Analysis of a non local model for spontaneous cell polarisation

Abstract : In this work, we investigate the dynamics of a non-local model describing spontaneous cell polarisation. It consists in a drift-diffusion equation set in the half-space, with the coupling involving the trace value on the boundary. We characterize the following behaviours in the one-dimensional case: solutions are global if the mass is below the critical mass and they blow-up in finite time above the critical mass. The higher-dimensional case is also discussed. The results are reminiscent of the classical Keller-Segel system in double the dimension. In addition, in the one-dimensional case we prove quantitative convergence results using relative entropy techniques. This work is complemented with a more realistic model that takes into account dynamical exchange of molecular content at the boundary. In the one-dimensional case we prove that blow-up is prevented. Furthermore, density converges towards a non trivial stationary configuration.
Type de document :
Pré-publication, Document de travail
MAP5 2012-15. 30 pages. 2011
Liste complète des métadonnées
Contributeur : Vincent Calvez <>
Soumis le : lundi 23 mai 2011 - 10:12:09
Dernière modification le : mardi 17 janvier 2017 - 15:35:56
Document(s) archivé(s) le : mercredi 24 août 2011 - 02:21:50


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00594777, version 1
  • ARXIV : 1105.4429


Vincent Calvez, Rhoda Hawkins, Nicolas Meunier, Raphael Voituriez. Analysis of a non local model for spontaneous cell polarisation. MAP5 2012-15. 30 pages. 2011. <hal-00594777>



Consultations de
la notice


Téléchargements du document