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Observer design for two-wheeled vehicle : A Takagi-Sugeno approach
with unmeasurable premise variables

Dalil Ichalal, Hichem Arioui, and Said Mammar

Abstract— This paper is dedicated to the problem of ob-
server design for Takagi-Sugeno (T-S) nonlinear systems with
unmeasurable premise variables (TSUPV) and application to
autonomous bicycle system. The main idea is based on the
use of differential mean value theorem combined to the sector
nonlinearity transformation. The objective of this approach is
to make the state estimation error dynamic on a T-S form
which allows to apply the classical Lyapunov analysis to derive
convergence conditions. The design algorithm is proposed in
terms of linear matrix inequalities (LMI). To illustrate the
proposed methodology, a nonlinear bicycle model is considered.

Index Terms— Nonlinear systems, Takagi-Sugeno nonlinear
systems, LMI, observer design, two-wheeled vehicles

I. INTRODUCTION

State estimation and observer design of nonlinear systems
is an important problem in modern control. Early work
on this problem dates back to the work of Thau [27]
where the author proposed an extension of the Luenberger
observer [14] to Lipschitz systems. Sufficient conditions are
then obtained for the convergence of the state estimation
error toward zero but no methodology has been proposed
for designing the observer. Thereafter, in [20], an iterative
approach is proposed for observer gain design, however,
the algorithm may fail even if the system is observable. In
[21], Rajamani obtained necessary and sufficient conditions
on the observer matrix that ensure asymptotic stability of
the state estimation error and proposed a design procedure,
based on the gradient optimization method. He discussed
also the equivalence between the stability condition and the
H∞ minimization in the standard form, and pointed out that
this design method was not solvable since the regularity
assumptions are not satisfied. Recently, in [19], the resultof
Rajamani [18] is extended, the authors proposed a dynamic
observer and provide a solution to the problem of regularity
assumptions by modifying theH∞ problem. Other classes of
nonlinear systems are also studied in the literature to design
observers for nonlinear systems, namely Linear Parameter
Varying systems (LPV) [3] and bilinear systems.

Recently, an extensive studies are made on a new structure
which was introduced in [24]. It is based on the decompo-
sition of the operating space of the system in some zones
and each zone is represented by a linear model. By defin-
ing adequate nonlinear functions satisfying the convex sum
property, the behavior of the nonlinear system is modeled in
a compact set of the state space. Obtaining a T-S model
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can be performed by linearization of a nonlinear model
around some operating points. It can also be obtained by
black-box approaches allowing to identify the parameters
of the model from input-output data. Finally, interesting
mathematical transformations known under the sector non-
linearity transformations can also provide a T-S model [25],
[16]. Indeed, this transformation allows to obtain an exact
T-S representation of a general nonlinear model with no
information loss, in a compact state space.

Takagi-Sugeno model has proved its effectiveness in the
analysis, control and observation of nonlinear systems. In-
deed, it gives a simpler formulation from the mathematical
point of view to represent the behavior of nonlinear systems
[24]. Thanks to the convex sum property of the weighting
functions, it is possible to generalize some tools developed in
the linear domain to nonlinear systems. This representation
is very interesting in the sense that it simplifies the stability
study of nonlinear systems and controller/observer design.
In [6], [11], [12], the stability and stabilization tools are
proposed. In [2], [15], the problem of state estimation and
diagnosis of T-S systems is addressed. The proposed ap-
proaches rely on the generalization of the classical observers
(Luenberger Observer [14] and Unknown Input Observer
(UIO) [8]) for nonlinear domain. The major problem of
these results is the conservatism of the conditions which
is difficult to solve. Some works are dedicated to reduce
this conservatism of the stability condition. For example,in
[22], the Polya’s theorem is used in order to reduce the
conservatism related to the negativity of a sum matrices
inequalities. In [13], the authors proposed a new approach
for discrete time T-S systems, it is based on the evaluation of
the difference of Lyapunov function betweenm> 1 samples.

Let us consider a nonlinear system described by a T-S
model

ẋ(t) =
r

∑
i=1

µi(ξ (t))(Aix(t)+Biu(t)), y(t) =Cx(t) (1)

where x(t) ∈ R
n is the state vector,u(t) ∈ R

m is the input
vector, andy(t)∈R

p represents the output vector.Ai ∈R
n×n,

Bi ∈ R
n×m, C ∈ R

p×n are known matrices. The functions
µi(ξ (t)) are the weighting functions depending on the vari-
ables ξ (t) which can be measurable (as the input or the
output of the system) or non measurable variables (as the
state of the system). These functions verify the following
properties

r

∑
i=1

µi(ξ (t)) = 1, 0≤ µi(ξ (t))≤ 1 ∀i ∈ {1, ..., r} (2)



In this work the considered premise variableξ (t) depends
on the state of the system which is unmeasurable.

The problem of state estimation of nonlinear systems
using T-S model approach has been addressed with different
methods, the most of the published works considered T-S
models with measurable premise variables [1], [18], [15],
[2]. It is clear that the choice of measurable premise variables
offers a good simplicity to generalize the methods already
developed for linear systems. But in the case where the
premise variables are not measurable, the problem becomes
harder. However, this formalism is very important in both the
exact representation of the nonlinear behavior by T-S model
(see the simulation example) and in diagnosis method based
on observer banks to detect and isolate actuator and sensor
faults. Indeed in this case, the use of measurable premise
variables requires to develop two different models, the first
using the inputu(t) in the premise variable to detect and
isolate sensor faults, and the second using the output of
the system for actuator faults. T-S model with unmeasurable
premise variables allows to develop only one model of the
system behavior to detect and isolate actuator and sensor
faults using observer banks. Furthermore, the T-S models
with unmeasurable premise variables may represent a larger
class of nonlinear systems compared to the T-S model with
measurable premise variables [28]. In the literature, a few
works are devoted to the case of unmeasurable decision
variables, nevertheless, we can cite [5], [17], [4] where the
authors proposed the fuzzy Thau-Luenberger observer which
is an extension of the classical Luenberger observer and in
[28], a filter estimating the state and minimizing the effect
of disturbances is proposed.

In this paper a new method is proposed for state estimation
of nonlinear systems. It is based on the use of the Takagi-
Sugeno model representing the behavior of the nonlinear
system. The contribution of this work concerns the consid-
eration of the case when the premise variables of the T-S
model are not measurable (as the state of the system), this
situation is commonly encountered when using the sector
nonlinearity approach [25]. The main results on observer
design are given in sections II. In section III, an application
of the observer is proposed on a nonlinear autonomous
bicycle. In this application, a first observer is proposed which
is designed by the proposed methods. Secondly, an other
observer is designed to enhance the performances, especially
to reduce the oscillatory phenomenon in the transient phase
of the convergence of the observer. This task is performed
by a pole assignment in a chosen LMI region.

II. OBSERVER DESIGN

Let consider the T-S system

ẋ(t) =
r

∑
i=1

µi(x(t))(Aix(t)+Biu(t)), y(t) =Cx(t) (3)

Using the following notations

Xµ =
r

∑
i=1

µi(x(t))Xi (4)

whereXi stands forAi or Bi . The system (3) becomes
{

ẋ(t) = Aµx(t)+Bµu(t)
y(t) =Cx(t)

(5)

The observer is given by
{

˙̂x(t) = Aµ̂ x̂(t)+Bµ̂u(t)+Lµ̂(y(t)− ŷ(t))
ŷ(t) =Cx̂(t)

(6)

The state estimation errore(t) = x(t)− x̂(t) is governed by
the following differential equation

ė(t) = f (x,u)− f (x̂,u)−Lµ̂Ce(t) (7)

where f (x,u) = Aµx(t) + Bµu(t) and f (x̂,u) = Aµ̂ x̂(t) +
Bµ̂u(t). The function f (x̂,u) : Rn → R

n is assumed to be
Lipschitz continuous.

Note that the stability analysis of (7) cannot be directly
achieved with the help of the tools developed for T-S systems
with measurable premise variables. Indeed, the fact that the
premise variable is the state of the system leads to a more
complex form of the state estimation error (see equation
(7)). The key point of the proposed observer design is to
obtain a suitable form of the state estimation error in order
to re-use the tools proposed for stability and relaxed stability
analysis of T-S systems with measurable premise variables.
In conclusion, the objective is to find the gainLµ of the
observer (6) that stabilizes (7).

The n different entries of the nonlinear vector function
f (z) : Rn → R

n, are denotedfi(z), it follows

f (z) =
[

f1(z) . . . fn(z)
]T

(8)

where fi(z) : Rn → R, i = 1, ...,n.
Let us denotees(i) the vector ofRs with all entries being

null, except theith being equal to 1 as given below

es(i) =
(

0
1

· · · 0
i−1

1
i

0
i+1

· · · 0
s

)T
(9)

The function f (z) can be written as follows

f (z) =
n

∑
i=1

en(i) fi(z) (10)

Theorem 1:Considerfi(z) :Rn →R. Let a,b∈R
n. If fi(z)

is differentiable on[a,b] then there exists a constant vector
zi ∈R

n, satisfyingξ i ∈]a,b[ (i.e. ξ i
j ∈]a j ,b j [, for j = 1, . . . ,n),

such that

fi(a)− fi(b) =
∂ fi
∂z

(ξ i)(a−b) (11)

Applying the theorem 1 on (7), it is obtained fora,b∈ R
n

f (a)− f (b) =
n

∑
i=1

n

∑
j=1

en(i)e
T
n ( j)

∂ fi
∂zj

(ξ i)(a−b) (12)

Using (12), the state estimation error (7) can be then trans-
formed into

ė(t) =

(

n

∑
i=1

n

∑
j=1

en(i)e
T
n ( j)

∂ fi
∂x j

(ξ i)−Lµ̂C

)

e(t) (13)



Assumption 1:Assume thatf (zi) is a differentiable func-
tion satisfying, fori = 1, ...,n and j = 1, ...,n

ai j ≤
∂ fi
∂x j

(zi)≤ bi j (14)

Each nonlinearity∂ fi
∂x j

(zi) can be represented by

∂ fi
∂x j

(zi) =
2

∑
l=1

vl
i j (z

i)ãi jl (15)

whereãi j1 = ai j and ãi j2 = bi j and

v1
i j (ξ i) =

∂ fi
∂x j

(ξ i)−ai j

bi j −ai j
, v2

i j (ξ i) =
bi j −

∂ fi
∂x j

(zi)

bi j −ai j
(16)

2

∑
l=1

vl
i j (ξ i) = 1, 0≤ vl

i j (ξ i)≤ 1, l = 1,2 (17)

Using (13) and (15), the dynamic of the state estimation error
is represented by

ė(t) =
(

Ah−Lµ̂C
)

e(t) (18)

whereAh =
q

∑
i=1

hi(ξ )Ai andq= 2n2
. The weighting function

hi(.) are defined by following the sector nonlinearity ap-
proach in T-S fuzzy [25] systems by using the local weight-
ing functions vi j defined above. The stability of the state
estimation error (18) is studied by the quadratic Lyapunov
function with common matrix

V(e(t)) = eT(t)Pe(t), P= PT > 0 (19)

Its derivative with respect tot is

V̇(e(t)) = eT(t)(AT
h P+PAh−CTLT

µ̂P−PLµ̂C)e(t) (20)

The stability of the state estimation error is ensured if the
time derivative of the Lyapunov equation (20) is negative
definite, which leads to the following time dependent LMIs

A
T

h P+PAh−CTLT
µ̂P−PLµ̂C< 0 (21)

The convex sum property of the weighting functions allows
to obtain time independent inequality

A
T

i P+PAi −CTLT
j P−PL jC< 0, i = 1, ...,q, j = 1, ..., r

(22)
To express the inequality (22) in term of LMI, the change of
variablesK j = PL j is used and LMI conditions are obtained
as follows

A
T

i P+PAi −CTKT
j −K jC< 0, i = 1, ...,q, j = 1, ..., r (23)

III. A UTONOMOUS TWO-WHEELED VEHICLE

Driver assistance andsafetyare becomingincreasingly-
commonin automotive applications to fight against theprob-
lems relative toroadsafety.Indeed, thenumber of roads deaths-
decreases since the introduction of safety systemssuchvehicle
stabilization systems: Anti-lock Brake Systems (ABS) and
Electronic Stability Control (ESC) and have now become
almost standard in every passenger car. Other systems, such
as airbags, collision avoidance, adaptive cruise control,etc.,

are available more recently for four wheels vehicles. For
single-track ones such as motorcycles, the delay in this
field is clear. Furthermore, the applications can be more
complex compared to two-tracked vehicles due to the system
dynamics, stability/equilibrium, maneuverability, etc.To de-
ploy such systems on motorcycles, one has to know reliably
what the current state of the vehicle is. Various sensors can
be used (e.g. lateral acceleration, yaw rate, wheel speeds),
which are already used for four-wheeled vehicle applications.
However, the major difference concerns the roll angle which
can exceed 40◦ in some limit cases.

Roll angle is the main characteristics of the Motorcycle
lateral dynamics. A good control of motorcycle motions
requires an accurate assessment of this quantity and for
safety applications also the risk of sliding or friction loss
need to be considered. Direct measurement of roll angle
and tire slip is not available or very expensive as for the
lateral speed (corevit sensor). Some previous work [26] and
[23] have addressed these challenges based on estimation
and/or observation techniques of these dynamic parameters.
The success of these methods remains modest and mainly
depends on the model’s complexity. Indeed, most studies
have considered simple models and generally linear. The
reality is far from these assumptions and is highly nonlinear

In this section, the proposed observer is applied in order
to estimate the states of an autonomous bicycle. The model
of the system is given in the first subsection with its T-S
representation. The second subsection illustrates the observer
design approach and finally, simulation results are given.

A. Modeling

The presented model (see the figure 1) in this paper is
proposed in [10] and [9] where

Fig. 1. Bicycle model

• u(t) (N.m), the normalized input torque exerting on the
steering angleφ .

• v (m/s), the forwarding speed of the motorcycle



• p (m), the distance from the center of mass to the ground
• c (m), the horizontal distance from the center of mass

to the ground contact point of the rear wheel
• β (rad), the yaw angle of the motorcycle
• α (rad), the roll angle of the motorcycle

A state space nonlinear model is then obtained as follows

β̇ = ψβ v

ψ̇β = u

α̇ = ψα

ψ̇α =
1
p
(gsin(α)+(1+ pψβ sin(α))cos(α)ψβ v2

+ ccos(α)vu) (24)

For simplicity and clearness, the model is re-written in a
general state space system where

x(t) =









x1(t)
x2(t)
x3(t)
x4(t)









=









β
ψβ
α

ψα









The model is then given by

ẋ1(t) = x2(t)v

ẋ2(t) = u(t)

ẋ3(t) = x4(t)

ẋ4(t) =
1
p
(gsin(x3(t))+(1

+ px2(t)sin(x3(t)))cos(x3(t))x2(t)v
2

+ ccos(x3(t))vu) (25)

which can be also written in a compact form

ẋ(t) = f (x,u) (26)

The system is unstable. To stabilize it, the simple control law

u(t) =−k1(x3(t)−x3d(t))−k2(x4(t)−x4d(t)) (27)

is proposed, wherex3d(t) = sin(t) andx4d(t) = cos(t) repre-
sent the trajectories to track andk1 = k2 = 10. The nonlinear
trajectories with this control are depicted in the figure 3.

Note that a T-S model is not unique for a given system.
So, in this application, we chose the following model. By
using the sector nonlinearity transformation, a T-S model is
obtained in the form given in equation (3) with 8 sub models.
The chosen premise variables are given by











z1(t) =
g
p

sin(x3(t))
x3(t)

z2(t) = 1
p(1+ px2(t)sin(x3(t)))cos(x3(t))v2

z3(t) = c
p cos(x3(t))v

and under the assumptions






zmin
1 ≤ z1(t)≤ zmax

1
zmin
2 ≤ z2(t)≤ zmax

2
zmin
3 ≤ z3(t)≤ zmax

3

the local weighting functions are defined by

F0
1 (t) =

z1(t)−zmin
1

zmax
1 −zmin

1
, F1

1 (t) =
zmax
1 −z1(t)

zmax
1 −zmin

1

F0
2 (t) =

z2(t)−zmin
2

zmax
2 −zmin

2
, F1

2 (t) =
zmax
2 −z2(t)

zmax
2 −zmin

2

F0
3 (t) =

z3(t)−zmin
3

zmax
3 −zmin

3
, F1

3 (t) =
zmax
3 −z3(t)

zmax
3 −zmin

3

Finally, the weighting functions of the T-S model are given
by

µ1(z(t)) = F0
1 (t)F

0
2 (t)F

0
3 (t), µ2(z(t)) = F0

1 (t)F
0
2 (t)F

1
3 (t)

µ3(z(t)) = F0
1 (t)F

1
2 (t)F

0
3 (t), µ4(z(t)) = F0

1 (t)F
1
2 (t)F

1
3 (t)

µ5(z(t)) = F1
1 (t)F

0
2 (t)F

0
3 (t), µ6(z(t)) = F1

1 (t)F
0
2 (t)F

1
3 (t)

µ7(z(t)) = F1
1 (t)F

1
2 (t)F

0
3 (t), µ8(z(t)) = F1

1 (t)F
1
2 (t)F

1
3 (t)

wherez(t) = [z1(t) z2(t) z3(t)]T . Due the lake of space the
matrices of the T-S model are omitted. The figure 2 illustrates
the exactness between the nonlinear model and the T-S one.
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IV. OBSERVER DESIGN

After stabilizing the system, an observer is proposed to
estimate the unknown states in the form of equation (6) .
Assume that only the first and the third components of the
state vector are measured, which leads to the output equation

y(t) =Cx(t), C=

(

1 0 0 0
0 0 1 0

)

(28)



Note that the statex2(t) is not measured and it appears in
the weighting functions of the T-S system, then the weighting
functions of the observer must depend on the estimated state
x̂2(t). Then the classical approaches cannot be used. The
proposed approach is applied and the state estimation error
is given in the form

ė(t) =
4

∑
i=1

8

∑
j=1

hi(ξ )µ j(ẑ)(Ai −L jC)e(t) (29)

whereAi are obtain from

∂ f
∂x

(ξ ) =
4

∑
i=1

4

∑
j=

eT
n (i)en( j)

∂ fi
∂x j

(zi) (30)

Following the proposed approach, we have firstly

∂ f
∂x

(z) =









0 30 0 0
0 0 0 0
0 0 0 1
0 ∂ f4

∂x2
(z) ∂ f4

∂x3
(z) 0









(31)

where

∂ f4
∂x2

(z) = 100cos(z3)z2sin(z3)+100cos(z3)sin(z3)+
1
3

(32)

∂ f4
∂x3

(z) = 16.35cos(z3)+100z2
2cos(z3)

2−8.33usin(z3)

− 100z2
2sin(z3)

2+
1
3

(33)

Defining ξ1 =
∂ f4
∂x2

(z) and ξ2 =
∂ f4
∂x3

(z) as new premise vari-
ables it is easy to compute a T-S representation of the
jacobian ∂ f

∂x (z) in the form

∂ f
∂x

(z) =
4

∑
i=1

4

∑
j=

eT
n (i)en( j)

∂ fi
∂x j

(zi) =
4

∑
i=1

hi(x)Ai (34)

The premise variables satisfy 84.92≤ ξ1 ≤ 167.83 and 8.9≤
ξ2 ≤ 19.95, which leads to

F̃0
1 = ξ1−84.92

82.91 , F̃1
1 = 167.83−ξ1

82.91

F̃0
2 = ξ2−8.9

11.05 , F̃1
2 = 19.95−ξ2

11.05

and finally the weighting functions are given by

h1(z) = F̃1
1 F̃1

2 ,h2(z) = F̃0
1 F̃1

2
h3(z) = F̃1

1 F̃0
2 ,h4(z) = F̃0

1 F̃0
2

with the matrices

A1 =







0 30 0 0
0 0 0 0
0 0 0 1
0 84.92 8.9 0






,A2 =







0 30 0 0
0 0 0 0
0 0 0 1
0 167.83 8.9 0






,

A3 =







0 30 0 0
0 0 0 0
0 0 0 1
0 84.92 19.95 0






,A4 =







0 30 0 0
0 0 0 0
0 0 0 1
0 167.83 19.95 0







The stability of the system (29) is guaranteed if a solution
exists to the LMI constraints (23). And in the same time
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Fig. 4. State estimation without enhanced performances

the gainsL j , j = 1, ...,8 of the observer are obtained by
L j = P−1K j . The simulation results are given in the figure
4. We can point out that the observer dynamics present an
oscillaory phenomenon. The performances of the observer
can be improved by pole assignment in an LMI region. we
propose an extension of the previous method of synthesis
by placing the eigenvalues of the observer in LMI regionS
defined byS= {z∈C | Re(z)<−a, |z|< R}, which is an
intersection between the left plan defined by the Re(z) <
−a and the disc with center(0,0) and radiusR. So, the
problem is now to solve simultaneously the LMIs (23) and
the LMI constraints, corresponding to the LMI region, given
as follows (for more details see [7])

AT
i P+PAi −K jC−CTKT

j +2aP< 0 (35)
[

−RP PAi −K jC
AT

i P−CTKT
j −RP

]

< 0 (36)

i = 1, ...,4, j = 1, ...,8

With adequate choice ofa and R, these new conditions
provides gainsL j that reduce the imaginary part of the poles
of the dynamics of the state estimation error which ensure the
oscillatory phenomenon avoidance and enhances the transient
phase of the observer as shown in the figure 5.

V. CONCLUSIONS AND FUTURE WORKS

In this work, an observer methodology is proposed for
a nonlinear autonomous bycicle system. The approach is
based on T-S fuzzy modeling and differential mean value
theorem (DMVT). First, the nonlinear model of the system is
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Fig. 5. States and their estimations

transformed to a T-S fuzzy representation with unmeasurable
premise variables due to their dependence on unmeasured
states. The obtained model is derived form the sector
nonlinearity approach which provides an exact T-S model
with no loss of information. Secondly, an observer for this
type of systems is proposed. The state estimation error is
computed and made on the form of autonomous T-S model
with the differential mean value theorem. The new structure
of the state estimation error allows to use the Lyapunov
stability analysis. Then, stability conditions are obtained and
formalized in linear matrix inequality (LMI) constraints.An
application on bicycle system is proposed to illustrate the
proposed approach. The aim of this paper is the observer
design for safety, so, since the system is unstable a classic
tracking control law is applied to stabilize it and allows to
track a reference trajectory. After, an observer is designed
for the controlled system, as future works, it is interesting to
develop an observer- based control law with T-S approach
by using this observer.
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