Υun

t φ1

+un(t)πNB(1 − πN )Υun

t φ1. (15)

From the variation of the constant, we get

πNΥun

t φ1 = Xun

(N)(t, 0)φ1

+

∫ t

0

un(s)X
un

(N)(t, s)πNB(1 − πN )Υun

t φ1ds. (16)

Project (16) on span(φ1, φ2), and recall that πNπ2 =
π2πN = π2 for N ≥ 2:

π2Υ
un

t φ1 = π2X
un

(N)(t, 0)φ1

+

∫ t

0

un(s)π2X
un

(N)(t, s)πNB(1− πN )Υun

t φ1ds. (17)

Define, for every t, s in R, the bounded linear mapping
[π2, X

(N)(t, s)] := π2 ◦X
un

(N)(t, s)−X
un

(N)(t, s)◦π2. Equa-

tion (17) reads

π2Υ
un

t φ1 − π2X
un

(N)(t, 0)φ1 =

−

∫ t

0

un(s)X
un

(N)(t, s)π2B(1− πN )Υun

t φ1ds

+

∫ t

0

un(s)[π2, X
un

(N)(t, s)]πNB(1− πN )Υun

t φ1ds. (18)

3.2 Estimates of commutators

Extend the definition of M † of Section 2.3 by M †φj =
0 for j > N and define the linear operator En

N (t) :=
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Xun

(N)(t, 0)−e
v[−1](t)M†

. Since the commutator [π2,M
†] =

π2M
† −M †π2 vanishes, we have, for every t in R,

‖[π2, X
un

(N)(t, 0)]‖= ‖[π2, e
v[−1](t)M†

+ En
(N)(t)]‖

= ‖[π2, E
n
(N)(t)]‖ ≤ 2‖En

(N)(t)‖.

Note also that, for every t in R,

‖[π2, X
un

(N)(0, t)]‖= ‖Xun

(N)(0, t)[X
un

(N)(t, 0), π2]X
un

(N)(0, t)‖

≤ 2‖En
(N)(t)‖.

For every s, t in R,

[π2, X
un

(N)(t, s)]

= π2X
un

(N)(t, 0)X
un

(N)(0, s)−Xun

(N)(t, 0)X
un

(N)(0, s)π2

=Xun

(N)(t, 0)[π2,X
un

(N)(0, s)] + [π2, X
un

(N)(t, 0)]X
un

(N)(0, s).

Finally, we get, for every (s, t) in R, for every n,N in N.

∥∥∥
[
π2, X

un

(N)(t, s)
]∥∥∥ ≤ 4‖En

(N)(t)‖. (19)

3.3 Proof of Theorem 1

From (18) and (19), since ‖π2B(1− πN )‖ < ε/K,

|〈φ2,Υ
u∗

n (t)φ1〉 − 〈φ2, X
u∗

n

(N)(t, 0)φ1〉|

≤ ε+ 4‖En
(N)(t)‖K‖πNB(1 − πN )‖. (20)

From (13), supt≤vn(K) ‖E
n
(N)(t)‖ tends to zero as n tends

to infinity. For n large enough,

‖En
(N)(nT

∗)‖ ≤
ε

4K‖πNB(1 − πN )‖
,

and 1 − |〈φ2,Υ
u∗

n (nT ∗)φ1〉| ≤ 2ε. This completes the
proof of Theorem 1.

3.4 Bounded coupling

In this Section, we consider the special case where B is
bounded. The propagator u 7→ Υu is defined on the set
of locally integrable functions.

Proposition 6 Let (A,B,R) satisfy Assumption 1. As-
sume that B is bounded and that (1, 2) is a non de-
generate transition of (A,B). Define T = 2π

|λ2−λ1|
and

u∗ : t 7→ cos((λ2 − λ1)t). Then, for every n in N, there
exists T ∗

n in (nT ∗ − T, nT ∗ + T ) such that

1− |〈φ2,Υ
u∗

n (T ∗
n , 0)φ1〉|

1 + 2K‖B‖
≤

(1 + C′)‖π2B‖I

n
, (21)

with T ∗ = π/2, I = 4/|λ2 − λ1|, K = 2/|b12| and

C′ = sup
(j,k)∈Λ′

{∣∣∣∣sin
(
π
|λj − λk|

|λ2 − λ1|

)∣∣∣∣
−1

}
,

where Λ′ = {(j, k) ∈ {1, . . . , N}2 such that {j, k} ∩
{1, 2} 6= ∅ and |λj − λk| ≤ 3/2|λ2 − λ1| and bjk 6= 0}.

Proof: Fix ε > 0, and define η = ε/K. We apply the
procedure of Section 3.1 and findN inN such that ‖(1−
πN )Bπ2‖ < η. By definition of N , for every n in N, for

every t ≤ T ∗
n , ‖π2Υ

u
t φ1 − π2X

u∗

n

(N)(t, 0)φ1‖ ≤ ε.

A direct computation shows that, for every ω > 3π/T ,

∣∣∣∣∣

∫ T

0 eiωtu∗(t)dt

sin(ωT/2)

∣∣∣∣∣ =
∣∣∣∣

ωT 2

ω2T 2 − 4π2

∣∣∣∣ ≤
3

5

T

π
≤ I.

Hence, for every j, k such that λj − λk > 3/2|λ2 − λ1|,
(9) reads ∣∣∣∣

∫ t

0

hnjk(τ)dτ

∣∣∣∣ ≤
2|bjk|I

n
.

Estimate (4) becomes

1− |〈φ2, X
u∗

n

(N)(T
∗
n , 0)φ1〉|

1 + 2K‖B‖
≤

(1 + C′)‖π2B‖I

n
,

or, by definition of N ,

1− |〈φ2,Υ
u∗

n (T ∗
n , 0)φ1〉|

1 + 2K‖B‖
≤ 2ε+

(1 + C′)‖π2B‖I

n
.

Conclusion follows when ε tends to zero. 2

Proposition 6 is the translation in mathematical terms
of the well-known fact that the difficulty of inducing
a given transition between two eigenstates j and k of
the free Hamiltonian is mainly due to eigenstates with
energy close to λj or λk. In other words, in the case of
bounded coupling, the convergence in Theorem 1 occurs
independently of the high energy levels ofA. These levels
are rarely known precisely in practice.

4 Example: Morse potential with truncated
dipolar interaction

The approximation procedure of Section 3 has been
successfully applied to some classical models, see for
instance Boussäıd, Caponigro & Chambrion [BCC11b]
and [BCC11a] for the rotation of a 2D molecule, the in-
finite square potential well (with bounded coupling op-
erator B) and a perturbation of the quantum harmonic
oscillator (with unbounded potential B) .
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We present below another type of quantum oscillator. Its
main feature is that the spectrum of the free Hamilto-
nian presents a continuous part and a discrete part.Very
few controllability results are known for such systems
with mixed spectrum (see Mirrahimi [Mir09] for control-
lability results based on a Lyapunov approach).

4.1 Modeling

We consider a diatomic molecule submitted to a time
variable electric field with support in some bounded do-
main. The potential energy of the molecule is modeled
with the Morse potential (see Morse [Mor29]). With a
suitable choice of units, the Schrödinger equation reads

i
∂ψ

∂t
= −

∂2ψ

∂x2
+ V (x)ψ + u(t)WM (x)ψ, x > 0,

where V : x 7→ α2
(
e−2(x−xe) − 2e−(x−xe)

)
, and WM :

x 7→ x if x ≤M andWM (x) = 0 if x ≥M . The positive
constants α and xe describe the physical properties of
the molecule: the potential V reaches its minimum at
xe, which can be considered as the equilibrium length
of the molecule and α is related to the depth of the
potential well. The constant M (large with respect to
xe) is the size of the region where the electric field is
assumed to be active. With the notations of Section 1.3,
H = L2((0,∞),C), A = i(∆− V ) and B = −iWM .

Define the integer N = ⌊α− 1/2⌋. In the following, we
assume that N ≥ 4. The skew-adjoint operator A ad-
mits a finite family simple eigenvalues (−iλn)0≤n≤N , as-
sociated with the eigenfuctions φn : x 7→ e−xxαPn(x)
where Pn is a polynomial function. For every n ≤ N ,
λn = −(α− n− 1/2)2. The spectrum of A contains also
a continuous part −i[0,+∞).

4.2 Galerkin approximation

We aim to transfer the system from the first energy level
to the second one. Since the family (φn)n≤N is not an
Hilbert basis of H , (A,B,R) does not satisfy Assump-
tion 1 and we cannot apply directly Theorem 1.

Note that 〈φ0, Bφ1〉 tends to
∫
R+ xφ0(x)φ1(x)dx 6= 0

as M tends to infinity. Hence 〈φ0, Bφ1〉 6= 0 for M
large enough. Moreover, for every l,m, λm − λl = (n −
m)(−2α+ 1 + (n+m)).

From now on, we do the generic hypothesis that α /∈ Q.
In this case, λm − λl = λl′ − λm′ implies n − m =
n′ −m′ and n+m = n′ +m′, that is {n,m} = {n′,m′}.
Moreover, for every {j, k}, |λj−λk| ∈ (N\{0})(λ1−λ0)
implies {j, k} = {0, 1}.

Fix ε > 0. Inspired by Proposition 6, we define
u∗ : t 7→ cos((λ1 − λ0)t), T

∗ = π/2, I = 4/|λ1 − λ0|,

K = 2/|〈φ0, Bφ1〉|, Λ′ = {(j, k) ∈ {0, 1, 2, 3}2|{j, k} 6=
{0, 1}} and

C′′ = sup
(j,k)∈Λ′

∣∣∣∣sin
(
π
λj − λk
λ1 − λ0

)∣∣∣∣
−1

.

From Theorem 2.1, page 525, of [Kat95], for every η > 0,
there exists a skew-adjoint operator Aη such that Aη

admits a complete family of eigenvectors, Aφl = Aηφl
for every l ≤ N and ‖A − Aη‖ < η. The pure point
spectrum (−iληn)n∈N is everywhere dense in −i[0,+∞).

The system (Aη, B,R) satisfies Assumption 1. For every
locally integrable u, we denote with Υu

η the propagator

of d
dtψ = (Aη + uBM )ψ.

We choose an integer n ≥ (1 + C′′)MI(1 + 2MK)/ε
and we define η = ε/ (nT ∗ + T ) . The transition (0, 1) of
(Aη, B) is non degenerate, λ1 −λ0 = −2(α+1) and, for
every l ≥ 4,

λl −

(
λ0 +

3

2
(λ1 − λ0)

)
≥ λ4 −

(
λ0 +

3

2
(λ1 − λ0)

)

≥ 5α− 17 > 0.

Proposition 6 applied to system (Aη, B,R) gives the ex-
istence of T ∗

n ≤ nT ∗+T such that 1−|〈φ1,Υu
η(T

∗
n)φ0〉| ≤

ε. Since ‖A−Aη‖ < η, we have, for every t ≤ nT ∗ + T ,

∥∥∥∥Υ
u∗

n (t, 0)−Υ
u∗

n
η (t, 0)

∥∥∥∥ < (nT ∗ + T )η ≤ ε,

and finally 1− |〈φ1,Υ
u∗

n (T ∗
n , 0))φ0〉| < 2ε.

5 Conclusion

The contribution of this paper has two elements. First,
it proves the validity of the Rotational Wave Approxi-
mation for infinite dimensional quantum systems with
a pure point spectrum. The result can be partially ex-
tended to systems with a mixed spectrum (including a
discrete and a continuous part). The convergence results
are accompanied by explicit error estimates which pro-
vide explicit time estimates for the approximate con-
trollability of bilinear infinite dimensional quantum sys-
tems. Second, a notion of efficiency has been introduced.
The efficiency is a measure of the L1-norm of the control
needed to achieve a given transition between two eigen-
states of the free Hamiltonian.

The L1-norm of the control appears to play a central
role in the analysis of bilinear quantum systems. This is
slighty surprising, since one would rather expect that the
L2-norm of the control field represents the energy given
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to the system. It may be an artifact of the semi-classical
model that disappears with a more realistic model that
takes into account a quantized field.

Among other topics, future analysis may concentrate on
the design of time-efficient controls or on a systematic
treatment of quantum systems when the free Hamilto-
nian has a continuous spectrum.
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