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[1] Time series in statistical climatology are classically represented by additive models. For
example, a seasonal part and a linear trend are often included as components of the sum.
Less frequently, hidden elements (e.g., to represent the impact of volcanic forcing on
temperatures) can be integrated. Depending on the complexity and the interactions among
the different components, the statistical inference challenge can quickly become difficult,
especially in a multivariate context where the timings and contributions of hidden signals
are unknown. In this article we focus on the statistical problem of decomposing
multivariate time series that may contain both nonlinear trends and change points
(discontinuities), the change points being assumed to occur simultaneously in time for all
variables in the multivariate analysis. The motivation for such a study comes from the
statistical analysis of the West African monsoon (WAM) phenomenon for which
unknown preonset and onset dates occur each year. The impacts of such onsets can be
statistically viewed as yearly change points that affect, almost synchronously, trends in
observed time series such as daily Outgoing Longwave Radiation and the Intertropical
Discontinuity. Our proposed model corresponds to a multivariate additive model with
nonlinear trends and possible yearly discontinuities, modeling the onsets. An inference
scheme based on a nonlinear Kalman filtering approach is proposed. It enables to identify
the different parts hidden in the original multivariate vector. Our inference strategy is
tested on simulated data and applied to the analysis of the WAM phenomenon during the
period 1979–2008. Our extracted onset dates are then compared to the ones obtained from
past studies.

Citation: Gazeaux, J., E. Flaounas, P. Naveau, and A. Hannart (2011), Inferring change points and nonlinear trends in
multivariate time series: Application to West African monsoon onset timings estimation, J. Geophys. Res., 116, D05101,
doi:10.1029/2010JD014723.

1. Introduction

[2] Climate time series can often be affected by artificial
shifts and/or natural discontinuities due to changes in mea-
surement conditions for the former and physical changes for
the latter. To detect and interpret such abrupt and local
shifts, many so‐called change point statistical procedures
have been developed and studied in time series analysis
[e.g., Beaulieu et al., 2007]. Current methods simultaneously
determine the number of change points and infer their posi-

tions. Beyond the specific context of homogenization in
climatology [e.g., Caussinus and Mestre, 2004], the change
point problem is a vast and extensively treated domain of
statistics, with applications in econometrics, finance, biol-
ogy, agronomy and hydrology, among others. A general
review of most common approaches can be found in work by
Reeves et al. [2007]. In a frequentist context, Davis et al.
[2006] provided a genetic optimization algorithm to extract
change points in nonstationary univariate time series using
Minimum Description Length principle assuming piecewise
autoregressive models. Within a Bayesian framework [e.g.,
Chib, 1998; Lavielle and LeBarbier, 2001], Hannart and
Naveau [2009] recently proposed a fast and efficient algo-
rithm to perform a multiple change point detection tech-
nique based in segmenting the time series into subsequences
and on prior knowledge derived from past homogenization
studies. One common assumption in most change point
algorithms is that smooth trends have been removed prior
to applying a chosen detection procedure. Basically, this
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means that the data under study are assumed to come from a
zero mean stationary signal affected by an unobserved
change point process that characterizes the timing and the
amplitudes of the hidden shifts. For the practitioner, this
assumption implies a procedure that has two independent
steps: (1) the removal of trends and (2) the extraction of
change points. This makes sense in homogenization because
meteorologists [e.g., Caussinus and Mestre, 2004] classi-
cally work with pairwise differences from a set of tempera-
ture records, and an artificial shift in one time series should
remain in the differences while smooth trends disappear by
differencing. In other applications this two‐step strategy may
not be optimal, and the assumption of a zero mean stationary
signal with shifts in step 2 can be challenged. To illustrate
this issue, one can imagine two idealized cases. First, two
time series, say, of daily methane and ozone recorded at the
same station, have a few common artificial discontinuities,
e.g., due to changes in the station location. Making the
difference between these two series would not necessarily
remove trends because methane and ozone may have dif-
ferent low‐frequency signatures. The second case could be
of two temperature recordings over a climatic homogeneous
region in which spatially coherent abrupt changes occur
synchronously in time (maybe due to weather regimes mod-
ifications or network‐wide changes in observing practice).
Here having synchronous breakpoints implies that taking
the difference between the two time series could greatly
diminish the hidden shifts intensity and consequently make
it impossible to find change points from this difference. For
these two examples one option could be to preprocess each
series independently in order to remove the low‐frequency
components. Subtracting these low‐frequency components
in order to work with zero mean stationary signals can still
be an issue because large change points induce a strong bias
in the overall background variance estimation, and conse-
quently, this may lead to estimation errors of these low‐
frequency components. In addition, any estimation errors
produced during the first step (the removal of trends) can
propagate other estimation errors into the second step (the
change point extraction procedure). Finally, a joint statistical
analysis should improve the detection, because the hidden
signal is supposed to affect all time series (with different
degree). Ideally, it would be of interest to propose a global
model and a general inference approach that bypasses the
two‐step estimation procedure. In its most general form this
objective is overly complex because each time series can have
its own nonlinear trend and share hidden change points.
Consequently, additional assumptions are needed and they
should be driven by the application at hand.
[3] The statistical model presented in this study is applied

on both simulated and real climatological data. Section 2
provides the background theory on the real data applica-
tion, which corresponds to the detection of the West African
monsoon (WAM) onset and explains the statistical problem
concerning the estimation of unknown yearly onsets tim-
ings. Section 3 corresponds to the main statistical part of this
work. Our statistical model is defined there, and the infer-
ence scheme used to estimate unknown quantities is pro-
posed and tested on simulated data. Then this scheme is
applied on two variables representative of the WAM onset,
for the period 1979–2008. The extracted onsets are com-

pared to past results. Conclusions and perspectives are dis-
cussed in section 4. Appendix A provides the technical parts
of our algorithm and technical details about our data sets.

2. West African Monsoon Onsets

[4] The West African monsoon (WAM) regulates the
rainfall season and is of paramount importance for food
security and local economy. The northern WAM propaga-
tion interacts with other regional climatic features (such as
the African Easterly Waves) which may result in the
cyclogenesis budding within the West African coast and
eventually the initiation of tropical cyclones [Thorncroft and
Hodges, 2001].
[5] The rain band associated to the WAM makes part of

the seasonal cycle of the Intertropical Convergence Zone
(ITCZ). Following the ITCZ intraseasonal cycle, the WAM
blows over West Africa from early spring to early autumn,
advecting humidity and regulating the overland ITCZ
location. The WAM onset corresponds to the abrupt dis-
placement of the ITCZ and the WAM toward the north and
signalizes the initialization of the rainy season for the Sahel.
To illustrate the relation between the WAM and the ITCZ,
Figure 1 presents monthly averages of Outgoing Longwave
Radiation (OLR) superimposed over 925 hPa wind circu-
lation patterns for the period 1979–2008. The OLR values
are taken from the National Oceanic and Atmospheric
Administration (NOAA) archive [Liebmann and Smith,
1996] and is used as a proxy for deep convection since low
OLR values are associated to the cold cloud tops of convec-
tive systems. The OLR data set is interpolated to a 2.5 ×
2.5 grid and corresponds to mean daily values. The wind
data are taken from the National Center for Environmental
Prediction (NCEP) 2 reanalysis [Kanamitsu et al., 2002],
also corresponding to mean daily values interpolated to a
2.5 × 2.5 grid. For all months, the ITCZ is marked by low
OLR values, and the WAM is represented by the southwest
flow. The WAM, due to its charge in humidity, is cooler and
more humid than the northeast dry and warm Harmattan
wind which originates from the Sahara desert. Hence, a
zone with frontal characteristics is created which propagates
according to the WAM inland penetration. This frontal zone
is referred to as the Intertropical Discontinuity (ITD). Due
to the different direction of these two winds, the location of
the ITD is determined by the zero isotach of the zonal wind.
From May until early June the ITCZ is strong and located
over the Guinean coast (approximately at 5N). Similarly,
the WAM presents a weak inland intrusion, and hence the
ITD is located along 15N (preonset period). On the other
hand, from July to August the ITCZ is installed over the
Sahel (along 10N), and the ITD reaches 20N (postonset
period). The transition from the preonset period to the post-
onset period is characterized by the significant weakening of
convection over the entire region and is detected to occur
during late June.
[6] Taking advantage of the zonal symmetry of the ITCZ

and the ITD over West Africa, Figure 2 shows Hovmoeller
diagrams of three random years (1992, 1998, and 2005) for
the OLR values superimposing the ITD location. In these
diagrams the OLR values and the ITD location are averaged
between 10W and 10E and then smoothed by a moving
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average of 2 days to eliminate intense variability. For the
3 years plotted, it is important to underline the repeat of
the same time‐latitude pattern for both OLR and ITD. The
northward displacement of the ITD is also accompanied by
the decrease of OLR values.
[7] Previous studies of rainfall climatology [Nicholson,

1981; Sultan and Janicot, 2000; Le Barbé et al., 2002]
have put into light the intraseasonal cycle of the ITCZ.

Detecting the initialization of the rainy period over the Sahel
(10N to 20N), which is characterized by abrupt changes in
the regional atmospheric circulation and rainfall, is currently
an object of active research [Fontaine et al., 2008].
[8] By plotting the average precipitation between 10W

and 10E along 15N from the NCEP2 reanalysis database,
Sultan and Janicot [2003] identified two breaks in the
positive rainfall slope, and they interpreted them as pre-
onset dates (when the ITD reaches 15N) and onset dates
(installation of the ITCZ along 10N). Fontaine and Louvet
[2006] analyzed rainfall data to define two precipitation
indexes. The first one was based on averaging precipitation
over the region (10W to 10E and the equator to 7.5N) and the
second one over the same longitude band but with different
latitudes, from the equator to 20N. Whenever the difference
between these two indexes became positive for at least
20 days, an onset was considered to have taken place during
the first instant of this period. Finally, Fontaine et al. [2008]
studied OLR data to determine onset dates by calculating
percentages of deep convection occurrences.
[9] Inspired by these different studies, we aim at pro-

posing a unifying statistical approach that can view such
onsets as yearly change points that affect, almost syn-
chronously, multivariate time series. Following the afore-
mentioned authors, we construct two time series from two
databases. First of all, we construct a time series of daily
OLR fields (taken from the NOAA archive) within the
Sahel region (10W to 10E and 12.5N to 20N) for each year
from 1979 to 2008. The 12.5N boundary of the chosen

Figure 2. Hovmoeller diagram of OLR. OLR values were
averaged from 10W to 10E and smoothed by a moving aver-
age of +/−2 days. Thick black line corresponds to the ITD
position as the zero zonal wind isotach at 925 hPa. The ver-
tical black bars represent the dates of the onset we estimated.
We zoomed the time axis to better show the phenomena.

Figure 1. Illustration of the onset phenomena: Monthly
averages of the 925 hPa atmospheric circulation and OLR
fields from May to August. Thick contour represents the
zero zonal wind isotach.
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domain is justified from the fact that is far from the Guinean
coast, and it is strongly affected by convection over the
Sahel. Hence, convective activity over Sahel before the
actual WAM onset would create change point signals which
would be detected as spurious onset by our statistical model
(as in Figure 12, around 25 May). Second, the NCEP2
reanalysis is used in order to detect the northern reach of the
WAM. For this reason we calculate the mean daily location
of the ITD, which corresponds to the mean latitude of the
zero zonal wind isotach between 10W and 10E.
[10] To illustrate the yearly behavior of such data, Figure 3a

displays the daily time evolution of the ITD location (dark
line in latitude) and OLR (gray line inW.m2) time series from
January 1992 to November 1992. From Figure 3a it is clear
that the ITD location steadily increases until the month of
August and is followed by a slow decline in Autumn.
[11] The OLR has the opposite low‐frequency behavior

with a stronger variability. Following the work of Fontaine
and Louvet [2006] and Sultan and Janicot [2003], we pos-
tulate that these ITD and OLR signals could contain hidden
change points corresponding to the preonset (installation of
the ITCZ along 5N) and the onset (installation of the ITCZ
along 10N) dates. Hence, besides the high variability observed
in Figure 3 and the presence of missing data, the statistical
issue at hand in this paper is how can smooth behaviors as
well as hidden shifts be estimated by jointly modeling these
OLR and ITD time series for the year 1992. The same
question can be asked for each year in 1979–2008. To show
the year‐to‐year variability, the years 1990, 1992, 1998, and
2006 are plotted in Figures 3a–3d, respectively. It is an
understatement to say change points and trends are not easily

identifiable by visual inspection of Figure 3, and nontrivial
statistical analysis is needed.

3. Statistical Modeling and Inference

[12] Our statistical model takes its roots in the classical
family of state space models. This means that a two‐layer
structure provides the modeling foundation. The first layer
corresponds to the data while the second layer represents the
processes of interest which live in the so‐called state space. The
first and second layers are observed and hidden, respectively.
A large body of work on inverse problems, data assimilation,
and Bayesian modeling is based on this idea of state space
modeling. For example, the well‐known Kalman Filter (KF)
allows us to estimate the hidden state of a dynamical linear
system [e.g., Kalman, 1960; Welch and Bishop, 1995;
Meinhold and Singpurwalla, 1983]. TheKFhas been extended
in many ways to take into account nonlinearities and to deal
with large data sets. For example, the work of Evensen [2006]
treats the Ensemble Kalman Filter for data assimilation.
[13] From a methodological point of view, our proposed

statistical model stems from the work of Guo et al. [1998],
who studied an extracting procedure, not for change points
but for pulse‐like signals in univariate hormone time series.
The generic shape of the hidden signal given by Guo et al.
[1998] corresponded to a peak followed by a sharp
decrease, while a stepwise function is the object of interest in
most change point procedures. J. Gazeaux et al. (Extracting
common pulse‐like signals frommultiple ice core time series,
submitted to Computational Statistics and Data Analysis,
2011) improved Guo’s approach by extending it from the
univariate case to the multivariate case and by applying it to
the problem of volcanic forcing extraction from multivariate
proxy data. Now, by building on the multivariate approach
studied by J. Gazeaux et al. (submitted manuscript, 2011), we
propose to capture change points and smooth trends. Due to
the altered nature of the extracted signal and the model
constraints imposed by our monsoon application, this
extension is far from trivial. A new model is needed, and the
statistical inference procedure has to be modified. Our pro-
posed model corresponds to a multivariate additive model
with nonlinear trends and possible yearly discontinuities, the
latter captured yearly onsets. While an autoregressive cubic
spline representation is used to depict different smooth
trends, another autoregressive model with noncontinuous
innovations mimics the change points dynamic. Blending
together these two autoregressive models offers a modeling
flexibility and removes some classical hypotheses; no linear
assumption is required. To balance this flexibility in the low‐
frequency part of the spectrum, we impose that the unknown
breakpoints occur synchronously in time in all variables; see
the WAM onsets application.
[14] Concerning our notations, yj(t) represents the value of

the jth variable of interest for day t. For example, y1(t) and
y2(t) could correspond to the daily OLR and ITD values in
1990 (see Figure 3a). Such random variables are assumed to
come from the following additive model:

yj tð Þ ¼ fj tð Þ þ �jxt þ �j tð Þ

with j ¼ 1; . . . ; J and t ¼ 1; . . . ; T ;
ð1Þ

Figure 3. Daily Outgoing Longwave Radiation (OLR) and
Intertropical Discontinuity (ITD) time series for four differ-
ent years: (a) 1990, (b) 1992, (c) 1998, and (d) 2006. The
dark and grey lines correspond to ITD and OLR data,
respectively. The missing values in ITD are due to the dif-
ficulty to calculate the latitude of the zero zonal wind. The
ITD unit is latitude, whereas OLR is W.m2.
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where fj(t) represents the smooth trend specific to the jth
time series, xt represents the change points signal common
to all time series, bj is the scaling factor of the xt impact to
the jth time series, and finally, �j(t) is a zero mean inde-
pendent and identically distributed (iid) Gaussian noise with
variance sj

2. The elements of the sum (1) are assumed to be
mutually independent. Equation (1) clearly indicates that
each time series can have a different trend with its own noise
and a common element xt whose impact is modulated by bj.
A strong assumption of the method is, through bj of
equation (1), the proportionality of the break points occur-
ring at the same time. If all bj have the same sign, the breaks
have the same effect, either “positive” or “negative”; on the
other hand, if the bj have opposite signs, the breaks will
have opposite effects: one will be “positive” while the other
will be “negative” and vice versa. We suppose in (1) that
there is not a missing value, i.e., with the constant sampling
rate t = 1,…,T. But Figure 3 shows missing values. Our
model and our inference can handle this case by trans-
forming the time axis 1,…,T into t1,t2,…,tk. For sake of
clarity, we still prefer to present our method with t = 1,…,T.
As the hidden signal xt should capture the onsets dynamic,
we follow the classical view of modeling change points as a
random stepwise function. Here this stepwise behavior is
represented by an autoregressive model of order one

xt ¼ xt�1 þ vt; ð2Þ

where the random variable vt either equals zero or a zero
mean random Gaussian vector zt with variance sv

2, i.e.,

vt ¼ 0 if bt ¼ 0 with probability 1� �;
zt if bt ¼ 1 with probability �;

�
ð3Þ

with x(0) set to zero; bt is a Bernoulli iid process, either equal
to one or zero with probability p and 1 − p, respectively. The

process bt drives the occurrences of the impulses. The
Gaussian variables zt are iid and independent of bt.
[15] To understand equation (3), we refer to Figure 4.

Figure 4, bottom, shows one random realization of the step-
wise behavior of xt defined (2). The elements of this auto-
regressive process, i.e., bt and vt, are displayed in Figure 4,
top and middle. Although autoregressive, the process xt is
zero mean but not stationary because its variance increases
linearly with time, Var(xt) = ptsv

2. In our WAM applica-
tion, this is not a fundamental issue; because the yearly
probability of observing a change point p is very small, we
expect to have one or two change points (preonset and onset)
per year. This implies that the yearly largest Var(xt) should
be about 2sv

2 and does not explode with time. This also
justifies that we analyze our data year‐per‐year and not the
entire period 1979–2008 in one run (this is compounded
with the fact that yearly trends have a strong year‐to‐year
variability; see Figure 3). Hence the hidden stepwise xt
obtained from equation (2) is unlikely to produce its own
trend. This implies that only the component fj(t) in
equation (1) should capture the low frequency in yj(t).
[16] To model the trend fj(t), we opt for a cubic smoothing

spline representation [Wahba, 1978]. The latter can be
described as a multivariate autoregressive model of order
one [Wecker and Ansley, 1983]

Fj tð Þ ¼ BFj t � 1ð Þ þ Ej tð Þ ð4Þ

where Fj(t) =

�
fj tð Þ
f ′j tð Þ

�
represents a bivariate vector that

includes ( fj) and its first derivative ( f ′j ), the matrix B equals�
1 1
0 1

�
, and Ej =

�
Efj
Ef ′j

�
is a two‐dimension zero mean

Gaussian vector with covariance matrix equal to ljsfj
2/(j +

k − 1)(j − 1)!(k − 1)! where lj represents the smoothing
parameter, and sfj a positive constant. Equation (4) implicitly
means that the trend fj and its first derivative f ′j are assumed
to be continuous.
[17] Choosing equations (2) and (4) to model the unknown

trends and the hidden change points dynamic brings an
important inferential benefit because our model can be
rewritten as a classical linear state space model of the form:

Yt ¼ HXt þ Et;

Xt ¼ FXt�1 þ E*t ;
ð5Þ

where the first equality corresponds to the so‐called obser-
vation equation, and the second one corresponds to the so‐
called state equation [e.g., Meinhold and Singpurwalla,
1983]. To clarify the link between equations (5) and (2)–
(4), we write below the form of the elements of equation (5)
for J = 2, i.e., the case of the daily OLR and ITD random
variables, in function of the components of equations (2)–(4)

Yt ¼ y1 tð Þ; y2 tð Þ½ �T ; Xt ¼ vt; xt;F1;F2½ �T

with Fj tð Þ ¼ fj tð Þ; f ′j tð Þ
h iT ð6Þ

Figure 4. Random realizations from equations (2) and (3).
The top, middle, and bottom panels show the Bernoulli
signal bt, the hidden impulse vt in (3), and the hidden
stepwise xt obtained from (2), respectively.
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and

H ¼
0 �1 1 0 0 0

0 �2 0 0 1 0

2
4

3
5 Et ¼ �1

�2

� �
;F ¼

0 0 0 0
1 1 0 0
0 0 B 0
0 0 0 B

2
664

3
775;

E*t ¼ 0; 0;Ef1 ;Ef ′1
;Ef2 ;Ef ′2

h iT

and Cov Ej

� � ¼ �j�
2
j

1 1=2
1=2 1=3

� �
:

The advantage of transforming equations (2)–(4) into the
state space form equation (5) is that developments about
KF can serve as building blocks for our inference procedure.
By construction, the observation noise Et and the state
equation noise Et

* are uncorrelated.
[18] As in any KF algorithm, our main goal is to estimate

the hidden state Xt given current and past observations, i.e.,
given the vector Y1:t = (Y1,…,Yt)

T. We cannot directly apply
the classical KF to reach this aim because the binary vector
bt in the definition of vt makes the hidden vector Xt non‐
Gaussian; see Figure 5. Still, as proposed by Guo et al.
[1998], two ideas can be followed to remove this infer-
ence block. First, by conditioning on the value of bt, either
one or zero, we can sequentially compute the conditional
expectation and variance of the two random variables
[Xt∣Y1:t, bt = 1] and [Xt∣Y1:t, bt = 0] at time t, whenever
those mean and variance are available at time t − 1. The
random variable [Xt∣Y1:t, bt = 1] corresponds to the hidden
state given observations up to time t and having observed
a change point at time t and [Xt∣Y1:t, bt = 0] is the same
except that no change point has been observed at time t.

[19] The second idea is to approximate the non‐Gaussian
distribution of [Xt∣Y1:t], because of bt, by a Gaussian one
whose first and second moments equal those of [Xt∣Y1:t]. This
approximation that works well in practice (see section 4)
allows us to update the mean and variance of the variable of
interest [Xt∣Y1:t] as follows (with obvious notations described
in Appendix A)

X̂ tjY1:tð Þ ¼ q0t X̂ tjY1:t ; bt ¼ 0ð Þ þ q1t X̂ tjY1:t; bt ¼ 1ð Þ
Ŝ tjY1:tð Þ ¼ q0t Ŝ tjY1:t; bt ¼ 0ð Þ þ q1t Ŝ tjY1:t; bt ¼ 1ð Þ

þ
X1
i¼0

qit X̂ tjY1:t ; bt ¼ ið Þ � X̂ tjY1:tð Þ� �2
; ð7Þ

where qt
1 (resp.qt

0) is the occurrence probability of having
(not having, respectively) a breakpoint at time t given Y1:t,
and it equals (via Bayes’ theorem)

q0t _¼ Pr bt ¼ 0jY1:tð Þ ¼ 1� �

Pr YtjY1:t�1ð ÞPr Yt jY1:t�1; bt ¼ 0ð Þ

q1t _¼ Pr bt ¼ 1jY1:tð Þ ¼ �

Pr YtjY1:t�1ð ÞPr Yt jY1:t�1; bt ¼ 1ð Þ
ð8Þ

where 8i = 0,1,Pr(Yt∣Y1:t − 1) and Pr(Yt∣Y1:t − 1, bt = i)
represent the conditional density of the random variables
[Yt∣Y1:t − 1] and [Yt∣Y1:t − 1, bt = i], respectively. As for the
classical KF, the conditional mean and variance X̂ (t∣Y1:t, bt = i)
and Ŝ(t∣Y1:t, bt = i) can be expressed in terms of previous
expressions obtained at time t − 1. See Appendix A for more
details. The estimation of the state vector at every time t =
1,..T regarding the available observation Y1:T is obtained
via the Fixed Interval Smoother, which is

X̂ tjY1:Tð Þ ¼ X̂ tjY1:tð Þ þ Ct X̂ t þ 1jY1:Tð Þ � X̂ t þ 1jY1:tð Þ� �
Ŝ tjY1:Tð Þ ¼ Ŝ tjY1:tð Þ þ Ct Ŝ t þ 1jY1:Tð Þ � Ŝ t þ 1jY1:tð Þ� �

C′
t

ð9Þ

where

Ct ¼ Ŝ tjY1:tð ÞFŜ t þ 1jY1:tð Þ�1 ð10Þ

For more details about these calculations, see Appendix A.
So far, we have assumed that the parameters (bj, p, sv, sfj)
were known. This is not true in practice. They are derived
through an iterative maximum likelihood estimation com-
puted after a rough estimation of the trend of each time
series. This method of approach is successfully used by
Guo et al. [1998].
[20] To assess the quality of our algorithm, we apply it to

simulated trivariate time series defined as follows. The first,
second and third smooth trends are equal to f1(t) = 10 +
15sin (p(t + 20)/90), f2(t) = 0 and f3(t) = 2t, respectively. In
Figure 5, we can observe the three hidden trends (blue solid
lines) and three random realizations (black lines) affected by
zero mean Gaussian noises with variances s1

2 = s2
2 = s3

2 = 5
and a random change point process with p = 0.01 and sv

2 =
1.0. The scaling coefficients are chosen such that (b1, b2,
b3)

T = (20, 15, 20)T. Additional tests (available under
request) show that our multivariate method represents an
improvement over its univariate counterpart, i.e., applying
independently our model to each individual time series.

Figure 5. Extraction obtained from three simulated time
series. The blue and red lines correspond to the true and esti-
mated trends, respectively. The 95% confidence interval is
represented by the green dotted lines.
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[21] The red lines correspond to the estimated trends with
their 5 and 95 quantiles shown in dotted green lines.
[22] In Figure 6, the three black lines represent the input

of the model, whereas the different colored lines are the
output of the extraction, i.e., the estimated parts of Xt.
Figure 6, top, displays the estimated probabilities of
observing change points, and Figure 6, bottom, compares
the true xt and its estimate. Graphically, the timing and
amplitudes of the change point appear to be well‐estimated.
Only the smallest shifts at approximately t = 160 and t =
380 are associated with low probabilities of about 0.2 and
less than 0.1.
[23] The single simulation analysis shown in Figures 5

and 6 is obviously not sufficient to conclude about the
overall performance. Rather it has to be understood as a
graphical example of the possible outputs available from our
approach. To improve our understanding of the limits and
advantages of our method, we apply our algorithm to different
sets of parameters. For each set, 500 simulations are randomly
generated, and box plots of the parameters of interest are
plotted. For example, when fixing b = (20, 15, 20)T and p =
0.01, the x axis of Figure 7 corresponds to five different
combinations of the triplet (s1, s2, s3) = (8, 6, 4)T, (10, 8, 6)T,
(12, 10, 8)T, (14, 12, 10)T or (18, 14, 12)T. Under these five
sets of noise levels, Figure 7, top, compares the true trivariate
b (red horizontal lines) with the box plot of its estimate, and
Figure 7, bottom, displays the same result but for (s1, s2, s3).
Overall, the noise variances are well‐estimated while the
b’s have a slight bias when the latter is large. In addition,
the noise level does not greatly affect the quality of our
estimation.
[24] Figure 8 is the same as Figure 7 but with a fixed

(s1, s2, s3) = (1.0, 1.0, 1.0)T and five different p = 0.005,

Figure 6. (top) The estimated probability of observing
change points simultaneously in the three time series dis-
played in Figure 5. (bottom) Comparison of the true
(black) xt defined by (2) and its estimate (red) with their
95% confidence interval (dotted green lines).

Figure 7. Box plots from 500 simulations with bT = (20,
15, 20)T and p = 0.01 and the trends of Figure 5. The x axis
corresponds to five different combinations of the triplet
(s1, s2, s3)

T = (8, 6, 4)T, (10, 8, 6)T, (12, 10, 8)T, (14, 12, 10)T

or (18, 14, 12)T. Under these five sets of noise levels, the
top panel compares the true trivariate b (red horizontal
lines) with the box plot of its estimate, and the bottom panel
displays the same result but for (s1, s2, s3).

Figure 8. Same as Figure 7 but with a fixed (s1; s2; s3)
T =

(1.0; 1.0; 1.0) and five different p = 0.005, 0.010, 0.015,
0.020, or 0.025.

GAZEAUX ET AL.: INFERRING CHANGE‐POINTS IN TIME SERIES D05101D05101

7 of 14



Figure 9. Statistical treatment of the 1990 OLR and ITD time series from Figure 3a. The red line
corresponds to the estimated trend f1(t) and f2(t) from equation (1). The bottom panel displays the
extracted hidden change point signal xt from equation (2).

Figure 10. Statistical treatment of the 1992 OLR and ITD time series from Figure 3b. The red line
corresponds to the estimated trend f1(t) and f2(t) from equation (1). The bottom panel displays the
extracted hidden change point signal xt from equation (2).

GAZEAUX ET AL.: INFERRING CHANGE‐POINTS IN TIME SERIES D05101D05101

8 of 14



Figure 11. Statistical treatment of the 1998 OLR and ITD time series from Figure 3c. The red line
corresponds to the estimated trend f1(t) and f2(t) from equation (1). The bottom panel displays the
extracted hidden change point signal xt from equation (2).

Figure 12. Statistical treatment of the 2006 OLR and ITD time series from Figure 3d. The red line
corresponds to the estimated trend f1(t) and f2(t) from equation (1). The bottom panel displays the
extracted hidden change point signal xt from equation (2).
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0.010, 0.015, 0.020, or 0.025. These graphs show that
changing the number of change points, i.e., driven by p,
does not have a strong effect on the estimation of the b’s
and of the si′s.

4. WAM Results and Discussion

[25] Our statistical model and inference method are now
applied to the bivariate vector composed of the OLR and
ITD time series described in section 2 for each year starting
in 1979 and ending 2008. To interpret these outputs, we
focus our attention on the 4 years (1990, 1992, 1998, and
2006) introduced in Figure 3. The top and middle panels of
Figures 9, 10, 11, and 12 show, in red, the addition of the
estimated trends (fj(t)) and the extracted break signals (bjxt)
of equation (1) for the OLR and the ITD, respectively.
A visual inspection tends to indicate that the trends are well‐
estimated. Note that the trends (fj(t)) do not have a physical
meaning here. Nevertheless, their estimations are necessary
to successfully detect onset dates, as the estimations of both
signals (fj(t)) and xt of equation (1) have to be calculated
simultaneously. Indeed, statistical methods generally require
stationary time series to be reliable. The calculation of fj(t)
using an autoregressive spline estimation (e.g., equation (4))
can be considered as the stationarization process of our
method. In other applications, as for instance homogeniza-
tion problems (i.e., the detection of artificial shifts in time
series [e.g., Caussinus and Mestre, 2004]), these trends
would have physical meaning. Concerning the change
points estimation, the extracted common signals seem to be

reasonable. For example, Figure 10 clearly indicates an
onset around the end of June 1992, and spurious change
points appear in the spring and October 1992. Those latter
changes are due to poor data quality (missing data, edge
effects) and should be disregarded as obvious artifacts in the
context of WAM onsets. The same type of reasoning can be
employed for the years 1990, 1998, and 2006. Both a pre-
onset (in June) and an onset (in July) can be easily identified
for years as in Figure 9, while this is not possible for others;
see 1992.
[26] For some years like 1988 and 1991, we do not detect

any significant onset because we do not force our model to
find a specific number of change points. We believe that is a
strength, “the data speak for themselves,” without a strong a
priori on the yearly change point number, and consequently,
if the time series are too noisy or the onset is too weak, then
there is no detection.
[27] The whole detected break points are illustrated in

Figure 13. Each histogram bar represents the number of
detected change points per day along the year with proba-
bility of occurrence qt

1 > 0.5. Figure 13 displays a bimodal
density (black smooth line calculated as a kernel density [cf.
Parzen, 1962]). The first mode corresponds to both onset
and preonset signal mixing together around June, and the
second mode corresponds to the end of the monsoon season.
[28] We are more particularly interested in the first mode

and discriminate preonset from onset signal thanks to
knowledge from previous work on WAM [i.e., Sultan and
Janicot, 2003]. Some detected change points (as the one
occurring in April 1992; see Figure 10) can be considered as

Figure 13. The whole detected change points of each year of WAM time series from 1979 to 2008 with
qt
1 > 0.5. The smooth lines represent the density probability calculated with a Gaussian kernel as

explained by Parzen [1962].
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spurious change points (i.e., not an onset signal) [see Sultan
and Janicot, 2003].
[29] Table 1 compares our results with the two different

estimated dates by Fontaine et al. [2008]. Although not
directly comparable because they were not derived from the
same data, most of our dates fall between the proposed dates
from Fontaine et al. [2008] or differ for about a week.
[30] Figure 14 shows the frequency of our estimated

WAM preonset and onset dates for the period 1979–2008.
The former dates occur around the beginning of June, and
the latter occur around the beginning of July. The onset
dates occurring on average on 30 June (with a standard
deviation equal to 10 days) are consistent with the clima-
tological date of 24 June found by Sultan and Janicot
[2003]. Those authors have detected the central date of
the transitional period, in contrast to our analysis which
reveals the beginning of the postonset period. The preonset
dates as determined by the authors (14 May) do not seem to
be accurate with the average date of 2 June (with a standard
deviation equal to 8 days) found in this study. The reasons
for this inconsistency should be highlighted. In the work of
Sultan and Janicot [2003] the preonset date is determined
only by the ITD location. Our results on the preonset date
show difficulties to capture this event, i.e., an abrupt
northward propagation of the WAM before its onset. The
preonset dates are mostly associated to a rather “anomalous”
climatological cycle of deep convection over West Africa.
For all years the preonset period is well‐defined presenting
the ITCZ over the Guinean coast. However, for some years
the WAM onset comes after no or even two transitional
periods with intermediate phases being embedded. These
intermediate phases are characterized by the presence of
convective activity over both the Guinean coast and the
Sahel. This might create confusion on the WAM onset
detection. If no abrupt signal is detected (due to a smoothed
ITCZ cycle) by the model, then the WAM onset may not be
defined (e.g., in 1993), or if intermediate phases are present,
then the model may detect more monsoon jumps (e.g.,
in 2002). In that case, two dates are defined: a “preonset”
and an “onset” date. These intermediate phases may be the
reason for the large difference of the onset dates for some
years, as in 2002, between this study and the study of
Fontaine et al. [2008].
[31] Finally, to conclude this paper, we would like to say

a few words of caution. The detection of the onset appears
to be complex. Under the definition of the onset by Sultan
and Janicot [2003], we expected to find a single clear
change point occurring around the end of June, but our
methodology clearly detects more than one change point per
year. The differences open new questions. Is there really a
unique date for the yearly onset? Are our OLR and ITD data
the most appropriate time series for detections?
[32] Convection over West Africa is a result of complex

dynamics and different forcings from regional or larger‐
scale climate. Hence, the evolution of the localization of
convection could be considered somewhat independent of
the ITD. Our statistical approach on the WAM onset could
be optimized by using other elements of the West African
climate associated to convection and thus eliminating any
“false onset”. This issue is a perspective for future studies.
[33] To summarize this article, we recall to the reader that

our objective was to propose a nonlinear statistical extrac-T
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tion method that can both infer individual smooth trends and
common change points in multivariate time series. From the
simulation study, it appears that the proposed inference
procedure based on Kalman filtering ideas works ade-
quately. We illustrate the applicability of our method by
detecting preonset and onset dates of convection over the
Sahel related to the WAM. For this specific application, the
advantage of our approach resides in the global represen-
tation of uncertainties, and it does not contradict similar
studies based on different data and simpler statistical tech-
niques. The estimation of the onset dates distribution of
Figure 14 could also likely be treated as relevant a priori
information for future prediction studies.
[34] The generic aspect of our modeling strategy could be

exploited for other climate studies that focus on differencing
smooth trends and abrupt discontinuities. We discussed the
adequation of our method for homogenization problem; of
course, our assumption that change points have to occur
simultaneously in time could be a limitation in homogeni-
zation. Future research is needed to modify our algorithm in
order to tailor it to a specific homogenization case study.

Appendix A: Calculations of the Nonlinear Kalman
Smoother

[35] For information on the calculations below, we were
inspired by different books such as books by Hossack et al.
[1999] or Basseville and Nikiforov [1993].
[36] To simplify the writing, we are using the obvious

following notations:X̂ (t∣Y1:t) _¼ E[Xt∣Y1:t] for the expectation

of Xt conditioned on Y1:t, and Ŝ(t∣Y1:t) _¼ Var[Xt∣Y1:t] for
the variance of Xt conditioned on Y1:t.
[37] 1st step (prediction step): The first step of the KF

solution begins with the estimation of the prediction. It
means the calculation of the recurrence relation between
X̂ (t∣Y1:t − 1, bt) and X̂ (t − 1∣Y1:t − 1, bt) and also the similar
relation for the variance Ŝ(t∣Y1:t − 1, bt) and Ŝ(t − 1∣Y1:t − 1, bt)
8i = 0,1

X̂ tjY1:t�1; bt ¼ ið Þ ¼ E FXt�1 þ EtjY1:t�1; bt ¼ i½ �
¼ FE Xt�1jY1:t�1; bt ¼ i½ �

þ E Et jY1:t�1; bt ¼ i½ �
¼ FX̂ t � 1jY1:t�1ð Þ þWi

and

Ŝ tjY1:t�1; bt ¼ ið Þ ¼ FŜ t � 1jY1:t�1ð ÞF′ þ Cov Wið Þ ðA1Þ

where

W0 ¼ 0::0½ �;W1 ¼ � � 0::0½ �;

Cov Wið Þ ¼

Gi 0 0 0

0 Cov Efj

� � ..
. ..

.

..

. ..
. . .

. ..
.

‘0 0 0 Cov Efj

� �

2
66664

3
77775;

Cov Efj

� � ¼ �j�
2
j

1 1=2
1=2 1=3

� �

G0 ¼ 0 0
0 0

� �
and G1 ¼ 1 1

1 1

� �

Figure 14. The frequency of our estimated WAM preonset and onset dates for the period 1979–2008.
The grey and black colors correspond to preonset dates occurring around the beginning of June and onset
dates around the beginning of July, respectively. The smooth lines represent the density probability cal-
culated with a Gaussian kernel as explained by Parzen [1962].
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[38] 2nd step: Here is the calculation of the predicted
distribution of the observations at time t conditioned on the
available observations at this time and the occurrence of a
change point.
8i = 0,1

E Yt jY1:t; bt ¼ i½ � ¼ E HXt þ EtjY1:t�1; bt ¼ i½ �
¼ HX̂ tjY1:t; bt ¼ ið Þ

Var YtjY1:t�1; bt ¼ i½ � ¼ HŜ tjY1:t�1; bt ¼ ið ÞH ′

þ Var Etð Þ ðA2Þ

We can estimate distribution at time t with the same distri-
bution but also conditioned on the occurrence of a break by
the approximate mixture of multivariate normal distribution:

YtjY1:tð Þ is equal in distribution to

1� �ð Þ YtjY1:t; bt ¼ 0ð Þ þ � Yt jY1:t; bt ¼ 1ð Þ
ðA3Þ

[39] 3rd step: Calculation of the probability qt
i: This cal-

culation provides the posterior probability at every time of
the occurrence of a change point conditioned on the ob-
servations available at this same time Y1:t

q0t _¼ Pr bt ¼ 0jY1:tð Þ ¼ 1� �ð ÞPr YtjY1:t�1; bt ¼ 0ð Þ
Pr YtjY1:t�1ð Þ

q1t _¼ Pr bt ¼ 1jY1:tð Þ ¼ �Pr YtjY1:t�1; bt ¼ 1ð Þ
Pr YtjY1:t�1ð Þ

ðA4Þ

[40] 4th step (update state): This step is the second main
of the KF. It deals with the update of the dynamics with the
observations of the current time. We have to express a
relation between X̂ (t∣Y1:t, bt = i) and X̂ (t∣Y1:t − 1, bt = i) and a
similar relation for the second order: Ŝ(t∣Y1:t, bt = i) and
Ŝ(t∣Y1:t − 1, bt = i)
8i = 0,1

X̂ tjY1:t; bt ¼ ið Þ ¼ X̂ tjY1:t�1; bt ¼ ið Þ
þ Ŝ tjY1:t�1; bt ¼ ið ÞH ′Varð YtjY1:t�1; bt ¼ i½ Þ�1

� Yt � E YtjY1:t�1; bt ¼ i½ �½ �
Ŝ tjY1:t; bt ¼ ið Þ ¼ Ŝ tjY1:t�1; bt ¼ ið Þ

� Ŝ tjY1:t�1; bt ¼ ið ÞH ′Varð Yt jY1:t; bt ¼ i½ Þ�1HŜ tjY1:t�1; bt ¼ ið Þ
ðA5Þ

[41] 5th step: Finally, we introduce the probability qt
i to

take into account the nonlinearities of the occurrence of a
change point at time t. This second order of this step is
achieved by using some well‐known results on conditional
variance, described by Hossack et al. [1999].

X̂ tjY1:tð Þ ¼ q0t X̂ tjY1:t; bt ¼ 0ð Þ þ q1t X̂ tjY1:t ; bt ¼ 1ð Þ

Ŝ tjY1:tð Þ ¼
X1
i¼0

Ŝ E X jY1:t; bt ¼ i½ �ð Þ þ E Ŝ X jY1:t; bt ¼ i½ �� �

¼
X1
i¼0

qitŜ tjY1:t; bt ¼ ið Þ

þ qit X̂ tjY1:t; bt ¼ ið Þ � X̂ tjY1:tð Þ� �2 ðA6Þ

[42] 6th step: the Fixed Interval Smoother: Also called the
Kalman filtering, this method permits to reconstruct the
different components of the state vector given the entire time
series, i.e., OLR or ITD). for all t from 1 to T, the FIS
constructs (Xt∣Y1:T). We can obtain the equation:

X̂ tjY1:Tð Þ ¼ X̂ tjY1:tð Þ þ Ct X̂ t þ 1jY1:Tð Þ � X̂ t þ 1jY1:tð Þ� �

Ŝ tjY1:Tð Þ ¼ Ŝ tjY1:tð Þ þ Ct Ŝ t þ 1jY1:Tð Þ � Ŝ t þ 1jY1:tð Þ� �
C′
t

ðA7Þ

where

Ct ¼ Ŝ tjY1:tð ÞFŜ t þ 1jY1:tð Þ�1 ðA8Þ

The algorithm underlying this method was made with the
free software environment for statistical computing and
graphics “R.” “R” provides a wide variety of statistical
(linear and nonlinear modeling, classical statistical tests, time
series analysis, classification, clustering, …) and graphical
techniques, and is highly extensible. For more details, see
R Development Core Team [2009].
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