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BLIND UNDERDETERMINED MIXTURE
IDENTIFICATION BY JOINT CANONICAL
DECOMPOSITION OF HO CUMULANTS

Ahmad KARFOULW"Y?), Swudent member, IEEE, Laurent ALBERA(*2), Member, IEEE, Gwénaél BIROT(1:2)

Abstract—A new family of cumulant-based algorithms is pro-
posed in order to blindly identify potentially underdetermined
mixtures of statistically independent sources. These algorithms
perform a joint CANonical Decomposition (CAND) of several
higher order cumulants through a CAND of a 3-way array with
special symmetries. These techniques are studied in terms of
identifiability, performance and numerical complexity. From a
signal processing viewpoint, the proposed methods are shown i)
to have a better estimation resolution and ii) to be able to process
more sources than the other classical cuamulant-based techniques.
Secondly, from a numerical analysis viewpoint, we deal with the
identifiability and the convergence speed of several 3-way array
decomposition procedures such as the symmetric ACDC scheme.
We also show how to accelerate the iterative CAND algorithms by
using differently the symmetries of the considered 3-way array.
Next, from a multi-linear algebra viewpoint the paper aims at
giving some insights on the uniqueness of a joint CAND of several
hermitian multi-way arrays compared to the CAND of only one
array. In addition, this allows us to extend the concept of Virtual
Array (VA) to the case of a combination of several VA’s.

Index Terms—Blind Underdetermined Mixture Identification
(BUMI), underdetermined mixture, canonical decomposition,
PARAFAC, INDSCAL, ICA, BSS.

I. INTRODUCTION

LIND Underdetermined Mixture Identification (BUMI)

is addressed in this paper. More particularly, we focus
on noisy static mixtures of statistical independent sources. In
such a context, the BUMI problem is defined by:

Problem 1: Given a vector random process {x[k]}ren,

find a (N x P) mixing matrix A = |ay,--- ,ap| potentially
underdetermined such that:
VkeN, x[k]= Aslk]+ v[k] (1)

where @, is the p-th column vector of A, s[k] =
[s1[k], -+ ,sp[k]]" is a random vector whose P components
are statistically independent and where v[k] is a (N x 1)
Gaussian noise vector, independent of s|k].

The resolution of problem 1 is of a great research interest
given its importance in a great variety of signal processing

Manuscript received October 10, 2008; accepted August 16, 2009. First
published September 09, 2009; current version published January 13, 2010.
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Alper Tunga Erdogan. This work is supported by
the French Government, in one part by the ANR DECOTES Contract (06-
BLAN-0074), in second part by the mv-EMD Contract(BLAN07-0314-02)
and in third part by the Brittany region Contract ACOMB-SOLARE.

The authors are with the INSERM U642, Rennes F-35000, France, and the
Université de Rennes 1, LTSI, Rennes F-35000, France.

applications, such as blind source separation [3], [23] or
estimation of direction of arrivals [17]. Then, many solutions
based on the concept of independent component analysis [11],
[22] were proposed in order to solve problem 1 when A
is an overdetermined mixture, say when the number N of
sensors is greater or equal than the number P of sources. For
instance some methods iteratively maximize the opposite of
the mutual information [4], [25], [37] or the negentropy [20,
chapter 8]. Other algorithms resort to cumulants, which allow
for a measure of statistical independence [36], [46] less natural
but easier to compute. In such a way, semi-algebraic methods
were defined in order to benefit from the structure of the data
cumulants as a function of the mixture. Particularly, some
methods [5], [18], [48] exploit Second Order (SO) cumulants
only, while others use either both SO and Fourth Order (FO)
cumulants [6], [11], [32], [34], [36], [46] or FO cumulants only
[1]. Contrary to the methods based on HO cumulants only [1],
the methods using SO cumulants [5], [6], [11], [18], [32], [34],
[36], [46], [48] attempt to identify an orthogonalized version of
the mixture. In practice, the latter converge faster as a function
of the number of samples provided that the noise covariance
is known, while the formers are asymptotically insensitive to
the presence of a Gaussian noise with unknown covariance.
Nevertheless, in practical fields, the overdetermined mixture
assumption does not always hold. For example, in radiocom-
munications when the probability of receiving more sources
than sensors increases with the reception bandwidth, then it
can be necessary to solve problem 1 in the underdetermined
case, for which P > N. Such a context may also occur
in biomedical engineering, especially when the number of
electrodes would be strongly reduced in order to propose
an ambulatory recording system [38]. Identifiability results
on underdetermined source separation were introduced a few
years ago [15], [45]. They showed that underdetermined
mixtures could be identified up to a trivial matrix, that is a
diagonal matrix and a permutation, provided that all sources
are non-Gaussian. Many methods [2], [12], [16], [17], [24],
[29], [30] have been developed since then. They use implicitly
[12], [17], [29], [30] or explicitly [16], [24] a CANonical
Decomposition (CAND) [31] of either SO [29], FO [12], [16],
[17], [30] or Higher Order (HO) [2], [24] cumulants of the
data. They decompose either one cumulant array [2], [16],
[24], [30] or several ones at a given statistical order [12],
[29]. In fact, CAND is an extension of the Singular Value
Decomposition (SVD) to the case of multi-way arrays without
requiring any orthogonality constraint. Other algorithms [14],



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 2, FEBRUARY 2010 2

[44] take advantage of pseudo-cumulants, which are given by
the (weighted) derivatives of the second characteristic function
at some points different from the origin. However, all previous
methods have some limits. Indeed, under some computational
cost constraints and for N > 3 they do not succeed in
exploiting all the information contained in the statistical tools
they used, except the FOOBI2 method [30]. But the latter
cannot process more than Ay (N < N?) sources, where N is
the number of sensors, which virtually appear when a Fourth
Order (FO) cumulant is used in practical contexts such as
radiocommunications [10].

In order to overcome these limitations and due to the
attractive properties of cumulants which make them easy to
handle, we propose in this paper a new family of BUMI
cumulant-based algorithms. These algorithms perform a joint
CAND of several HO cumulants through a CAND of a special
3-way array with special symmetries. These techniques are
studied in terms of identifiability, performance and numerical
complexity. From a signal processing viewpoint, the proposed
methods are shown 1) to have a better estimation resolution
and ii) to be able to process more sources than the other
classical cumulant-based techniques. Secondly, from a numer-
ical analysis viewpoint, we deal with the identifiability and
the convergence speed of several 3-way array decomposition
procedures such as the symmetric ACDC scheme [49]. We
also show how to accelerate the iterative CAND algorithms by
using differently the symmetries of the considered 3-way array.
Next, from a multi-linear algebra viewpoint the paper aims at
giving some insights on the uniqueness of a joint CAND of
several hermitian multi-way arrays compared to the CAND
of only one array. In addition, this allows us to extend the
concept of Virtual Array (VA) to the case of a combination of
several VA’s.

Thus, cumulants are presented in section II. In addition,
some basic definitions in multi-linear algebra and a tensor
reformulation of problem 1 are given in section III. In Section
IV, the new family of methods is presented. Next, detailed
identifiability and numerical complexity studies are proposed
in sections V and VI, respectively. Finally, simulation results
and conclusion are pointed out in sections VII and VIII,
respectively.

II. STATISTICAL TOOLS

Cumulants have many attractive properties which make
them easy to handle [23], [33]. In particular, they can be
expressed as a function of moments of smaller order, which
is shown by the Leonov and Shiryaev formula [33], [43].
The latter formula is well-known in the case of non-delayed
cumulants [33], [43]. But since in the following we will
use the time dependence of each source through cumulants,
we propose to rewrite this formula hereafter in the case of
delayed cumulants. To this end, let’s give some notations and
definitions.

Definition 1: A partition of a set Q(q) = {1,2,--- ,q} of
integers is a set of M (1 < M < q) nonempty disjunctive
subsets whose union is equal to )(q).

Now, let Q%)(M, q) be the m-th (1 < m < M) subset of
the j-th (1 <j<J(M,q)) partition of size M of Q(q). This
notation is illustrated in the following example:

Example 1: The different partitions of set {1,2,3} are:

o1,3) = {{1,2,3}}

{0V (2,3), Q% 3)} = {{1,2}.{3}}

(0 2.3),0023)} = {{1.3}.{2}}

(¥ 2,3), ﬂ“”)@ 3} = {2311}
{017(3,3),08"(3.3),0(3,3)} = {{1},{2},{3}}.

with J(1,3)=J(3,3) =1 and J(2,3) =3 different partitions.

Thus, we have the following proposition:

Proposition 1: Let {x[k]}ren be an N-dimensional ran-
dom process. Its q-th order delayed cumulants are given by:

Cum{y, [k], Zp ki —71 5D, - 2 nglk—Tq— D) =
q J(M,q)M

S-S Tl o

L m=l,eqd, (M,q)
where E[.] is the mathematical expectation, x,k — 7| is the
n-th component of vector [k — 1), T is a set {11, -+ ,T4_1}
of q—1 delays, £(w) equals +1 with the conventions, £(0)=1,
70=0, ' = x and =1 = x* denoting by * the complex
conjugate operator.

f(w 1)] )

_Tw

It is noteworthy that the estimation of cumulants using
equation (2) is appropriate when the processed sources are
stationary. But, in practice, sources are rarely so. In such a
case, time averaged cumulants have to be used instead of (2),
such as

Critl 2 1] =< Cum{a,, [k, molk—m ]S, - -,

]E(q—l)} > (3

where < . > is the discrete-time temporal mean operation
[2]. Such a statistics enjoy the multilinearity property and
they can be used as a measure of independence. Thus for
sake of convenience, time averaged cumulant are considered
throughout this paper.

T k=T 1

III. TOWARD A MULTI-WAY ARRAY FORMULATION

This section aims at showing how problem 1 can be solved
using a joint CAND of several HO cumulant arrays through a
multilinear algebra framework. Recall that multilinear algebra
is defined as the algebra of ¢g-way arrays (q > 2), that is, the
arrays whose elements are addressed by more than two indices.
It is noteworthy that multilinear algebra can be related to tensor
algebra through a multilinear map, called Segre map [13].
Now some definitions are necessary in order to understand
how the BUMI problem can be reformulated in a multilinear
algebra framework. First let’s begin by introducing a very
useful product operator:

Definition 2: The outer product T = u o .- o u(® of
q (¢ > 2) vectors u) € CNi (1 <i<q) is a rank-1 array
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Fig. 1. CAND of a rank-P 3-way array

of CNv<*Na \whose elements are defined by Tnr, o ng =
u%ll) . ugqu)

Then the matrix rank notion can be extended to the case of
q-way (q>2) arrays [26], [27], as following:

Definition 3: The rank of an array T € CN ¥ *Na  de-
noted by tk(T ), is the minimal number of rank-1 arrays
belonging to CN**"*Na that yield T in a linear combination.

Despite the similarities between matrices and g-way (q > 2)
arrays, the rank of the latter ones may exceed their dimensions.
Now, let’s see how the matrix SVD can be extended to the case
of multi-way arrays.

Definition 4: The CAND of a q-way (q > 2) array T €
CNve>xNa s the linear combination of P = vk(T) rank-1
q-way arrays belonging to CNv>Na_ that is:

P
TZZAPUI(,UOU;()Q)O”'O“;(?) 4)
p=1

where for each integer p, A, is a complex number and vectors
uz(,z) are complex N;-dimensional vectors.

Nevertheless, the ¢ matrices U = [ugl), e ,ug)], given by
(4) and well-called loading matrices of T, are not necessarily
unitary contrary to the matrix SVD. Figure 1 shows an
example of CAND in the case of a 3-way array. In addition,
equation (4) shows that the ¢ vectors u,(f) can be arbitrarily
scaled as long as their product remains the same. Also the
rank-1 terms can be permuted without modifying the sum.
Then we call the CAND of a ¢g-way array (¢ > 2) unique when
it is only subject to these trivial indeterminacies. Important
results on CAND uniqueness were obtained by Kruskal [26].
He showed that the CAND of a g-way array 7 is essentially
unique when the following sufficient condition is satisfied:

q
2P +q—1<> k(UY) (5)

i=1

where k(T') denotes the kruskal rank of T defined by the
maximal number 7 such that any set of r columns of T’
is linearly independent [29]. Kruskal’s condition was firstly
proposed for real 3-way arrays. Later it was extended to arrays
with order higher than three [40] and for complex HO arrays
[41]. The CAND uniqueness of specific 3-way arrays was also
studied. For instance the case when one loading matrix has a
full column rank [21] and the case where the HO array is tall in
one direction [31]. In practice, the computation of CAND may
require to handle unfolding matrices or vectors of multi-way
arrays. A useful way to unfold square even order multi-way
arrays is described below.

Definition 5: Let T be a square 2q-way (q > 1) array of
dimension N, and let { be the integer part of q/2. Then the
(i,7)-th component of the unfolding matrix mat,(T) of size
(N1 x N1Y) is given by:

(maty(7))i,; =

7;11,“' yMg—e,Mg—e41,""" sNq,MNg+1," ,N2g—0,N2g—£+41,""" ;N2q (6)

where i=(n; — 1)NT 1+ - 4 (ng_g — 1)N* + (nog_r41 —
DN oo (ngg—1)N+ng, and j=(ng41—1)NI 4. -+
(n2g—¢ = DN+ (ng—g41 = N+ 4 (ng = )N +ny.

For instance, let 7 be a square 6-way array of dimension
N. Then ¢ = 1 and the (¢, j)-th component of the unfolding
matrix mat;(7") is given by:

(ma‘tl (T))17 = 7;L1,n2,n37n4,n57n5 (7

where i = (ny — 1)N? + (n2 — 1)N +ng and j = (ng —
1)N? + (ns — 1)N + ns.

Another way to transform higher order arrays into matrices is
presented hereafter and is illustrated by figure 2.

Definition 6: Let T € CN>>*Na be a q-way (¢ > 2)
array. Then the (n;, m)-th component of the unfolding matrix
matg)(T) € CNxNix1NgN1--Niov gesociated to the i-th
mode (1<i <q) of T is given by:

(mats” (T

— 7711,---,ni,1,ni,ni+1,-~~,nq (8)
where m = (nH_l - 1)N1‘+2 R Nqu s Ni—l + (nH_Q —
1)Ni+3 e Nqu oo Nyt - an_l)NlNQ e Ni71+(n1_
1)NaN3 - - Niq + (ng—1)NsNy--- N;_q +- -+ n,;_1.

In addition, let’s introduce the following g-way array-to-vector
transformation:

Definition 7: Let T € CN*Na be a g-way (q>1) array.
Then the components of the Nj---Ny-dimensional vector
vec(T) are defined by:

VeC(T)(nl71)N2-<~Nq+(n271)1\73---Nq+---+nq = 7;L1,-~~ Mg (9)

Conversely, let unvec be the inverse operator such as

unvec (vec(T))=T.

Hermitian g-way arrays are considered in this paper, hence the
following definition:
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Fig. 2. Unfolding matrix of a 3-way array with respect to the first mode,

given by concatenating the vertical slices of the original 3-way array.

Definition 8: A complex gq-way (q > 2) array T is called
hermitian when its CAND takes the following form:

P
T = Z Mpus® ouf® oo ué@
p=1

(10)

where the P values )\, are real and where application (i)
is defined in proposition 1, that is, if the (P X P) diagonal
matrix A =diag{[A1, -, Ap|} is real and if all the loading

matrices of T are equal within a conjugate transformation.

Inserting the observation model (1) into (2) and using 1)
the statistical independence of the P source components, 1ii)
the statistical independence between the sources and the noise
and iii) the noise Gaussian distribution, we get for any integer
q=>2:

P
Coqa[T] = Z Cag,s, [7] a{;q o a;oq (1T)
p=1
where Cogs,[T] =< Cumf{sylk],splk — 71],...,sp[k —

Tg—1)s Splk — T41*, --.,Splk — T2g—1]*} > and where a°?
is the outer product of ¢ vectors a. Formula (11) conveys
the multilinearity property enjoyed by cumulant and moment
arrays [23]. Then, provided that the P sources have at least
M non-zero 2¢-th order delayed marginal cumulants, problem
1 can be reformulated as following:

Problem 2: Given M 2q-th (q > 2) order cumulant arrays
Coy =[T"™)] of {x[k]}rez associated to a set {T(™)} of (2q—
1)-dimensional time lags, find its joint CAND.

But, is it really possible to compute such a joint CAND,
especially when P is greater than the maximum number of
sources which can be processed by the classical cumulant-
based techniques [1], [2], [S], [6], [11], [12], [14], [16]-[18],
[24], [29], [30], [32], [34], [36], [46], [48]? Yes, it suffices
to choose the cumulant order (2¢) greater or equal than four
and six using the approaches proposed in sections IV-B and

IV-A, respectively. Nevertheless, for the sake of simplicity and
readability, we limited the presentation of our methods and
their identifiability study to a fixed statistical order 2¢ equal to
six and identical for all the proposed algorithms. An extension
to all other order would be then straightforward from sections
IV and V.

IV. TOWARD A 3-WAY ARRAY DECOMPOSITION

We present in this section a new family of methods, named
SIBI (SIxth order Blind mixture Identification), in order to
solve problem 2 when ¢ =3. This family is essentially com-
posed of two classes of techniques, namely the SAD (Semi-
Algebraic Decomposition) and ALS (Alternate Least Square)
SIBI approaches. Both classes can be described through two
steps.

The first step consists in identifying the P rank-1 arrays
Af) given by:

Vi<p< P, AP =ao0a0a; (12)

from a CAND of a special 3-way array Hy, of size (N3xN3x
M) whose ({1, {5, m)-th entry is given by:

[r)

— (Cn4:15,M6
ni,n2,n3,xr

,H@hfmm,m (13)

where £1 =ng+ (ng —1)N + (n; —1)N? and fo=n3 + (ns —
1)N + (ng — 1)N2. On the other hand, H,, can also be built
by stacking up the M hexacovariance matrices Cig 5 [T(™)] =
mat; (Cs »[T("™]) of size (N3 x N3) in the third direction.
From (11) and (13), we get:

Proposition 2: Given the P M-dimensional vectors b, =
(Co,s, [TM], -+, Co.5, [T, Hy, has the following CAND:

3 3)*
He =" a4V oal?) ob,
(

where apg) = a,®a, ®a, with @ the Kronecker product
operator and where A®) = [al(g), . ,al(f)], A®* and B=

[br,- -, bp] are the three loading matrices of H,.

(14)

Once the P N3-dimensional vectors aég) have been identified
from the CAND of H,, each array AB) s found by computing

! P
Agf) = unvec(aﬂgd)).

The second step consists in canonically decomposing each
rank-1 array .AZ(,?’) in order to identify each column vectors a,
of A. It is noteworthy that the way to implement this second
step is the same for all SIBI methods and is based on the
following proposition:

Proposition 3: Each (N x N?) unfolding matrix Ag’) =
matgl)(Az(f’)) is the horizontal concatenation of N (N X N)
matrices, which are of the form - a,a," with v € C.

In fact, y is equal to the (n, p)-th component, A, ,, of A when
the n-th horizontal matrix block of A;S) is concerned. Con-
sequently, the eigenvector jointly associated with the largest
eigenvalue of each of the N matrix blocks of A](D?’) allows to
estimate a,. Such an eigenvector can be computed using a
joint diagonalization procedure [7], [8], [49], [50].
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A. The SAD-SIBI approach

A semi-algebraic solution is proposed hereafter in order to
find decomposition (14). It consists in handling the M frontal
slices Hy(:,:,m) = C67w[7(7")} instead of H, itself. Then
according to (6) and (11) we can easily show that:

Proposition 4: Each hexacovariance matrix C’67m[7’(m)]
has the following algebraic structure:

Cez[r(™] = A® CosT™)] AGH
where (g s [T<m>]:diag{[c&51 [T(m)], RN [T(m)]]}.

5)

Since A® is not generally orthogonal, equation (15) does
not really correspond to the eigenvalue decomposition of
Ci,2 [T(™)], except when this latter has been prewhitened.
Let’s see how to perform such a prewhitening. Under assump-
tions 1 and 2 given by:

Assumption 1: The (N3 x P) matrix A®) s full column
rank.

and:
Assumption 2: The (M X P) matrix B is full column rank.
respectively, the following proposition holds:

Proposition 5: There is at least one rank-P positive
semidefinite matrix, C¢ 5, which is a linear combination of
the M matrices C 5[T(™)].

Its proof is given in appendix A. In some practical contexts,
for example when the P non-delayed source marginal Sixth
Order (SixO) cumulants have the same sign €, such as in
radiocommunications, a simple linear combination is given by
Ce.z = €Cg 5[0] where 0 = {0,0,0,0,0}. Otherwise, in the
general case, we have to resort to numerical methods such that
those presented in [47], [51] to compute Cj ,,[7]. In addition,
it is noteworthy that, matrix 66@ may be non-hermitian and
then should be replaced by (C 5 +Co %) /2 in order to ensure
the existence of its eigen-value decomposition. For the sake of
simplicity, we will assume in the sequel that matrix 66@ is
hermitian. Then proposition 5 ensures that Cg 5 has a square
root, which can be computed as following:

C = BAP (16)

where E; is the (N2 x P) unitary matrix whose columns
are the eigenvectors associated with the P largest eigenvalues
of 66,1, sorted in the diagonal matrix Ag. Since two square
roots of a positive semidefinite matrix are equal up to a unitary
matrix, we have:

ct = AW ¢, Uy (17)

where Cg .. &éﬁ, U, are the linear combination described in
proposition 5 of the M matrices (g ,[7(™)]+ g o[T™]") /2,
a square root of the positive definite diagonal matrix Zﬁ,s and

a unitary matrix. Consequently, the inverse matrix, 6(; :10/2, of
éé/i allows for a prewhitening of each matrix Cg 4[T™)],
say each matrix Cgq[T(™] = 6;;/206@[7-(”)](6;;/2)”

is unitarily similar to a diagonal matrix indexed by m as
described by the following equation:

616@[7_(770] _ U(;D[T("”)]IJ;H (18)

where D [T(m)] = (o5 [T(m)} E‘gi is diagonal. Thus, a
joint orthogonal diagonalization with the well-known semi-
algebraic JAD algorithm [7] allows for an identification of U,
up to a unitary trivial matrix. Nevertheless, U, is identifiable
provided that, according to the results of [5], the M (2q — 1)-
dimensional delays 7(™) are chosen such that:

Assumption 3: For each couple (p,q) of sources, there
exists at least one set "™ of delays for which:

Co,s,[T™]/Co.s, , # Co.5,[T™]/Co s, , (19)

It is noteworthy that assumption 3 is true under assumption 2.
Indeed, assumption 2 implies that the (M x P) matrix B(g ,
is full column rank and so that all columns of Bé@,s are
different. Hence equation (19). Thus, under assumption 2, the
JAD algorithm diagonalizes the M matrices Cg [T(™)] by
minimizing the following criterion:

U (U) = Y1 (U Coafr ™0 ),

with respect to (w.r.t.) to a unitary matrix U expressed as the
product of Givens rotations [19]. Once matrix U, has been
identified, matrix A® can be computed up to a trivial matrix

(20)

multiplying matrix 6(1;/1 (17) by the estimate of U,. This
approach will be referred to as SAD-SIBIjsp in the sequel.

B. The ALS-SIBI approaches

Another way to find decomposition (14) consists in itera-
tively and alternatively looking for the three loading matrices
A(B), A®)* and B of H, in the least square sense. More
precisely, from proposition 2 and definition 6, we have:

Proposition 6: Given the three unfolding matrices H (wl):
matél)(’)-Lx),Hgf):math) (H) and H§c3):mat§3) (Hz) of
He, we get HD=A®) (A oB)T HO=A®*(BpA®)T
and H) = B(A® 0 A®*)T where @ is the Khatri-Rao
product operator (columns-wise kronecker product) [42].

So, the following criterion can be minimized w.r.t. each of
the three matrices T(l),T(Q) and T in order to compute
the loading matrices A A and B of H, up to a trivial
matrix:

v (@A) = | HY -1O(@Por®) |} @

using the Alternate Least Square (ALS) procedure [42] where
||l.|| = denotes the Frobenius norm, giving rise to the ALS-
SIBIyns method. In fact, at each iteration ¢, we compute the
three estimates Tl(-z) (1 <i<3) one at a time by fixing both
the others as described below:

1 2 3
Tii = H;”((T,Eg;l @ TS(;,%W
T = Hg)((Titq T, )T
TS =HP (T 0 T

?

(22)

where T* denotes the pseudo-inverse of 7. Consequently,

matrices TE} ),Tl(f ) and Tff ) should converge to matrices
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A(?’), A®* and B, respectively, provided that the CAND
(14) is unique, which is ensured under assumptions 2 and the
following assumption:

Assumption 4: The (N®x P) matrix A® @ A®* is full
column rank.

It is noteworthy that one is entitled to expect some con-
vergence cycles in which all factors will evolve in the same
direction [39] and consequently a slow convergence of the
ALS-SIBlyns method. An improved version of the ALS
scheme, named Line Search (LS) ALS, was proposed (see
[39] and the references therein) in order to exit from these
convergence cycles. This procedure is based on the relaxation
factor concept, which consists in extrapolating the estimated
loading matrices many iterations ahead. Then, we decided to
apply this LS procedure to the ALS-SIBIyng method, giving
rise to the LSALS-SIBIyns algorithm. The extrapolation of
the i-th estimated loading matrix of H, is given by:

T =14

new 6(L)( - TE:)72> (23)

where T is the matrix that will be used in the it-th
iteration instead of T7(j71;)—1’ the term (ng)_l — Tx)_2) defines
the direction of the cycle and 39 is the relaxation factor
associated to the i-th loading matrix. In practice, the triplet
(BM, 332 8By of relaxation factors is chosen such that
LM =beta® = BB = jt!/™ where n is a fixed integer
[39]. Recent works [39] showed that the convergence speed
of the LSALS procedure could be also increased, especially
when loading matrices are strongly correlated. This induced an
enhanced version of the LSALS algorithm, named Enhanced
Line Search (ELS)ALS, in the real [39] and the complex [35]
fields. More precisely, the ELS procedure consists, at each
iteration 7t of the LSALS method, in finding the optimal
triplet (1), 5(2), 33)). So, when the ELS scheme is applied to
LSALS-SIBIyng giving rise to the ELSALS-SIBIyng method,
the following criterion:

v (8)

el

2
= HH(l) ) (G zt))®G(i‘3) ) . (24)

(it)

is minimized at each iteration it w.rt. (), (2 and B
where GEZZ) :T,EZ)_QJrﬂ(i)(TZ(»?_lle(;)_Q). The ELS scheme
allows to attain the final solution of a given cycle in only one
step. Note that the ELS procedure was implemented in the case
of three equal relaxation factors only, which is suboptimal but
less time-consuming.

However, by applying the previous ALS-like procedures to
H,., it amounts to assume a total independence between the
loading matrices, which is clearly wrong in our case. Thus
an alternative way of the ALS minimization would consists
in using the symmetries that exist between some loading
matrices of the considered multi-way array. In our case, the
first and the second loading matrices of H, are equal up
to a complex conjugate as shown in (14). The ACDC-like
procedures [49], [39, Appendix 7.2] exploit such symmetries.
In fact the ACDC algorithm [49] minimizes the following
weighted least square criterion w.r.t. V' and the M diagonal

(P x P) matrices A[r("™)]:

M
Vo(VA) =Y wn, HCGJET(M)] VARV (25)
m=1

where w,, € RT*. More particularly, the last minimization
problem is devised into two steps. The first one, named
Alternating Columns (AC), looks for the minimizer of (25)
w.r.t. a selected column vector v, of V' keeping the p—1 other
column vectors and the M matrices A[7("™)] fixed. The second
step, called Diagonal Centers (DC), minimizes equation (25)
w.r.t. the diagonal matrices A[T(™)] keeping V fixed. So, the
ACDC algorithm alternates, until convergence, between the P
consecutive AC sweeps, one by column vector of V', and the
DC step. Note that, an efficient way to initialize the ACDC
algorithm was recently proposed [50]. In the following, we
will refer to as the ALS-SIBIpcpc method when the ACDC
procedure is used. But, are the ACDC-like procedures [49],
[39, Appendix 7.2] the only way to decompose H,, in a least
square sense using its symmetries? No, there is another way
such as the solution that we propose hereafter. Furthermore,
we combined this new 3-way array CAND method with the
ELS scheme in order to accelerate its convergence, giving rise
to the ELSALSgyn procedure. In fact, the latter is mainly
based on the following proposition:

Proposition 7: Let ?NLE be the 3-way array of size (N> x
N3 x P) whose third (P x N®) unfolding matrix is given by
3
H( ) BnH(S) Then the p-th (N3><N3)fr0ntal slice of'?-l,,B

2 (3)H_

Hy(:,:,p), is a rank-1 matrix equal to a, )ap

The proof is straightforward. Indeed, from proposition 2 we
get ﬁf) = Ip(A® @ A®*)T which implies that the p-
th frontal slice of Hg is equal to A®diag{Ip(p,:)} A
where Ip(p,:) is the p-th row of the (P x P) identity matrix
Ip. Consequently, the eigenvector associated with the largest
eigenvalue of H(:, :, p) allows for an identification of the p-th
column vector of A up to a scalar factor. Now, let’s see how
the ELSALSgynm scheme uses this result. First the estimate,
T(tg)l, of the third loading matrix, B, of H, is computed at

7
iteration ¢t — 1 from equation (22). Next, using proposition

7, we compute the (P x N°) matrix T(f)1 = T
and build the 3-way array 7'“5 1 of size (N3 x N3 x P)

whose third (P x N°) unfolding matrix is equal to Tz(i)l
So, the eigenvector associated with the largest eigenvalue of
the p-th frontal slice of T;;_1 gives the p-th column vector of
Tgt) 1~ Thus, Tl(fll is computed as the conjugate of Tgtlzl.
Eventually, the ELS procedure is used in order to accelerate
the convergence of the proposed algorithm. Note that all these
steps are repeated until convergence.

The convergence speed of the five proposed ALS-SIBI ap-
proaches, namely ALS-SIBIyyns, LSALS-SIBIyns, ELSALS-
SIBIyns, ALS-SIBIacpc and ELSALS-SIBlsy, is studied
now. More precisely, we display the median value of
(21) over the independent trials as a function of the number
of iterations at the output of the five ALS-SIBI methods. In
fact, the latter methods are used to canonically decompose
the 3-way array H, built from equation (14) with M = 16
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Fig. 3. Loss function \Ilgl) at the output of the ALS-SIBI methods for P = 3
poorly angularly separated sources impinging on a ULA of [N = 2 sensors.

5-dimensional delays 7(™) = [7{"™) 7{m) 7m) 2(m) o] and

the estimated SixO delayed marginal cumulants of P = 3 an-
gularly close QPSK sources. The latter sources are assumed to
impinge on a Uniform Linear Array (ULA) of N = 2 sensors.
In addition, all the considered approaches are initialized using
the truncated HOSVD procedure [28]. Figure 3 shows, on the
one hand, the good contribution of the ELS procedure to the
ALS-SIBIyng method and on the other hand the interest for
the ELSALS-SIBIyyg algorithm in using symmetries of H,
in the way we propose.

V. IDENTIFIABILITY

An identifiability study of the SIBI family is proposed
hereafter under assumptions 1-3. In particular, the M time lag
vectors 7("™) are chosen such that a well-conditioned matrix
B is obtained. Furthermore, we have to select at least an
M = N?2 time lag vectors. Note that, in practice, the choose
of these time lag vectors relies on some prior information
on sources. Our identifiability study is fourfold. First from a
BUMI viewpoint, it gives the maximum number, P,,,,, of
sources which can be processed by the SIBI family. Secondly,
from a numerical analysis viewpoint, it tackles the identifia-
bility of the SAD, ACDC and ELSALSgyn procedures when
a 3-way array with special symmetries is considered. Next,
from a multilinear algebra viewpoint it gives some insights on
the uniqueness of a joint CAND of several hermitian multi-
way arrays. Finally, from the VA theory viewpoint, we extend
the VA concept [9] to the case of a combination of several
VA’s. Recall that the VA theory relies on the existence of Ngq
sensors which virtually appear when using the 2g-th order
statistical matrix C'y4 (0] [9]. Regardless the application area,
Ngq is equal to the maximal rank, rk,,qs, of the (N? x P)
matrix A@:

Nog = Tkmaz(AD) = rhpan (AP 0 A% (26)

where ¢, A?? denote the integer part of ¢/2 and the Khatri-
Rao product of ¢ matrices A, respectively. Some values of N,
in radiocommunications context are given in [9] for several
kinds of antennas. For instance, when a ULA of N sensors is
used, Ny is given by Nog = (N — 1) + 1.

Let’s now consider the SAD-SIBIjap method. P, is the
maximum value of P for which assumptions 1 and 2 are true.
Then we have:

Pmam = Tkm(mt (A(S)) = NG (27)

Regarding the five iterative ALS-SIBI approaches, their
identifiability study consists in looking for the rank maximal
of the 3-way array H, (14) they decompose. This should be
achieved provided that the CAND of H, is unique. Finding
this rank is usually a matter of trial and error [31]. Neverthe-
less, under assumption 2 and according to the results of [21]
we have:

Pm,ar = Tkmam (H(B)) = rkmam (B(A(3)®A(3)*)T) (28)

where (M x N®) H ;3) denotes the unfolding matrix associated
to the third direction of #,(14). For M > N6, the maximum
rank of H 503) is generically equal to N. Recall that a property
is well-called generic when it holds everywhere except for a set
of Lebesgue measure 0. However, in some applications such
as in radiocommunication contexts, matrix H 533) may belong
to this set. In this case, the previous property does not hold
generally. Intrinsically, we have:

rkmaz (Hg)) S Tkmaz (A(G)) :N12 (29)
where A® =A®) 5 AG)* But, since according to [9] N1z is
strictly lower than IV 6. the number maximal of sources which
can be processed using the ALS-SIBI approaches is then given
by:

Pmax - rkmaw (A(G)) - N12 (30)

So from a BUMI viewpoint and according to equations
(27) and (30) the SIBI methods can process more than A/}
sources. Note that N, is the maximum number of sources
the classical BUMI cumulant-based methods [2], [12], [16],
[17], [24], [29], [30] can process. Table I gives the number
P,.q: as a function of N for a ULA and for several cumulant-
based methods. From a numerical analysis viewpoint, we show
that: i) the SAD scheme is limited to 3-way arrays whose rank
is lower than their smallest dimension. ii) Both the ACDC and
ELSALSgvyn procedures succeed generically in performing
the CAND of a rank-N?2 (NxNxM) array if M > N?2. Conse-
quently, a more relaxed uniqueness condition can be obtained
when a joint CAND of several hermitian multi-way arrays
is performed. Since according to [9] Ns = 7kmaz(Cs 2[0]),
equation (30) shows that a maximal rank of A/j2 (>A) can be
achieved when Cs (0] and at least A7o—1 other arrays Cq (7]
with the same loading matrices are simultaneously considered.
This result extends the virtual array theory [9] to the case
where several 2g-th order cumulant array are simultaneously
used. Hence, a twofold increase of the virtual array aperture.
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N [2 3 4 5 6 7 8 |
SOBI [5] 2 3 4 5 [§ 7 8
JADE [6] 2 3 4 5 6 7 8

COM2 [11] 2 3 4 5 6 7 8

FastICA [20] 2 3 4 5 6 7 8

STOTD [32] 2 3 4 5 6 7 8

NC-STOTD [34] 2 3 4 5 6 7 8
G-STOTD [34] 2 3 4 5 [§ 7 8
Praz PBMCI [16] 2 4 6 8 10 12 14
SOBIUM2 [29] 2 4 7 9 1 13 15
FOOBII [30] 2 4 7 9 11 13 15
FOOBI2 [30] 2 5 7 9 11 13 15
SOBIUML1 [29] 3 5 7 9 11 13 15
FOBIUM [17] 3 5 7 9 11 13 15
6-BIOME [2] 3 5 7 9 11 13 15
SAD-SIBIjap 4 7 10 13 16 17 18
ALS-SIBIacpc 7T 13 19 25 31 37 43
ELSALS-SIBIyns | 7 13 19 25 31 37 43
ELSALS-SIBIsyn | 7 13 19 25 31 37 43

TABLE I
Priaz AS A FUNCTION OF THE NUMBER N OF SENSORS OF A ULA FOR
DIFFERENT CUMULANT-BASED METHODS

VI. NUMERICAL COMPLEXITY

The numerical complexity of the SIBI family is addressed
hereafter. It is computed and compared to the one of classi-
cal BUMI methods, namely SOBI [5], JADE [6], FastICA
[20, chapter 8], COM2 [11], FOOBI1 [30], FOOBI2 [30],
FOBIUM [17] and 6-BIOME [2]. More particularly, it is
computed in terms of number of floating point (complex) oper-
ations (flops) required to identify the (/N xP) mixing matrix A
from K data snapshots. Note that a complex flop is defined as
the sum of a complex multiplication and a complex addition.
In practice, only multiplications are counted which does not
affect the magnitude of the numerical complexity. Table II
shows the computational complexity of the aforementioned
methods where f4(N)=0O[N*/8] and fs(N)=0O[N®/72] de-
note the number of free entries of Cy 5 and Cg 5, respectively.
In addition, D and I denote the desired resolution in the unit
disk for the COM2 approach and the number of sweeps used
in the joint diagonalization algorithms, respectively. J, Jp, J2
and J3 are the maximal numbers of iterations used by FastICA,
ELSALS-SIBIyngs, ELSALS-SIBIgynm and ALS-SIBlacpce,
respectively. .J4 is the maximal number of iterations used for
the estimation of the relaxation factor in ELSALS-SIBIyng
and ELSALS-SIBIgyn. Eventually, M represents the number
of delay lags used in SOBI, FOBIUM and the SIBI techniques,
M; = max{N® P}, m; = min{N® P}, My = max{M, P}
and mo=min{M, P}.

Figure 4 shows the minimum numerical complexity of the
SIBI family and the aforementioned classical BUMI methods,
as a function of the number P of sources. Indeed, for each
value of P the minimum number /V,,;, of sensors of a ULA
is computed such that the identifiability condition of each
method is still valid. Hence, N,,;, = P for SOBI, JADE,
FastICA, COM2 and N, < P <q(Npin—1)+1 for the other
algorithms allowing for an identification of underdetermined
mixtures. Note that the parameter q is directly related to the
identifiability condition of each method. For example, ¢ =2 for
FOOBII1, FOOBI2, FOBIUM and 6-BIOME, whereas ¢ =3
for the SAD-SIBIjsp approach and ¢ =6 for both the ALS-

T T
ELSALS-SIBI ;
ELSALSSIBI S & e

T
FastiCA

log, (Complexity)

| FoBIUM FOOBI2
6-BIOME

2 3 4 5 6 7 8 9 10
Number of sources

FOOBI

Fig. 4. Minimal comlexity of the SIBI family and other BUMI methods as
a function of the number of sources, for a ULA and 1000 data snapshots.

SIBIpocpc and the ALS-SIBI techniques. M, I and D are
chosen to be equal to 9, 1+floor{ P*/?} and 0.05, respectively.
As far as the iterative approaches are concerned, .JJ and J; are
chosen such that a good identification of the mixing matrix is
guaranteed, hence J = 1000, J; = 800, Jo = 400, J3 = 600.
On the other hand, we put J;, = 20, which ensures a good
estimation of the relaxation factor. Note that the latter three
parameters are highly related to many factors such as SNR,
direction of arrivals, number of sources, number of samples,
etc. As depicted in figure 4, the ELSALS-SIBI approaches
belong to the group of the more expensive methods such as
FastICA whereas the SAD-SIBI technique is less expensive as
6-BIOME, FOBIUM, COM2 FOOBI1.

VII. SIMULATION RESULTS

Five performance evaluation studies of the SIBI family
are presented hereafter, and more precisely the performance
of SAD-SIBIjap, ALS-SIBIacpc and ELSALS-SIBlgym
for both underdetermined and overdetermined mixtures of
sources. The performance analysis was achieved using the
criterion D(A, A) = (ai,az,--,ap), which measures a
pseudo-distance between mixture A and its estimate A where
ap, = minj<;<p d(a,, @;) with d the pseudo-distance between
vectors defined by [17]:

d(u,v) = 1= [[u"v|*/ |[u|* o] €10

It is noteworthy that only criterion «; is displayed in figures
5,7, 8 and 9 since the P — 1 other criteria o, have shown
identical results. The P sources considered in this section are
Quadrature Phase Shift Keying (QPSK) linearly modulated
with pulse shape filter corresponding to a 1/2-Nyquist filter
with a roll-off of 0.3. The latters are assumed to impinge on
a ULA of N sensors and are chosen to be well angularly
separated.

Both first studies consist in evaluating the performance of
the SIBI family in a strongly underdetermined mixture which
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Computational complexity
N: number of sensors, P: number of sources, M : number of time lags, L: number of data samples, I: number of sweeps, J, J1, J2, J3, Ja:
number of iterations in FastICA, in the ELSALS-SIBIyns, ELSALS-SIBIsy in the estimation of the relaxation factor in ELSALS-SIBI and in
the ALS-SIBIacDc, respectively

COM2 min{LN?/2+ 4N3/3 + PNL,2LN?} + min{121 f4(P)P% + 21 P3 + 3L f4(P) + LP? 13ILP?/2} + 71P?/D?
FastICA min{LN2/2+4N3/3 + PNL,2LN?} + J[2(P —1)(P + L) + 5LP(P + 1)/2}
SOBI MLN?/2+4/3N3+ PN + (PN?2 + PZN)M + IP(P — 1)(1TM + 75 + 4P + 4PM)/2
JADE min{LN?/2+4N3/3 + PNL,2LN?} + min{4P%/3,8P3(P? + 3)} + 3L f4(P) + IP%(75 + 21P + 4P2)/2 + LP?
FOBIUM 3MLfi(N)+2N%/3+P2(3N?—P)/3+(M—1)N®/2+IN?(N?2—1){4N? (M —1)+17(M —1)+4N2+75}/2+2N3P
FOOBI1 3Lf4s(N)+2N®/3+ P2(3N? — P)/3+ N?P + N?P?2 + 2P(P + 1)N* + min{7M3sm3 + 11m3/3,3Msm3} + IP(P —
1)[4P? 4+ 21P + 75]/2 + N2P(P + 1) + min{6 N3P, (2N3/3 + (3N — 1)/3)P}
FOOBI2 3Lfs(N)+2N%/3+ (3N? — P)P%2/3+ N?P +2N2?P?2 + P2N3 + IP(P —1)[4PN? + 1TN? + 4P + 75]/2+ N2P(P +
1) + min{6N3P, (2N3/3 + (3N — 1)/3) P}
6-BIOME 5Lfs(N)+2NY/3+ P2(3N3 — P)/3+ N3P+ N(8Mam?2 + 11m3/3) + P2N3(N — 1)+ IP(P - 1)[75 + 9N(N — 1) +

8PN(N — 1) +4P] + PIN(N — 1)(4N? + 75 + 4N + 17N)/2

SAD-SIBI;Ap

5LM f6(N)+4N°/3+PN>+M(PN®+PZN3)+T1P(P—1)[APM+17TM+4P+75]/2+PIN(N—1)[4N?+21N +75]/2

ALS-SIBIAchG

5LM f6(N)+ (2MPN® +2NY/3+ N3 +4P3/3+ (M + 1)P2N3 + (M + 1)P%)J3 + PIN(N — 1)[AN? + 21N + 75]/2

ELSALS-SIBIyns
PIN(N — 1)[4N? + 21N + 75]/2

5LM fo(N) + [(P + 8P?)(2M N3 + N%) + 3PMN® + 11P3 + 3P%2 + 8N°M + 8N3MP + 6NSMP + 337J4]J1 +

ELSALS-SIBIsy M

6NSMP + 337.J4]Jo + PIN(N — 1)[AN

5LM f(N) + [PM NS + TMym7 + 11m§f + PMNS +7Mym3 + 11m3 /3 + PMN® + 2PN° + 8NSM + 8N3MP +
+ 21N + 75]/2

TABLE 11
NUMERICAL COMPLEXITY OF THE SIBI FAMILY AND CLASSICAL CUMULANT-BASED METHODS IN TERMS OF COMPLEX FLOPS

ALS-SIBI e

ELSALS-SIBI
SAD-SIBI i SYM

ALS-SIBI, e

ELSALS-SIBI,,

100 200 300 400 500 600 700 800 800 1000
Number of samples

Fig. 5. «j for a ULA of 2 sensors, 4 QPSK’s with the same SNR=15dB
and two numbers M of delays: M =9 (black line) and M =27 (grey line).

cannot be processed by any classical cumulant method based
on at most order 6, say P >4 sources from a ULA of only
N = 2 sensors. The sources have the same Signal-to-Noise
Ratio (SNR) equal to 15 dB. On the one hand, figure 5 shows
the variation of o at the output of the three SIBI methods as
a function of the number of samples for P = 4 sources with
carrier residuals such that f., 7. =0, f.,T. = 0.25, f.,T. =
0.5, fc,T. =0.75. In addition, the performance was compared
for two numbers M of sets (") of delays, say M =9 and
M =27. Figure 5 shows a good behavior of the SIBI family.
Besides, the semi-algebraic SAD-SIBIjap method seems to
be insensitive to the increase in the number M of used sets of
delays, contrary to the iterative ALS-SIBIpcpc and ELSALS-

T
ALS-SIBI
4
10 >Slacoc
X
[}
E
3 ' ;
;M —
(Y
0 Y ELSALS-SIBI
= (LT SYM
LAY
o, &
KY “«
oy ‘i,\"'ﬂ
% Yy !ll"h
! ’m./%.

500 1000 1500 2000 2500 3000
Samples

Fig. 6. Variation of the worst o, criterion for each data sample for a ULA
of 2 sensors and 7 QPSK’s of SNR = 15 dB.

SIBIsyn algorithms. As shown in section V, more statistical
information may ensure the uniqueness of CAND and then a
good quality of factor’s identification. Since better results are
obtained for M = 27 sets of delays, the latter were used in
the following studies. On the other hand, the case of P = 7
sources with residual carriers given by f.,T. = 0, f.,T. =
0.15, fe,Te = 0.3, fo,Te = 045, fo, T, = 0.6, f,T. = 0.75,
and f..T, = 0.9, is considered in figure 6. Note that, in such a
practical context, only ALS-SIBIAcpc and ELSALS-SIBlIsym
are able to process as many sources, as mentioned in table I.
More precisely, figure 6 shows the maximum c,, named oy ax,
for each data sample at the output of ALS-SIBIxcpc and
ELSALS-SIBIsv, say the worst performance over all sources
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Fig. 7. a1 for a ULA of 2 sensors and 3 QPSK’s of SNR=15 dB.

of both considered methods. It appears that both methods
are effectively able to process up to seven sources from a
ULA of two sensors. In addition, in comparison with figure
5, ELSALS-SIBIgynm seems to be less sensitive to a strong
increase of the number P of sources even it also needs more
samples to give a constant performance as P increases.

The third study consists in comparing, in a more sym-
pathetic underdetermined mixture case, the SIBI family and
cumulant-based methods such as FOBIUM [17], 6-BIOME
[2], as a function of the number of samples. For this purpose
N =2 sensors and P =3 sources are considered with residual
carriers given by f.,T. = 0, fo,T. = 0.35, fe,Te = 0.7 and
an SNR of 15 dB. While FOBIUM and 6-BIOME appear to
be efficient in figure 7, especially when the number of samples
increases, the SIBI family shows a higher performance even
for a small number of samples.

Now we evaluate the influence of SNR on the performance
of the SAD-SIBIjap, ALS-SIBIacpc, ELSALS-SIBlgy,
FOBIUM and 6-BIOME using the same application context
as the one used in figure 7. Under the assumptions, figure 8
shows that the five methods have a similar behavior for small
values of SNR. Nevertheless, the SIBI techniques give better
results as soon as SNR increases beyond 0 dB.

Eventually, figure 9 shows the variations of «; as a function
of the spatial correlation factor of a Gaussian noise at the
output of the three considered SIBI approaches and seven
classical cumulant-based methods such as COM2 [11], Fas-
tICA [20, chapter 8], FOOBI1, SOBI [5], JADE [6], 6-BIOME
and FOBIUM. For this purpose, we considered 1000 samples,
N = 3 sensors and P = 2 sources with residual carriers
such that f., T, =0, f.,T. = 0.65 and a SNR of 5 dB for
all sources. Note that the Gaussian noise model used in this
simulation is the sum of an internal noise v;,[k] and an
external noise Yoq¢|k] of covariance matrices C’é’f,, [k, 0] and

6-BIOME

FOBIUM

ALSSIBI, .o

10°| SADSIBI,,

NS
30 20 A0 0 10 20 30 4 50
SNR

Fig. 8. oy for a ULA of 2 sensors and 3 QPSK’s of 1000 samples.

Cg“j [k, 0], respectively, such that:

; g 2 g 2
O30l = 50(r—0)  C8[0)ng =501 (32)
where o2, p, Cy,[0],q = C[0], 4 + C§%4[0],, are the
total noise variance per sensor, the noise spatial correlation
factor and the (7, ¢)-th component of the total noise covariance
matrix, respectively. The computer results show on the one
hand how the performance of the SIBI family is stable, even
for a strong noise spatial correlation. In one hand, the classical
methods seem to be less robust, especially COM2, FastICA,
JADE and SOBI which require a prior spatial whitening based
on SO cumulants.

VIII. CONCLUSION

We proposed a new class of BUMI methods based on the
joint CAND of a set of HO cumulant arrays. This class of
algorithms is described through SixO cumulants, giving rise
to two SixO subfamilies of techniques, namely the SAD-
SIBI and the ALS-SIBI methods. More particularly, these
two families perform a CAND of a 3-way array built from
a set of SixO cumulant arrays but in a different way. Indeed,
the former approach is algebraic while the latter is iterative.
All approaches were theoretically studied especially in terms
of identifiability and computational complexity. In particular,
the identifiability analysis showed that the SIBI algorithms
can process more sources than the classical cumulant-based
methods. In addition, computer results showed the good be-
havior of the SIBI family against classical methods, for both
overdetermined and underdetermined mixtures of sources.
Besides, from a numerical analysis viewpoint, we deal with
the identifiability and the convergence speed of several 3-way
array decomposition procedures such as the symmetric ACDC
scheme. We also show how to accelerate the iterative CAND
of a 3-way array, which has special symmetries. Next, from a
multi-linear algebra viewpoint we give some insights on the
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Fig. 9. o1 as a function of the spatial correlation factor of a Gaussian noise
for a ULA of 3 sensors and 2 QPSK’s of 1000 samples.

uniqueness of a joint CAND of several hermitian multi-way
arrays compared to the CAND of only one array. In addition,
this allows us to extend the concept of Virtual Array (VA) to
the case of a combination of several VA’s. Indeed, the use of
several VA’s with the same number of virtual sensors amounts
to use a VA with a higher aperture.

APPENDIX A
PROOF OF PROPOSITION 5

The full column rank of B implies that there is at least one
M -dimensional vector 3 with values in the complex field such
that:

BB=][1,1,---,1]"eC” (33)

According to the definition of matrix B given in proposition
2, (33) is equivalent to the following equation:

M
> Buleslr™] =1p (34)
m=1

where (3, is the m-th component of the M -dimensional
column vector 3 and Ip is the (P x P) identity matrix. Then,
under assumption 1, the following matrix:

M M
> BuCoalt™] = AP (D Bulas[r™NAD (35)
m=1 m=1

is a rank-P positive semidefinite matrix equal to AB AGH,
Hence the result.
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