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Using contact dynamics simulations, we compare the e�ect of rolling resistance at the contacts
in granular systems composed of disks with the e�ect of angularity in granular systems composed
of regular polygonal particles. In simple shear conditions, we consider four aspects of the mechan-
ical behavior of these systems in the steady state: shear strength, solid fraction, force and fabric
anisotropies, and probability distribution of contact for ces. Our main �nding is that, based on the
energy dissipation associated with relative rotation betw een two particles in contact, the e�ect of
rolling resistance can explicitly be identi�ed with that of the number of sides in a regular polygonal
particle. This �nding supports the use of rolling resistanc e as a shape parameter accounting for
particle angularity and shows unambiguously that one of the main inuencing factors behind the
mechanical behavior of granular systems composed of noncircular particles is the partial hindrance
of rotations as a result of angular particle shape.

Most numerical studies on the mechanical behavior of
granular materials deal with model systems composed of
disks in 2D or spheres in 3D. This is usually due to the
technical di�culties that arise when dealing with par-
ticles of complex shapes in experiments or discrete el-
ement methods. However, real granular materials are
rarely composed of spherical particles, and it has been
shown that the nonspherical shape of the grains strongly
inuences the mechanical behavior of granular systems.
This inuence can be evidenced when characterizing the
shear strength [1{4] and solid fraction [4{7], as well as mi-
crostructural properties such as the distribution of con-
tact forces [8, 9]. The e�ect of grain shape is thus a
crucial aspect to be taken into account for a realistic de-
scription of granular systems.

One of the numerical \tricks" that can be used to ob-
tain realistic values of strength and solid fraction while
using only circular particles in simulations is to partially
restrict the relative rotations between grains [10]. For ex-
ample, several studies have shown that rolling resistance
leads to shear strengths and solid fractions that are com-
parable to those observed in granular soils and rocks,
e.g., [11{14]. However, the extent to which rolling resis-
tance can actually be compared to angular shape in more
general terms, or whether rolling resistance and angular
shape lead to similar structures at the mesoscopic scale,
are interesting issues that remain poorly understood.

In this Letter, we compare, by means of discrete el-
ement simulations, the e�ects of rolling resistance and
angularity. We construct two sets of polydisperse 2D
packings. In the �rst set, the packings are composed of
disks with an increasing magnitude of rolling resistance,
whereas in the second set, the packings are composed of
regular polygonal particles of increasing number of sides.
By comparing various properties extracted from the two

sets, we �nd a remarkable matching of the data from
the disk packings with those of the polygon packings for
a rolling resistance expressed by a simple equation as a
function of the number of sides. This one-to-one map-
ping between the two sets is based on energy dissipation
considerations and might be generalized to other particle
shapes.

All packings are made up of 7500 grains with diameters
uniformly distributed by volume fractions between 0:6d
and 2:4d, where d is the mean diameter. In all simula-
tions, the coe�cient of sliding friction � s between parti-
cles is 0:4 and collisions are perfectly inelastic. The par-
ticles are initially placed in a semiperiodic box 100d wide
using a geometrical procedure [15]. Next, the packing is
sheared by imposing a constant shear velocity and a con-
stant con�ning stress. To avoid strain localization at the
boundaries, sliding and rolling are inhibited for the par-
ticles in contact with the walls. The samples are sheared
up to a large cumulative shear strain  = � x=h = 5,
where � x is the horizontal displacement of the upper
wall and h is the thickness of the sample. All measures
are averaged over the last 50% of cumulative shear strain
in order to guarantee that they characterize the behav-
ior of the system in the steady state, also known as the
\critical state" in soil mechanics. In all tests, the gravity
is set to zero.

The simulations were carried out by means of the con-
tact dynamics method [16{19], which assumes perfectly
rigid particles interacting through mutual exclusion and
Coulomb friction. For speci�c implementation of the con-
tact dynamics method see [15, 19].

In the �rst set of samples, composed of disks, the
rolling resistance is introduced through arolling friction
law [20], analogous to the sliding friction law. Although
rolling friction is introduced here as a numerical param-
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eter, it may reect various material parameters such as
hysteresis, micro-sliding when the elastic moduli are dif-
ferent, inelasticity (in particular for polymers) and sur-
face roughness [21]. This law assumes that a contact
can transmit a torque M not exceeding a limit value
M max = � r `f n , where � r is the coe�cient of rolling fric-
tion, ` is the magnitude of the branch vector joining the
centers of the contacting particles, andf n is the normal
force. The scaling ofM max with ` is meant to make � r

dimensionless. Relative rotation between two grains in
contact is allowed only if M = M max .

In the second set of samples, composed of regular
polygonal particles, two types of contact may occur: (1)
between a corner and a side, and (2) between two sides.
Side/side interactions represent two constraints and are
treated by associating two contact points along the com-
mon side and applying the volume exclusion and the slid-
ing friction law to each of them. Thus, in practice, two
contact forces are calculated at each side/side contact.
However, only their resultant and application point are
physically relevant, and the result is independent of the
choice of the two contact points [22, 23].

The stress components can be calculated from the sim-
ulation data by the relation � ij = nchf c

i `c
j i , where nc is

the number of contacts per unit volume and the average
runs over the contactsc with contact force f c and branch
vector `c [24]. The mean stress isp = ( � 1 + � 2)=2, where
� 1 and � 2 are the principal stress values, and the devi-
atoric stress isq = ( � 1 � � 2)=2. It is worth noting that
in the presence of rolling resistance the stress tensor can
be asymmetric and a couple-stress tensor may be added
to the description. However, in all our tests the asym-
metry is negligibly small (i.e., j(� 12 � � 21)=(� 12 + � 21)j �
0:0002), suggesting that we do not need to consider the
couple stress in the present study. Similar observations
on the contribution of the couple stress tensor are re-
ported in [25].

Figure 1 shows the shear strengthq=pand solid frac-
tion � = Vp=V, where Vp is the volume occupied by the
particles and V is the total volume, as functions of� r for
the disks and of 1=ns for the polygons, wherens is the
number of sides of the polygons. It can be seen that both
q=pand � follow similar trends in the two sets as� r and
1=ns increase. However, a direct comparison of the data
between the two sets is not possible in this representation
due to the di�erent physical meanings of � r and 1=ns.

The respective e�ects of rolling friction and angular
shape can be compared by their roles in the hindering of
relative rotation. Let us consider a particle (a disk with
rolling friction and a regular pentagon) that rolls on a
horizontal plane with a vertical force N exerted at its
center of mass and that is not allowed to slide; see Fig.
2(a). Figure 2(b) shows the horizontal forceT that must
be applied at the center of mass in order to make the
particle roll, as a function of the rotation angle � . The
work needed to displace the particle a distance equal to
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FIG. 1: (color online) Shear strength q=p (Up) and solid
fraction � (Down) as functions of � r for the disks and of 1=ns

for the polygons. Error bars indicate the standard deviatio n.
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FIG. 2: (a) Schema of rolling on a plane. (b) Horizontal force
T required for rolling a distance equal to the perimeter. (c)
Trajectory of the center of mass of the polygon (dashed line)
and de�nition of the mean dilatancy angle � .

its perimeter is

Wd = 4 �� r RdN (1)

for the disk with rolling friction, where Rd is the radius
of the disk and the magnitude of the branch vector `
(necessary to calculateM max ) has been replaced by the
disk diameter, and

Wp = ns(1 � cos(�=n s))RpN (2)

for the polygon, whereRp is the radius of its circumcircle.
Assuming equal work, i.e. Wd = Wp, we arrive at the
following mapping between� r and ns

� r = (1 =4) tan � ; (3)

where it has been assumed that both particles have the
same perimeter (i.e., Rp = Rd(�=n s)=sin(�=n s)), and
� = �= (2ns) is the mean dilatancy angle of the trajectory
of the center of mass of the polygon (see Fig. 2(c)). For
a similar attempt to quantify the role of grain shapes in
hindering relative rotation, see [26].

Figure 3 shows the shear strengthq=pand solid frac-
tion � as functions of � r for the disks and of (1=4) tan � 






