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ABSTRACT 

This study addresses the optimization of fractional algorithms for the discrete-time control of linear and 

non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and 

genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The 

results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of 

systems. 
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1. Introduction 
 

Fractional calculus (FC) deals with the generalization of integrals and derivatives to a non-integer 

order [1-4]. In the last decades the application of FC verified a large development in the areas of physics 

and engineering and we can mention a large volume of research about viscoelasticity, signal processing, 

diffusion, modeling and control [5-14]. Nevertheless, FC is still considered an ‘exotic’ mathematical tool 

and its adoption requires some efforts towards the development of clear algorithms. One of the reasons 

for this state of affairs is the complexity of the algorithms involved in the calculation of fractional 

derivatives that require the adoption of approximations for their numerical calculation [15-22]. The area 

of dynamical systems and control has received a considerable attention from researchers working in FC 

and recently several papers addressing evolutionary concepts and fractional algorithms can be mentioned 

[26-30]. 

Bearing these ideas in mind, this paper addresses the optimal system control using fractional order 

algorithms and is organized as follows. Section 2 introduces the calculation of fractional derivatives and 

formulates the problem of optimization through genetic algorithms (GAs). Section 3 presents a set of 

experiments that demonstrate the effectiveness of the proposed optimization strategy. Finally, section 4 

outlines the main conclusions. 

 

2. Fundamental Concepts and Tools 
 

This section introduces the main mathematical concepts and tools used in the rest of the article. Sub-

section 2.1 presents the adopted definition of fractional derivative, the rules for discrete-time calculation 

and the fractional control algorithm. Sub-section 2.2 outlines the fundamental aspects underlying the GA 

optimization scheme. 
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2.1. Fractional order algorithms 
There are several definitions of fractional derivatives. The Riemann - Liouville, the Grünwald-Letnikov, 

and the Caputo definitions of a fractional derivative of a function ( )tf  are given by: 
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where ( )Γ  is the Euler’s gamma function, [ ]x  means the integer part of x, and h is the step time 

increment. 

It is also possible to generalize several results based on transforms, yielding expressions such as the 

Laplace expression: 
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where s and L represent the Laplace variable and operator, respectively. 

For a wide class of functions which appear in real physical and engineering applications, these definitions 

are equivalent. The expressions and lead to the standard results when 1=α  and demonstrate that 

fractional derivatives have memory, contrary to integer derivatives that consist in local operators. 

There is a long standing discussion, still going on, about the pros and cons of the different definitions. 

These debates are outside the scope of this paper, but, in short, while the Riemann - Liouville definition 

involves an initialization of fractional order, the Caputo counterpart requires integer order initial 

conditions which are easier to apply (often the Caputo’s initial conditions are called freely as ‘with 

physical meaning’). The Grünwald-Letnikov formulation is frequently adopted in numerical algorithms 

and control systems because it inspires a discrete-time calculation algorithm, based on the approximation 

of the time increment h through the sampling period T, yielding the equation in the z domain: 
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where ( ) ( ){ }tfZzF = . 

The implementation of expression (5) corresponds to an r-term truncated series given by: 
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Expression (5) represents the Euler (or first backward difference) approximation in the so-called zs →  

conversion scheme. Another possibility, often adopted in control system design, consists in the Tustin (or 
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bilinear) rule. The Euler and Tustin rational expressions, ( ) ( )11
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are often called generating approximants of zero and first order, respectively. Therefore, the 

generalization of these conversion methods leads to the non-integer order α results: 
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We can obtain a family of fractional differentiators generated by ( )1
0

−zH α  and ( )1
1

−zH α  weighted by 

the factors p and p−1 , yielding: 
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In order to get a rational expression, the final approximation corresponds to a truncated Taylor series or a 

rational fraction expansion. Due to its superior performance often it is used a fraction: 
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where ℵ∈k  denotes the order of the approximation. Moreover, usually it is adopted a Padé expansion in 

the neighborhood of 01 =−z  and, since one parameter is linearly dependent, it is established 10 =b . 

The FC concepts can be adopted in control theory and a typical case is the generalization of the classical 

PID controller. The fractional PID (FrPID), or μλDPI , consists in a control algorithm with the integer 

integral and derivative of the I and D actions replaced by their fractional generalizations, yielding the 

transfer function: 

 

( ) 1,0, ≤<++= − μλμλ sKsKKsG dipc  (10)
 

where s represents the Laplace variable, 1,0 ≤< μλ  are the fractional orders, and { }dip KKK ,,  denote 

the proportional, integral and derivative gains, respectively. 

 

 

2.2. Optimization through genetic algorithms 
 

A GA is a computational technique to find exact or approximate solutions of optimization problems 

[23-25]. GAs are simulated in a computing system, and consist in a population of representations of 

candidate solutions, of an optimization problem, that evolve toward better solutions. 
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Once the genetic representation and the fitness function are defined, the GA proceeds to initialize a 

population of solutions randomly, and then to improve it through the repetitive application of mutation, 

crossover and selection operators. 

The evolution usually starts from a population of randomly generated individuals. In each generation, 

not only the fitness of every individual in the population is evaluated, but also several individuals are 

stochastically selected from the current population and modified to form a new population. The new 

population is then used in the next iteration of the algorithm. The GA terminates when either the 

maximum number of generations N is produced, or a satisfactory fitness level has been reached. 

During the successive generation, a part or the totality of the population is selected to breed a new 

generation. Individual solutions are selected through a fitness-based process, where fitter solutions 

(measured by a fitness function) are usually more likely to be selected. The pseudo-code of the GA is: 

1. Choose the initial population 
2. Evaluate the fitness of each individual in the population 
3. Repeat 
3.1. Select best-ranking individuals to reproduce 
3.2. Breed new generation through crossover and mutation and give 
birth to offspring 
3.3. Evaluate the fitness of the offspring individuals 
3.4. Replace the worst ranked part of population with offspring 

4. Until termination 
The present article adopts also the common technique of elitism, which is the process of selecting the 

better individuals to form the parents in the offspring generation. 

 

3. Fractional Order Differentiation 
 

In this section we study system optimal control using fractional algorithms tuned through GAs. 

We start by defining an appropriate optimization index in the perspective of system control. We consider 

the integral squared error (ISE) defined as: 

 

( )∫=
T
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where t denotes the time variable, ( )te  represents the closed-loop control system error and T is a time 

period sufficiently long for settling the response close to steady-state. Other optimization indexes, such as 

the IAE, ITAE and ITSE, were tested leading to the same type of results and, therefore, in the sequel the 

analysis will concentrate merely in the ISE index. 

In a second place we define a simple prototype dynamical system for supporting the simulations. We 

adopt the open-loop plant with transfer function: 

 

( ) ( )τ+=
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where K and τ  are the open-loop system gain and time constant, respectively. 
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Since this linear plant constitutes a simple challenge to the controller we consider also a second system 

for comparison, namely the plant (12) including static backlash nonlinearity of width h [26-27]. 

In the closed-loop system is adopted a fractional-order control algorithm. The standard FrPID adopts 

three terms representative of the proportional, integral and derivative actions. However, in general, a 

different number of terms, either larger or smaller, can be the most adequate for the optimal control of a 

system with a given set of dynamical characteristics. Therefore, we adopt a more general algorithm given 

by: 
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where 1≥n  is the number of control actions of fractional order 11 ≤≤− iα  and gain 0≥iK . 

The closed loop system consists in plant (12), with or without backlash, under the action of algorithm 

(11), where the number of components n is not fixed a priori, but has to be calculated when optimizing 

the ISE index (11). Furthermore, it is considered a unit feedback and the standard case of optimization for 

a unit step reference input for the closed-loop system. 

Finally we must define the characteristics of the GA scheme for performing the optimization in the 

viewpoint of fitness (11). The controller fractional actions are implemented through (8)-(9) for a weight 

43=p . Each gene in the chromosome represents the gain and order pair ( )iiK α, , ni ,,1= . In order to 

avoid a combinatorial explosion of terms in (13), in the GA it was adopted a discretization of the 

fractional domain by defining 200 classes in the interval 11 ≤≤− iα . Therefore, two fractional orders less 

than 2.5% apart are rounded to the same value. Furthermore, two control components in (13) with 

identical orders are converted to a single one, that is, pairs such as ( )11 ,αaK  and ( )11 ,αbK  are simplified 

to ( )111 ,αba KK +  while the remaining control action is reset to ( )0,0 . 

A given set of values in a GA-solution can lead to an unstable closed-loop response. Therefore, the state 

variables are checked during the control system time simulation (was adopted the Runge-Kutta 4 and a 

maximum of 10=T  seconds) and once a threshold limit is reached the system is considered unstable. In 

this case, the simulation of that case is abandoned and a new set of values is generated randomly 

substituting the previous element of the GA population. 

The experiments demonstrated some difficulties in the GA acquiring the optimal solution. Consequently, 

were adopted several measures to overcome that problem, namely, a large GA population with 500=P  

elements, the crossover of all population elements and the adoption of elitism, a mutation probability of 

8%, and an evolution with 100=N  iterations. Even so, it was observed that after some iteration the GA 

tended to stabilize in sub-optimal solutions and other values for the GA parameters had no significant 

impact. Therefore, a complementary strategy was taken to prevent such behavior, by implementing a 

hierarchical GA with two loops. The inner loop, in a base level, consists in the GA described previously, 

while the outer loop, at a higher level, restarts the base GA population including the best solutions 

obtained so far. By other words, the base GA is repeated by including in its population the best solutions 

from previous executions and the hierarchical process stops only when two GA executions stabilize in 

identical final solutions. 
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Figure 1 depicts the evolution of the ISE index versus n for the closed-loop system with (12)-(13) 

( 1=K , 1=τ ) both without and with backlash ( 5.0=h ). Figures 2 e 3 depict the step response for the 

closed-loop system under the action of the fractional algorithm without and with backlash for .2,1=n  We 

verify that, as expected, the system with the nonlinearity reveals a larger value of ISE. We observe also 

that 1=n  is the worst case and that the controller converges rapidly to the adequate number of terms in 

(13). It should be noted that the numbers of terms in the two experiments is small, but it is not possible to 

generalize and other systems and nonlinearities may required more terms. In all cases it is straightforward 

to apply the hierarchical GA that yields the best number of terms and the optimal tuning. 
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1 2 3 4

n
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Fig. 1 Evolution of the ISE versus n for the closed-loop system consisting in plant (12), 1=K , 1=τ , 

without and with backlash, and the control algorithm (13). 
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Fig. 2 Closed-loop time response for 2,1=n  and plant (12), 1=K , 1=τ , without backlash. 
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Fig. 3 Closed-loop time response for 2,1=n  and plant (12), 1=K , 1=τ , with backlash 5.0=h . 
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4. Conclusions 
The recent advances in fractional calculus point towards important developments in the application of 

this mathematical concept. During the last years several algorithms for the application of fractional 

derivatives in control were proposed. The resulting systems are non-optimal revealing the controller 

design should be formulated as an optimization problem. In this paper a new method, based on 

evolutionary concepts, for the calculation of fractional control algorithms, was studied. The results 

demonstrate the excellent performance and the adaptability to different types of systems. 
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