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Observer design for two-wheeled vehicle : A Takagi-Sugeno appeach
with unmeasurable premise variables

Dalil Ichalal, Hichem Arioui, and Said Mammar

Abstract— This paper is dedicated to the problem of ob- can be performed by linearization of a nonlinear model
server design for Takagi-Sugeno (T-S) nonlinear systems with around some operating points. It can also be obtained by
unmeasurable premise variables (TSUPV) and application to black-box approaches allowing to identify the parameters

autonomous bicycle system. The main idea is based on the f th del f . ¢ d Einallv. i .
use of differential mean value theorem combined to the sector © e model from input-output data. Finally, interesting

nonlinearity transformation. The objective of this approach is ~Mathematical transformations known under the sector non-
to make the state estimation error dynamic on a T-S form linearity transformations can also provide a T-S model [25]
which allows to apply the classical Lyapunov analysis to derive [16]. Indeed, this transformation allows to obtain an exact

convergence conditions. The design algorithm is proposed in T.g representation of a general nonlinear model with no

terms of linear matrix inequalities (LMI). To illustrate the inf tion | .  stat

proposed methodology, a nonlinear bicycle model is considered. Informa |_on 0Ss, In a compact state s_pace. ) )
Index Terms— Nonlinear systems, Takagi-Sugeno nonlinear ~ Takagi-Sugeno model has proved its effectiveness in the

systems, LMI, observer design, two-wheeled vehicles analysis, control and observation of nonlinear systems. In
deed, it gives a simpler formulation from the mathematical
I. INTRODUCTION point of view to represent the behavior of nonlinear systems

State estimation and observer design of nonlinear systerf®#]. Thanks to the convex sum property of the weighting
is an important problem in modern control. Early workfunctions, itis possible to generalize some tools develape
on this problem dates back to the work of Thau [27}he linear domain to nonlinear systems. This represemtatio
where the author proposed an extension of the Luenbergervery interesting in the sense that it simplifies the siigbil
observer [14] to Lipschitz systems. Sufficient conditions a study of nonlinear systems and controller/observer design
then obtained for the convergence of the state estimatidn [6], [11], [12], the stability and stabilization tools er
error toward zero but no methodology has been proposgdoposed. In [2], [15], the problem of state estimation and
for designing the observer. Thereafter, in [20], an iteeti diagnosis of T-S systems is addressed. The proposed ap-
approach is proposed for observer gain design, howevéroaches rely on the generalization of the classical okserv
the algorithm may fail even if the system is observable. IfLuenberger Observer [14] and Unknown Input Observer
[21], Rajamani obtained necessary and sufficient conditiofUIO) [8]) for nonlinear domain. The major problem of
on the observer matrix that ensure asymptotic stability dhese results is the conservatism of the conditions which
the state estimation error and proposed a design procedufe difficult to solve. Some works are dedicated to reduce
based on the gradient optimization method. He discuss#ds conservatism of the stability condition. For examte,
also the equivalence between the stability condition aed tH22], the Polya’s theorem is used in order to reduce the
H., minimization in the standard form, and pointed out thagonservatism related to the negativity of a sum matrices
this design method was not solvable since the regulariipequalities. In [13], the authors proposed a new approach
assumptions are not satisfied. Recently, in [19], the rexdfult for discrete time T-S systems, it is based on the evaluafion o
Rajamani [18] is extended, the authors proposed a dynantfee difference of Lyapunov function between> 1 samples.
observer and provide a solution to the problem of regularity Let us consider a nonlinear system described by a T-S
assumptions by modifying the., problem. Other classes of model
nonlinear systems are also studied in the literature tagdesi r
observers for nonlinear systems, namely Linear Parameter X(t) = Ziui(f(t))(AiX(t)+BiU(t)), yt)=Cxt) (1)
Varying systems (LPV) [3] and bilinear systems. =

Recently, an extensive studies are made on a new structyyRere x(t) € R" is the state vectom(t) € R™ is the input
which was introduced in [24]. It is based on the decompogector, andy(t) € RP represents the output vectd.c R™",
sition of the operating space of the system in some zongs ¢ R™*™ C € RP*" are known matrices. The functions
and each zone is represented by a linear model. By defip;(&(t)) are the weighting functions depending on the vari-
ing adequate nonlinear functions satisfying the convex sugibles & (t) which can be measurable (as the input or the
property, the behavior of the nonlinear system is modeled iutput of the system) or non measurable variables (as the
a compact set of the state space. Obtaining a T-S modghte of the system). These functions verify the following

roperti
The authors are with the Laboratory of Informatique, Biotobitegrative properties
et Sysemes Complexes (IBISC), Universitd’Evry Val d’Essonne, r
40, rue du Pelvoux, 91020 Courcouronnefbalil . I chal al, (EMN)=1. O<u(EM)N) <1 Vie{l . ..r 2
Hi chem Ari oui, Said. Manmar }@ up. univ-evry.fr i;“'(é()) > 0= HlEM) < {Lorp @



In this work the considered premise varialdlé) depends whereX; stands forA; or B;. The system (3) becomes
on the state of the system which is unmeasurable. :

The problem of state estimation of nonlinear systems { X(t) = Aux(t) + Byu(t) (5)
using T-S model approach has been addressed with different y(t) =Cx(t)
methods, the most of the published works considered T-fhe observer is given by
models with measurable premise variables [1], [18], [15], R R ~
[2]. Itis clear that the choice of measurable premise végi@b { R(t) = ApX(t) +Bpu(t) + La(y(t) - (1)) ©6)
offers a good simplicity to generalize the methods already y(t) = CX(t)
devel_oped f_or linear systems. But in the case where thf’ne state estimation err@&(t) = x(t) — X(t) is governed by
premise variables are not m_eas_urable,_the probl_em becomgs following differential equation
harder. However, this formalism is very important in both th
exact representation of the nonlinear behavior by T-S model é(t) = f(x,u) — f(X,u) — LCe(t) (7)
(see the simulation example) and in diagnosis method based
on observer banks to detect and isolate actuator and sendéere f(x,u) = Aux(t) + Byu(t) and f(X,u) = AX(t) +
faults. Indeed in this case, the use of measurable premiBgu(t). The function f(%,u) : R" — R" is assumed to be
variables requires to develop two different models, the fird-iPSchitz continuous.
using the inputu(t) in the premise variable to detect and Note that the stability analysis of (7) cannot be directly
isolate sensor faults, and the second using the output @hieved with the help of the tools developed for T-S systems
the system for actuator faults. T-S model with unmeasurabWith measurable premise variables. Indeed, the fact that th
premise variables allows to develop only one model of tharemise variable is the state of the system leads to a more
system behavior to detect and isolate actuator and sens@mplex form of the state estimation error (see equation
faults using observer banks. Furthermore, the T-S mode(g))- The key point of the proposed observer design is to
with unmeasurable premise variables may represent a |argg}tain a suitable form of the state estimation error in order
class of nonlinear systems compared to the T-S model witR re-use the tools proposed for stability and relaxed tabi
measurable premise variables [28]. In the literature, a fe@nalysis of T-S systems with measurable premise variables.
works are devoted to the case of unmeasurable decisifh conclusion, the objective is to find the gain, of the
variables, nevertheless, we can cite [5], [17], [4] where thobserver (6) that stabilizes (7).
authors proposed the fuzzy Thau-Luenberger observer whichThe n different entries of the nonlinear vector function
is an extension of the classical Luenberger observer and fif2) : R" — R", are denotedi(2), it follows
[28], a filter estimating the state and minimizing the effect T
of disturbances is proposed. f@=[h@ .. @] (®)

In thi§ paper a new me’Fhod is proposed for state estimati%ere fi(z):R" R, i=1..,n.
of nonlinear systems. It is based on the use of the Takagi-| ¢t 45 denotess(i) the vector ofRS with all entries being

Sugeno model representing the behavior of the nonlineg(, except théth being equal to 1 as given below
system. The contribution of this work concerns the consid-

eration of the case when the premise variables of the T-S (i) = ( 0 - 0 1 0 - 0 )T )
model are not measurable (as the state of the system), this 1 -1 0 s

situation is commonly encountered when using the sectqihe functionf(z) can be written as follows

nonlinearity approach [25]. The main results on observer .

design are given |.n sections Il. In section .III, an applioati f2)=S en(i)fi(2) (10)

of the observer is proposed on a nonlinear autonomous &

bicycle. In this application, a first observer is proposedcivh _ ) on N

is designed by the proposed methods. Secondly, an other! heorem 1:Considerfi(z):R" — R. Leta,be R™. If fi(2)
observer is designed to enhance the performances, especisi dlffr?rent_labl_e oni[a, b then thiere exists a constant vector
to reduce the oscillatory phenomenon in the transient phaéé= K satisfyingé! €]a, bf (i.e. &j €lay, by, for j=1,...,n),

of the convergence of the observer. This task is performetfch that of

by a pole assignment in a chosen LMI region. fi(a) — fi(b) = a—z'(f')(a— b) (11)

. L ; n
ll. OBSERVER DESIGN Applying the theorem 1 on (7), it is obtained farb € R

Let ider the T-S syst e e T Ofi g
€ Cons'r erthe system f(a) - f(b)_;;a‘(')eﬂ”fzj(f Ja=b)  (12)
X(t) = _le-li (x(t)) (AX(t) +Biu(t)), y(t)=Cxt) (3)

Using (12), the state estimation error (7) can be then trans-

. . . formed into
Using the following notations

r ; non . . Of i A
K= 3 WO @ e(t)—(i;jzlen(l)el(l)dxj(f)—l-uc> o) (@3)



Assumption 1:Assume thatf (Z) is a differentiable func- are available more recently for four wheels vehicles. For

tion satisfying, fori=1,....nandj=1,....,n single-track ones such as motorcycles, the delay in this
f field is clear. Furthermore, the applications can be more
aj < dT(I-(Zl) < bjj (14) complex compared to two-tracked vehicles due to the system

j

dynamics, stability/equilibrium, maneuverability, ef@ de-

. . fo
Each nonllneantyg—x}(z') can be represented by ploy such systems on motorcycles, one has to know reliably

af 2 . what the current state of the vehicle is. Various sensors can
—(Z)= v!j(z')a-j, (15) be used (e.g. lateral acceleration, yaw rate, wheel speeds)
0Xj =1 which are already used for four-wheeled vehicle applicatio
wheredjj1 = a; anddjj2 = b and However, the major diffe_rer_lce concerns the roll angle which
3 /e ot can exceed 40in some limit cases.
Lo ox (8 —aij L b= (@) Roll angle is the main characteristics of the Motorcycle
vij ( ):W’ Vizj(f): W (16)  ateral dynamics. A good control of motorcycle motions

) requires an accurate assessment of this quantity and for
i i o safety applications also the risk of sliding or friction $os
I;V!j(E )=1 OSVEJ'(E )=l 1=12 (37 need to be considered. Direct measurement of roll angle
and tire slip is not available or very expensive as for the
Tateral speed (corevit sensor). Some previous work [26] and
[23] have addressed these challenges based on estimation
ét) = (,gfh_ Lﬁ,C) e(t) (18) and/or observation techniques of these dynamic parameters
q The success of these methods remains modest and mainly
whereah = 3 (&) andqzznz_ The weighting function depends on the model's complexity. Indeed, most studies
i=1 have considered simple models and generally linear. The

1= . . .
hi(.) are defined by following the sector nonlinearity ap'reality is far from these assumptions and is highly nonlinea

proach in T-S fuzzy [25] systems by using the local weight- In this section, the proposed observer is applied in order

'ng funpt|onsvij defmgd aboye. The stability O.f the Stateto estimate the states of an autonomous bicycle. The model
estimation error (18) is studied by the quadratic Lyapunoys e system is given in the first subsection with its T-S

function with common matrix representation. The second subsection illustrates treradrs
V(et)) = el (H)Pet), P= PT >0 (19) design approach and finally, simulation results are given.

Using (13) and (15), the dynamic of the state estimatiorrerr
is represented by

Its derivative with respect tois A. Modeling

V(e(t)) :eT(t)(AEPJrPAthTLEpfpLﬂC)e(t) (20) The pre.sented model (see the figure 1) in this paper is
proposed in [10] and [9] where
The stability of the state estimation error is ensured if the
time derivative of the Lyapunov equation (20) is negative

definite, which leads to the following time dependent LMIs
oy P+ Py —CTLP—PLiC <0 (21)

The convex sum property of the weighting functions allow:
to obtain time independent inequality

#P+Paf—CTLIP—PLIC<0,i=1..q j=1..r
(22)
To express the inequality (22) in term of LMI, the change o
variablesK; = PL; is used and LMI conditions are obtained
as follows

A P+Paf—CTK] —K|C<0,i=1,..,0, j=1,..r (23)

1. AUTONOMOUS TWO-WHEELED VEHICLE

Driver assistance andsafetyare becomingincreasingl
commonin automotive applications to fight against theprok
lems relative toroadsafety.Indeed, thenumber of roadhgea
decreases since the introduction of safety systemsstuicteeh Fig. 1. Bicycle model
stabilization systems: Anti-lock Brake Systems (ABS) and
Electronic Stability Control (ESC) and have now become « u(t) (N.m), the normalized input torque exerting on the
almost standard in every passenger car. Other systems, such steering anglep.
as airbags, collision avoidance, adaptive cruise congtol, « v (m/s), the forwarding speed of the motorcycle




« p(m), the distance from the center of mass to the grountthe local weighting functions are defined by

« c (m), the horizontal distance from the center of mass

to the ground contact point of the rear wheel
« [ (rad), the yaw angle of the motorcycle
« a (rad), the roll angle of the motorcycle

A state space nonlinear model is then obtained as follows

Flo(t) _ z(t)—Z"" Fll(t) _ ()

i g
FR) = Zagm. F30) = Zoran
RO = Sagm R0 = Soram

/3 = v Finally, the weighting functions of the T-S model are given
Yg = u by
o e e e e e
. _ . us(z(t)) = FOOFLOF(t), pa(z(t)) = FAOFL(FL(t
bo = plasin@) + (Lt pupsive)cotayp )ROSR, pe(at) = FEORSEL)

+ ccoga)vu) (24) (1) =F{(OFRFOFP(), pa(z(t) = F{ (DR (DF5 (1)

For simplicity and clearmness, the model is re-written in avherez(t) =[z1(t) z(t) z(t)]™. Due the lake of space the

general state space system where

xa(t) B

Xa(t) 1
0= %0 |=| «

Xa(t) Ya

The model is then given by

x1(t) = x(t)v
X(t) = u(t)
X3(t) = xa(t)
() = S (gsinalt) + (1

+ pe(t) sin(xa(t))) cos(xa(t))xz(t)v*

+ ccogxz(t))vu) (25)
which can be also written in a compact form
X(t) = f(x,u) (26)

matrices of the T-S model are omitted. The figure 2 illustate
the exactness between the nonlinear model and the T-S one.

-~ - —Nonlinear system states|
o T . s N T-S system states ~_ |
A - — I —~—

Fig. 2. States of the nonlinear system and those of the T-®rsys

The system is unstable. To stabilize it, the simple conaw |
u(t) = —ki(Xa(t) —Xad(t)) — ka(Xa(t) — Xaq(t))

is proposed, whergsg(t) = sin(t) andxuq(t) = cogt) repre-
sent the trajectories to track akgd= k, = 10. The nonlinear
trajectories with this control are depicted in the figure 3.

Note that a T-S model is not unique for a given systerr
So, in this application, we chose the following model. By
using the sector nonlinearity transformation, a T-S mosdel i
obtained in the form given in equation (3) with 8 sub models.
The chosen premise variables are given by

(27)

)= g

22(t) = 5(1+ pxe(t) sin(xs(1))) cosxa(t) )V

yolle}

—v.0

- X, 40

Fig. 3.

Trajectory tracking control

IV. OBSERVER DESIGN

z(t) = Epcos(x3(t))v

and under the assumptions

A" <zi(t) < 2™
211 < 25(t) < 2
ngn S Zg(t) S Zg13X

After stabilizing the system, an observer is proposed to
estimate the unknown states in the form of equation (6) .
Assume that only the first and the third components of the
state vector are measured, which leads to the output equatio

1000)

y(t) = Cx(t), C:(O 010 (28)



Note that the stat®(t) is not measured and it appears in
the weighting functions of the T-S system, then the weightin
functions of the observer must depend on the estimated st
%2(t). Then the classical approaches cannot be used. T
proposed approach is applied and the state estimation er

is given in the form

4 8
et) = hi(E)kj(2) (A —LiC)e(t) (29)
MM
where .« are obtain from
of N A O
HO=3FA0g@ @
Following the proposed approach, we have firstly
0 30 0 0
of 0 0 0 0
»x?=lo o o 1 (31)
0 g—;‘z‘(z) d—fé z) 0
where
0fa _ . 1
a—x(z) = 100co$23)225|n(23)+100co$23)sm(23)+§
2
(32)
df4 2 H
D = 16.35c0$23) + 1002 cogz3)? — 8.33usin(z3)
3
- 1003sinzs) + - (33)
Defining & = §i4(2) and & = 3

—
- - estimated B

—v,

- - estimated WB

—a
- - estimated a

JT
a

- - estimated W,

Fig. 4. State estimation without enhanced performances

the gainsLj, j=1,...,8 of the observer are obtained by
Lj = P~1Kj. The simulation results are given in the figure
4. We can point out that the observer dynamics present an

= 3% (2) @s new premise vari- sscillaory phenomenon. The performances of the observer

ables it is easy to compute a T-S representation of theyn pe improved by pole assignment in an LMI region. we

jacobian%(z) in the form

M s Sdie) @) - yha (@
5(2)—;;%(1)%(1)7)(]_( )—i; i) (34)

The premise variables satisfy 82 < & <167.83 and 89 <

&2 < 19.95, which leads to

=0 §-8492 =1 16783-&
Fr Fi

8291 - 8291
Ifo _ &-89 Ifl _ 1995-¢
2 7 1105 2 7 1105

and finally the weighting functions are given by
hi(2) = F{F3, ha(2) = FOFS
ha(2) = F{F7,u(2) = FF

with the matrices

0 30 00 0 30 00
0 0 00 0 0 00
A=|g o0 01|20 o o0 1|
0 8492 89 0 0 16783 89 0
030 0 0 0 30 0 0
00 0 0 O 0 0 0
“%=lo 0 o0 1|"%=|0 0o o0 1
0 8492 1995 0 0 16783 1995 0

propose an extension of the previous method of synthesis
by placing the eigenvalues of the observer in LMI regi®n
defined byS={ze C | Rgz) < —a, |7 < R}, which is an
intersection between the left plan defined by the(ZRe:

—a and the disc with centef0,0) and radiusR. So, the
problem is now to solve simultaneously the LMIs (23) and
the LMI constraints, corresponding to the LMI region, given
as follows (for more details see [7])

ATP+PA —K;C—C'K] +2aP <0 (35)
—-RP PA—K|C
AP-CTKI R | <O )
J
i=1,..4 j=1..,8

With adequate choice oh and R, these new conditions
provides gaind j that reduce the imaginary part of the poles
of the dynamics of the state estimation error which enswee th
oscillatory phenomenon avoidance and enhances the tnansie
phase of the observer as shown in the figure 5.

V. CONCLUSIONS AND FUTURE WORKS

In this work, an observer methodology is proposed for
a nonlinear autonomous bycicle system. The approach is

The stability of the system (29) is guaranteed if a solutiobased on T-S fuzzy modeling and differential mean value
exists to the LMI constraints (23). And in the same timaheorem (DMVT). First, the nonlinear model of the system is



(4]
(5]

-
- - estimated B

(6]

=, 7]

- - estimated \UB

(8]

(9]
[10]

—a
- - estimated a

(1]

[12]

- - estimated W,

[13]

[14]

Fig. 5. States and their estimations [15]

transformed to a T-S fuzzy representation with unmeaserrali6l
premise variables due to their dependence on unmeasured
states. The obtained model is derived form the sectgt7]
nonlinearity approach which provides an exact T-S model
with no loss of information. Secondly, an observer for thi§18
type of systems is proposed. The state estimation error is
computed and made on the form of autonomous T-S model
with the differential mean value theorem. The new structuré®!
of the state estimation error allows to use the Lyapunov
stability analysis. Then, stability conditions are obtmirand [20]
formalized in linear matrix inequality (LMI) constraintén
application on bicycle system is proposed to illustrate thpij
proposed approach. The aim of this paper is the observer
design for safety, so, since the system is unstable a clas$
tracking control law is applied to stabilize it and allows to
track a reference trajectory. After, an observer is designe
for the controlled system, as future works, it is interegtio (23]
develop an observer- based control law with T-S approach
by using this observer.

[24]
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