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STATISTICS OF GEOMETRIC RANDOM SIMPLICIAL

COMPLEXES

E. FERRAZ AND A. VERGNE

Abstract. Given a Poisson process on a d-dimensional torus, its random
geometric simplicial complex is the complex whose vertices are the points of
the Poisson process and simplices are given by the C̆ech complex associated
to the coverage of each point. We compute explicitly the variance of num-
ber of k-simplices as well as the variance of the Euler’s characteristic. The
solution strategy used to compute the second moment can be used to com-
pute analytically the third moment and allows to stablish a conjecture for the
nth moment. We apply concentration inequalities on the results of homology
and the moments of the Euler’s characteristics to find bounds for the for the
coverage probability

1. Motivation

As technology goes on [1, 2, 3], one can expect a wide expansion of the so-called
sensor networks. Such networks represent the next evolutionary step in building,
utilities, industrial, home, agriculture, defense and many other contexts [4].

These networks are built upon a multitude of small and cheap sensors which are
devices with limited transmission capabilities and power. Each sensor monitors a
region around itself by measuring some environmental quantities (e.g., temperature,
humidity), detecting intrusion, etc, and broadcasts its collected informations to
other sensors or to a central node. The question of whether information can be
shared among the whole network often is of crucial importance.

Many researches have recently been dedicated to this problem considering a
variety of situations. It is possible to categorize three main scenarios: those where
it is possible to choose the position of each sensor, those where sensors are arbitrarily
deployed in the target region with the control of a central station and those where
the sensor locations are random in a decentralized system.

The problem of the first scenario is that, in many cases, placing the sensors is
impossible or implies a high cost. Sometimes this impossibility comes from the fact
that the cost of placing each sensor is too large and sometimes the network has an
inherent random behavior (like in the ad hoc case, where users move). In addition,
this policy cannot take into account the configuration of the network in the case of
failure of some sensor.

The drawback of the second scenario is a higher unity cost of sensors, since each
one has to communicate with the central station. Besides, the central station itself
increases the cost of the whole system. Moreover, if sensors are supposed to know
their positions, an absolute positioning system has to be included in each sensor,
making their hardware even more complex and then more expensive.

It is thus important to investigate the third scenario: randomly located sensors,
no central station. Actually, if we can predict some characteristics of the topology
of a random network, the number of sensors (or, as well, the power supply of
them) can be a priori determined such that a given network may operate with high
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a) b) c)

Figure 1. a) Sensors and their coverage; b) simplicial complex
representation when sensors are monitoring the region; c) simplicial
complex representation when sensors are communicating amoung
them.

probability. For instance, we can choose the mean number of sensors such that,
if they are randomly deployed, there is more than 99% of probability the target
region to be completely covered.

Usually, sensors are deployed in the plane or in the ambient space, thus math-
ematically speaking, one has to deal with configurations in R2, R3 or a mainfold.
The recent works of Ghrist and his collaborators [5, 6] show how, in any dimension,
algebraic topology can be used to compute the coverage of a given configuration
of sensors. Trying to pursue their work for random settings, [7] has completely
solved this problem in one dimension, without using, however, the sofisticated tools
of algebraic topology. Due the fact that we cannot order the points in Rd, it is
not possible to find as much results as found for the one-dimensional case, but the
results in this work holds for any dimension d.

The principal idea of the problem is that each sensor can control some environ-
mental information (such as temperature, pression, presence of an intruder, etc)
around them. The homology of the coverage of this network, as shown in [5], can
be represented by a simplicial complex. A simplicial complex is a generalization of
a graph, so, while we represent a graph with points and edges, a simplicial complex
can be represented by points, edges, filled triangles, filled tetraedrons and so on.
Almost all the work considers the radius of monitoring ǫ but a different interpreta-
tion can be done if the sensors are communicating amoung them. In this case, we
suppose that sensors have a power suply allowing them to transmit theirs ID’s and,
at the same time, sensors have receivers which can identify the transmitted ID’s
of other sensors above a threshold power. The sensors, knowing mutually the ID’s
of the close neighbors, are considered connected, creating an information network.
The problem remains analogous as the previous one, except that we substitute the
coverage radius ǫ by a communication one of ǫ/2. We can see examples of sim-
plicial complexes representations given by sensors communicating amoung them or
monitoring a region in Fig. 1.

In this work we consider that sensors are points of a Poisson point processus. This
assumption reflects the fact that, due the lack of control of the sensors positioning,
only a random fraction of the availables sensors will actually lie in the target region
or some sensors may shut down by running out of energy, moreover, the position of
each sensor, a priori, does not interact with the positions other sensors. Instead of
using the Euclidean norm, we use the maximum norm along this paper. We consider
this for three reasons: this norm represents a superior and an inferior limits for the
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Figure 2. Ilustration of the coverage of a point and the region
where points can lie, in the 2 dimensional case

euclidean norm (we can inscribe and circunscribe a circle with two squares); due to
the random interactions with the environment (causing shadowing and fading), even
the euclidean norm cannot capture with precision the real behavior of this kind of
sensor networks, so we choose the norm that allows us to simplify the calculations;
using the maximum norm, the Cech complex become equal to the Rips-Vietoris
complexes, which allows us to apply directly some results of the algebraic topology.
Finally, we assume that sensors lie over d-torus. We justify this choice for three
reasons: it avoids the border effects, it helps to determine weather or not a sensor
network in the d-box is completely covered and if ǫ is small compared to a, the
calculations for all parameters in the d-torus are a good approximation for the
[0, a]d box. The coverage of a point and the region where points can lie in are
illustrated in Fig. 1, representing the case where a point is deployed over a plan.

One of the main results of this paper is the explicit expression for the variance of
the number of k-simplices, Nk, the covariance between Nk and Nl and the variance
of the Eulers’s characteristic, χ, in such complex, which allows us to apply concen-
trations inequalities. For d ≥ 2, χ is expressed by a power serie and if d = 1, it is
possible to find its closed-form expression. A complex closed-form expression for
the third order central moment of Nk is explicitely calculated and using the same
strategy solution of this case, it is possible to find an expression that allows the
computation of the moments of any order of the number of simplices.

The paper is organized in the following way: Section 2 presents the preliminaires
of the topological tools used in the paper as well as the tools used from the Malliavin
calculus; the calculations of the second order moments as well an application of the
concentration inequlities are presented in the Section 3; in section 4, we present
generalization of the procedure to find the second order moments allowing the
computation of the n-th moment of the number of k-simplices.

2. Algebraic Topology

For further reading on topology, see [9, 10, 11]. Graphs can be generalized
to more generic topological objects known as simplicial complexes. While graphs
model binary relations, simplicial complexes represent higher order relations. Given
a set of points V , a k-simplex is an unordered subset {v0, v1, · · · , vk} where vi ∈ V
and vi 6= vj for all i 6= j. The faces of the k-simplex {v0, v1, · · · , vk} are defined as
all the (k − 1)-simplices of the form {v0, · · · , vj−1, vj+1, · · · , vk} with 0 ≤ j ≤ k.
A simplicial complex is a collection of simplices which is closed with respect to the
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inclusion of faces, i.e., if {v0, v1, · · · , vk} is a k-simplex then all its faces are in the
set of (k − 1)-simplices.

Given U = (Uv, v ∈ T) a collection of open sets, the C̆ech complex of U de-
noted by C(U), is the abstract simplicial complex whose k-simplices correspond
to (k + 1)-tuples of distinct elements of U that have non empty intersection, so

{v0, v1, · · · , vk} is a k-simplex if and only if
⋂k

i=0 Uvk
6= ∅.

One can define an orientation for a simplicial complex by defining an order on
vertices. A change in the orientation corresponds to a change in the sign of the
coefficient as

[v0, · · · , vi, · · · , vj , · · · , vk] = −[ v0, · · · , vj , · · · , vi, · · · , vk].

For each integer k, Ck(X) is the vector space spanned by the set of oriented k-
simplices of X . The boundary map ∂k is defined to be the linear transformations
∂k : Ck → Ck−1 which acts on basis elements [v0, · · · , vk] via

∂k[v0, · · · , vk] =

k
∑

i=0

(−1)k[v0, · · · , vi−1, vi+1, · · · , vk].

Examples of such operations are given in Fig. 3.
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Figure 3. Examples of boundary maps. From left to right. An
application over 1-simplices. Over a 2-simplex. Over a 3-simplex,
turning a filled tetrahedron to an empty one.

This map gives rise to a chain complex: a sequence of vector spaces and linear
transformations

· · · ∂k+2−→ Ck+1(X)
∂k+1−→ Ck(X)

∂k−→ Ck−1(X) · · · ∂2−→ C1(X)
∂1−→ C0(X).

A standard result then asserts that for any integer k,

∂k ◦ ∂k+1 = 0.

If one defines
Zk = ker∂k and Bk = im∂k+1,

this induces that Bk ⊂ Zk.

0 00

Ck

Zk

Bk

Ck+1 Ck−1

∂
−→

∂
−→

Figure 4. A chain complex showing the sets Ck, Zk and Bk.
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The k-dimensional homology of X , denoted Hk(X) is the quotient vector space,

Hk(X) =
Zk(X)

Bk(X)
·

and the k-th Betti number of X is its dimension:

βk = dimHk = dimZk − dimBk.

Let sk be the number of k-simplices in a simplicial complex X . The well known
topological invariant named Euler characteristic for X , denoted by χ(X), is an
integer defined by:

χ(X) =

∞
∑

i=0

(−1)iβi.

A well known theorem states that this is also given by:

χ(X) =

∞
∑

i=0

(−1)isi.

The simplicial complexes we consider are of a special type. They can be considered
as a generalization of geometric random graphs.

Definition 1. Given ω a finite set of points on the torus. For ǫ > 0, we define
Uǫ(ω) = {Bd∞

(v, ǫ), v ∈ ω} and Cǫ(ω) = C(Uǫ(ω)), where Bd∞
(x, r) = {y ∈

T
a
d, ‖x − y‖∞ < r}.

Theorem 1. Suppose ǫ < a/4. Then Cǫ(ω) has the same homotopy type as Uǫ(ω).
In particular they have the same Betti numbers.

Proof. This will follow from the so-called nerve lemma of Leray, as stated in [12,
Theorem 7.26] or [13, Theorem 10.7]. One only needs to check that any non-empty
intersection of sets Bd∞

(v, ǫ) is contractible.
Consider such a non-empty intersection, and let x be a point contained in it.

Then, since ǫ < a/4, the ball Bd∞
(x, 4ǫ) can be identified with a cube in the Eu-

clidean space. Then each Bd∞
(v, ǫ) containing x is contained in Bd∞

(x, 4ǫ), hence
also becomes a cube with this identification, hence convex. Then the intersection
of these convex sets is convex, hence contractible. �

Definition 2. Let ω be a finite set of points in T
a
d. For any ǫ > 0, the Rips-

Vietoris complex of ω, Rǫ(ω), is the abstract complex whose k-simplices correspond
to unordered (k + 1)-tuples of points in ω which are pairwise within distance less
than ǫ of each other.

Lemma 2. For the torus T
d
a equipped with the product distance d∞, Rǫ(ω) has the

homotopy type of the C̆ech complex C2ǫ(ω)

The proof is given in [5] in a slightly different context, but it is easy to check

that it works here as well. It must be pointed out that C̆ech and Rips-Vietoris
simplicial complexes can be defined similarly for any distance on T

d
a but it is only

for the product distance that the homotopy type of both complexes coincides.
By Lemma 2, k points are forming a (k − 1)-simplex whenever they are two-

by-two closer than 2ǫ from each other. We define along the paper h(v1, · · · , vk)
as

h(v1, · · · , vk) = hk(v1, · · · , vk)

=
∏

1≤i<j≤k

1[‖vi−vj‖<2ǫ],

which determines if a set of k distinct ordered points generates a (k − 1)-simplex.
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Proposition 3. Let ω ∈ T
d
a be a set of points, generating the simplicial complex

Cǫ(ω). Then, if i > d, βi(ω) = 0.

Proof. By Theorem 1, Cǫ(ω) has the same homology as Uǫ(ω). But Uǫ(ω) is an
open manifold of dimension d, so its Betti numbers βi(ω) vanish for i > d, see for
example [14, Theorem 22.24]. �

Proposition 4. Let ω ∈ T
d
a be a set of points, generating the simplicial complex

Cǫ(ω). There are only two possible values for the d-th Betti number of Cǫ(ω):

i) βd = 0, or
ii) βd = 1.

If the second holds, then we also have χ(Cǫ(ω)) = 0.

Proof. By Theorem 1, Cǫ(ω) has the same homology as Uǫ(ω). Now, Uǫ(ω) is an
open submanifold of the torus, so there are only two possibilities:

i) Uǫ(ω) is a strict open submanifold, hence non-compact
ii) Uǫ(ω) = T

d
a.

In the first case, βd(ω) = 0 by [14, Corollary 22.25]. In the second case Cǫ(ω) has
same homology as the torus, hence βd(ω) = 1 and χ(ω) = 0. �

2.1. Application to sensor networks. We now interpret the topological prop-
erties of simplicial complexes in terms of connectivity and coverage. In terms of
coverage in a network, a 0-simplex represents a single sensor and the existence of
a k-simplex means that the (k + 1) points of this simplex are covering the convex
hull containing those points. We can see in Figure 1, examples of some simplices
and their interpretation in terms of sensor networks.

In a very intuitive fashion, the number of k-simplices itself shows some tendency
in the network: if in two networks with identical number of sensors, one of them has
more 1-simplices than the other, this first one has a tendency to be more connected;
by the same reason, if a network has more 2-simplices than another one, the region
on the first case tends to be more strongly covered.

In a more sophisticated way, Theorem 1 formalizes that, in order to determine
coverage of sensors, it suffices interpret them as C̆ech complexes. Unfortunately, a
moment of thought shows that constructing the C̆ech complex cannot be done by
pairwise only communications between sensors. Thus, the only complex that can
be computed this way is the Rips-Vietoris complex.

An interpretation to Euler characteristic is given by Proposition 4, where we see
that χ = 0 is a necessary condition to have a complete coverage of the torus, and
βd = 1 is a necessary and sufficient condition. This could in turn translate into
conditions for coverage in [0, a]d when considered as embedded in Euclidean space
(i.e., not as a torus), but then one needs to be careful about border effects. For
example, one can say that βd = 1 is a sufficient condition for coverage of [ǫ, a− ǫ]d.

3. Stochastic Model

3.1. Poisson point process. To characterize the randomness of the system, we
consider that the set of points is represented by a Poisson point process ω with
intensity λ in a Polish space Y . The space of configurations on Y , is the set of
locally finite simple point measures (cf [15]):

ΩY =

{

ω =

n
∑

k=0

δ(xk) : (xk)k=n
k=0 ⊂ Y, n ∈ N ∪ {∞}

}

,

where δ(x) denotes the Dirac measure at x ∈ Y . Simple measure means that
ω({x}) ≤ 1 for any x ∈ Y . Locally finite means that ω(K) < ∞ for any compact K
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Sensor network coverage C̆ech complex representation

S1 v1

S1 S2 v1 v2

S1 S2

S3

v1 v2

v3

S1 S2

S2

v1 v2

v3

S1

S2

S3
S4

ǫ
ǫ

ǫ

ǫ

v1

v2

v3
v4

Table 1. Topological representation of the coverage of a sensor
network. Each node v represents a sensor. From top to bottom,
the highest order simplex is a vertex, an edge, a triangle, three
edges, a tetrahedron.

of Y . It is often convenient to identify an element ω of ΩY with the set corresponding
to its support, i.e.,

∑n
k=0 δ(xk) is identified with the unordered set {x1, · · · , xn}.

For A ∈ B(Y ), we have δ(xk)(A) = 1[xk∈A], so

ω(A) =
∑

xk∈ω

1[xk∈A] =

∫

A

dω(x),

counts the number of atoms in A. The configuration space ΩY is endowed with the
vague topology and its associated σ-algebra denoted by FY . Since ω is a Poisson
point process of intensity λ:

i) For any A, ω(A) is a random variable of parameter λS(A), i.e.,

P(ω(A) = k) = e−λS(A) (λS(A))k

k!
·

ii) For A′ ∈ B(Y ), for any disjoints A, A′, the random variables ω(A) and ω(A′)
are independent.
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Define ∆n = {(x1, · · · , xn) ∈ Y n | xi 6= xj , ∀i 6= j}. Let f(x1, · · · , xn) be a
measurable function and let F (ω) be a random variable given by

F (ω) =
∑

xi∈ω∩A,1≤i≤n
xi 6=xj if i6=j

f(x1, · · · , xn) =

∫

A∩∆n

f(x1, · · · , xn) dω(x1) · · · dω(xn),

A well known property of the Poisson point processes [16] states that

Eλ [F (ω)] =

∫

A

f(x1, · · · , xn) dλ(x1) · · · dλ(xn).

A real function f : Y n → R is called symmetric if

f(xσ(1), · · · , xσ(n)) = f(x1, · · · , xn)

for all permutations σ of Sn.The space of symmetric square integrable random
variables is denoted by L2(λ)◦n. For f ∈ L2(λ)◦n, the multiple Poisson stochastic
integral In(fn) is then defined as

In(fn)(ω) =

∫

∆n

fn(x1, · · · , xn)( dω(x1) − dλ(x1)) · · · ( dω(xn) − dλ(xn)).

If fn ∈ L2(λ)◦n and gm ∈ L2(λ)◦m, the isometry formula

(1) Eλ [In(fn)Im(gm)] = n!1[m=n]〈fn, gm〉L2(λ)◦n

holds true (see [15]). Furthermore, we have:

Theorem 5. Every random variable F ∈ L2(ΩY , P) admits a (unique) Wiener-
Poisson decomposition of the type

F = Eλ [F ] +

∞
∑

n=1

In(fn),

where the series converges in L2(P) and, for each n ≥ 1, the kernel fn is an element
of L2(λ)◦n. Moreover, we have the isometry

(2) ‖F − Eλ [F ] ‖2
L2(λ)◦n =

∞
∑

n=1

n!‖fn‖2
L2(R+)◦n .

For fn ∈ L2(λ)◦n and gm ∈ L2(λ)◦m, we define fn ⊗l
k gm, 0 ≤ l ≤ k, to be the

function:

(3) (yl+1, · · · , yn, xk+1, · · · , xm) 7−→
∫

Y l

fn(y1, · · · , yn)gm(y1, · · · , yk, xk+1, · · · , xm) dλ(y1) . . . dλ(yl).

We denote by fn ◦l
k gm the symmetrization in n + m− k − l variables of fn ⊗l

k gm,
0 ≤ l ≤ k. This leads us to the next proposition, shown in [15]:

Proposition 6. For fn ∈ L2(λ)◦n and gm ∈ L2(λ)◦m, we have

In(fn)Im(gm) =

2(n∧m)
∑

s=0

In+m−s(hn,m,s),

where

hn,m,s =
∑

s≤2i≤2(s∧n∧m)

i!

(

n

i

)(

m

i

)(

i

s − i

)

fn ◦s−i
i gm

belongs to L2(λ)◦n+m−s, 0 ≤ s ≤ 2(m ∧ n).

In what follows, given f ∈ L2(λ)◦q (q ≥ 2) and t ∈ Y , we denote by f(∗, t) the
function on Y q−1 given by (x1, · · · , xq−1) 7−→ f(x1, · · · , xq−1, t).
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Definition 3. Let Dom D be the the set of random variables F ∈ L2(P ) admitting
a chaotic decomposition such that

∞
∑

n=1

qq!‖fn‖2 < ∞.

Let D be defined by

D : DomD → L2(ΩY × Y, P × λ)

F = Eλ [F ] +
∑

n≥1

In(fn) 7−→ DtF =
∑

n≥1

nIn−1(fn(∗, t)).

It is known, cf. [17], that we also have

DtF (ω) = F (ω ∪ {t}) − F (ω), dP × dt a.e..

Definition 4. The Ornstein-Uhlenbeck operator L is given by

LF = −
∞
∑

n=1

nIn(fn),

whenever F ∈ Dom L, given by those F ∈ L2P such that their chaotic expansion
verifies

∞
∑

n=1

q2q!‖fn‖2 < ∞.

Note that Eλ [LF ] = 0, by definition and (1).

Definition 5. For F ∈ L2(P) such that Eλ [F ] = 0, we may define L−1 by

L−1F = −
∞
∑

n=1

1

n
In(fn).

Combining Stein’s method and Malliavin calculus yields the following theorem,
see [8]:

Theorem 7. Let F ∈ Dom D be such that Eλ [F ] = 0 and Var(F ) = 1. Then,

dW (F, N (0, 1)) ≤ Eλ

[∣

∣

∣

∣

1 −
∫

Y

[DtF × DtL
−1F ] dλ(t)

∣

∣

∣

∣

]

+

∫

Y

Eλ

[

|DtF |2
∣

∣DtL
−1F

∣

∣

]

dλ(t).

Another result from the Malliavin calculus used in this work is the following one,
quoted from [15]:

Theorem 8. Let F ∈ Dom D be such that DF ≤ K, a.s., for some K ≥ 0 and
‖DF‖L∞(Ω,L2(Y )) < ∞. Then

(4) P(F − Eλ [F ] ≥ x) ≤ exp

(

− x

2K
log

(

1 +
xK

‖DF‖L∞(Ω,L2(Y ))

))

.

Proposition 9. Let X a compact subset of R
d and consider the map τ : X → Y

as xi = kyi for xi ∈ X, yi ∈ Y and k a positive real constant. Denote by τ∗ω the
image measure of ω by τ , i.e., τ∗ : ΩX → ΩY maps

ω =

∞
∑

i=1

δ(xi) to τ∗

∞
∑

i=1

δ(kxi).

The application τ∗ : ΩX → ΩY maps the Poisson measure λ on ΩX to the Poisson
measure λτ = λ/kd on ΩY . Moreover, if ǫτ is the distance in Y such that two
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points will be connected, the homology of the two simplicial complexes Cǫ(ω)ω∈T
d
[a]

and Cǫτ (τ∗ω)τ∗ω∈T
d
[ak]

are the same for any k if λτ = λ/kd and ǫτ = kǫ.

Proof. A slightly changing on Propositions 6.1.7 and 6.1.8 of [15] is enough to show
that τ∗ maps the Poisson measure λ on ΩX to the Poisson measure λτ = λ/kd on
ΩY . Then, it suffices to realize that for xi ∈ X and for yi ∈ Y :

h(x1, · · · , xk) =
∏

1≤i<j≤k

1[‖xi−xj‖<2ǫ]

=
∏

1≤i<j≤k

1[‖kxi−kxj‖<2kǫ],

hence

h(y1, · · · , yk) =
∏

1≤i<j≤k

1[‖yi−yj‖<2ǫτ ],

which concludes the proof. �

4. Second order moments

4.1. Number of k-simplices. We use all the definitions of the previous section..
The number of (k − 1)-simplices can be counted by the expression:

Nk =
∑

v1,...,vk∈ω
vi 6=vj if i6=j

h(v1, · · · , vk)

k!
=

∫

∆k

h(v1, · · · , vk)

k!
dω(x1) · · · dω(xk)(5)

Lemma 10. We can rewrite Nk as

Nk =
1

k!

k
∑

i=0

(

k

i

)

λk−iIi

(

∫

(Td
a)i

h(x1, . . . , xk) dx1 . . . dxk−i

)

.

Proof. We have that
∫

∆k

h(x1, · · · , xk)( dω(x1) − λ dx1) . . . ( dω(xi) − λ dxi)λ dxi+1 . . . λ dxk

=

i
∑

j=0

(−1)j

(

i

j

)∫

∆k

h(x1, · · · , xk) dω(x1) . . . dω(xj)λ dxj+1 . . . λ dxk.

Thus, after some algebrism with the binomial factors, we have

1

k!

k
∑

i=0

(

k

i

) i
∑

j=0

(−1)j

(

i

j

)∫

∆k

h(x1, · · · , xk) dω(x1) . . . dω(xj)λ dxj+1 . . . λ dxk

= k!

∫

∆k

h(x1, · · · , xk) dω(x1) . . . dω(xk) = Nk,

concluding the proof. �

Definition 6. Let C1 and C2 be two simplices with common vertices. For L ∈
P({1, 2}), let us denote mL the number of vertices belonging exactly to the list L of
simplices.

Then M = m12 + m1 + m2 is the total number of vertices and J2 represents the
integral on these two simplices:

J2(m12, m1, m2) =

∫

∆m12+m1

∫

∆m12+m2

hm12+m1hm12+m2 dx1 . . . dxM .

with x1, · · · , xM being the M vertices.
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−1 0 1x2xm12
. . .

1

xm12+1 xm12+m1. . .

1

xm12+m1+1xM
. . .

1

Figure 5. Example of relative positions of the points

Lemma 11. For d = 1 and ǫ = 1/2, we have

J2(m12, m1, m2) = m12 + m1 + m2 +
2m1m2

m12 + 1
.(6)

Proof. Let us split the integration domain of J2 in two domains S1 and S2 corre-
sponding to the cases:

(1) All the vertices are connected with each other, thus there is only one sim-
plex. The integral on S1 is simply the number of points in the simplex:
M = m12 + m1 + m2.

(2) There are at least two vertices at distance d > 1, which leads to two
simplices. By symetry we can choose to order the mL vertices for each
L ∈ P({1, 2}) from lowest to greatest or the opposite and choose which
simplex is on which side of the axis. Thus we have the integral on S2 equal
to 2m12!m1!m2!A, with A an integral whose calculation is detailed below.

We choose to enumerate the vertices of the simplexes such that:

• x1, · · · , xm12 are the m12 common vertices.
• xm12+1, · · · , xm12+m1 are the m1 vertices of only C1.
• xm12+m1+1, · · · , xM are the m2 vertices of only C2.

Without loss of generality we can choose the origin to be x1. The vertices are now
order as described in Fig. 5:

0 ≤ xm12 ≤ xm12−1 ≤ · · · ≤ x2 ≤ 1,

−1 ≤ x2 − 1 ≤ xm12+1 ≤ xm12+2 ≤ · · · ≤ xm12+m1 ≤ xm12+1 + 1,

xm12+1 ≤ xm12+m1+1 − 1 ≤ xM ≤ xM−1 ≤ · · · ≤ xm12+m1+1 ≤ 1,

Let us denote Ja(f)(x) =
∫ x

a
f(u) du then we write the composition J

(2)
a (f)(x) =

∫ x

a

∫ u

a f(v) dv du. We also denote m = m12 + 1 and n = m12 + m1 + 1, then we
have:

A =

∫ 1

0

J
(m12−2)
0 (1)(x2)

∫ 0

x2−1

−J
(m1−1)
xm+1 (1)(xm)

∫ 1

xm+1

J
(m2−1)
xn−1 (1)(xn) dxn dxm dx2.

We easily find that:

J
(m12−2)
0 (1)(x2) =

xm12−2
2

(m12 − 2)!
,

−J
(m1−1)
xm+1 (1)(xm) =

1

(m1 − 1)!
,

J
(m2−1)
xn−1 (1)(xn) =

1

(m2 − 1)!
.
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Thus we have:

A =
1

(m12 − 2)!(m1 − 1)!(m2 − 1)!

∫ 1

0

xm12−2
2

∫ 0

x2−1

−xm dxm dx2

=
1

(m1 − 1)!(m2 − 1)!(m12 + 1)!
,

concluding the proof. �

Theorem 12. Let ǫ ≤ a/6. Then, the covariance between the number of (k − 1)-
simplices, Nk, and the number of (l − 1)-simplices, Nl, for l ≤ k is given by

(7) Covλ [Nk, Nl]

=

l−1
∑

i=0

1

i!(k − l + i)!(l − i)!
(λ(2ǫ)d)k+i

( a

2ǫ

)d
(

k + i + 2
i(k − l + i)

l − i + 1

)d

.

Proof. We want to evaluate Eλ [(Nk − Eλ [Nk])(Nl − Eλ [Nl])]. By Lemma 10, this
can be written as

Eλ

[

1

k!

k
∑

i=1

(

k

i

)

λk−iIi

(

fk
i

) 1

l!

l
∑

i=1

(

l

i

)

λl−iIi

(

f l
i

)

]

,

where

fn
j =

∫

(Td
a)j

h(v1, · · · , vn) dv1 . . . dvn−j .

Using the isometry formula, given by Eq. (1), we have

Covλ [Nk, Nl] =
1

k!l!

l
∑

i=1

(

k

i

)(

l

i

)

λk+l−2i
Eλ

[

Ii

(

fk
i

)

Ii

(

f l
i

)]

=
1

k!l!

l
∑

i=1

(

k

i

)(

l

i

)

λk+l−2ii!〈fk
i f l

i 〉L2(λ)◦i

=

l−1
∑

i=0

1

i!(k − l + i)!(l − i)!
λk−l+2i〈fk

l−if
l
l−i〉L2(λ)◦(l−i) .(8)

Hence, we are reduced to compute

〈fk
j f l

j〉L2(λ)◦(j) =

∫

(Td
a)j

(

∫

(Td
a)l−j

h(v1, · · · , vl) dvj+1 . . . dvl

∫

(Td
a)k−j

h(v1, · · · , vk) dvj+1 . . . dvk

)

λ dv1 . . . λ dvj .

Since a > ǫ/6,the integration region is convex (see Fig. 6) and we have

〈fk
j f l

j〉L2(λ)◦(j) =

∫

[0,a]d
λ dv1

∫

([0,a]d)k−1

h(0, v2, · · · , vk)

× h(0, v2, · · · , vj , v
′
1, · · · , v′l−j) dv′l−j . . . dv′1 dvk . . . dvj+1λ dvj . . . λ dv2.

Moreover, if vi = (ui,1, · · · , ui,d) and v′i = (u′
i,1, · · · , u′

i,d) and we proceed to the
following substitutions:

ui,1 = 2ǫxi if 2 ≤ i ≤ j,

ui,1 = 2ǫyk−j if j + 1 ≤ i ≤ k,

u′
i,1 = 2ǫzi if 1 ≤ i ≤ l − j,
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v0

v1

v2

v0

v1

v2

a) b)

Figure 6. a) Maximum cover in Ta and ǫ = a/6. The red region
shows the cover of a point v0, the blue region is the cover of v1

and the greer region is the cover of v2. b) Maximum cover in the
same conditions of a) when ǫ = a/5. In this case, we the three
covers intersect each other pairwise, but there is no intersection of
the three covers.

This results in a Jacobian (2ǫ)k+l−2i−1 and we recognize the integral to be exactely
J2(j, k − j, l − j) as defined in Definition 6. Thus, we have:

〈fk
j f l

j〉L2(λ)◦(j) = λiad(2ǫ)k+l−2i−1 (J2(j, k − j, l − j))d .

Finally, using Eq. (6) and Eq. (8) gives the result. �

Remark. We remark that the possibility of writing Var(Nk) as Eq. (7) is due the
fact that we use the maximum norm. This simplifies the calculations since we can
treat each component individually. However, considering the Euclidean norm it
is still possible to find analytically a closed-form expression for Var(Nk), but its
calculation involves nasty integrals and a generic term cannot be found. When we
consider the Rips-Vietoris complex in T

2
a, the variance of the number of 1-simplices

and 2-simplices are given by:

Vλ [N2] =
( a

2ǫ

)2 (π

2
(4λǫ2)2 + π2(4λǫ2)3

)

,

and

Vλ [N3] =
( a

2ǫ

)2
(

(4λǫ)3
π

6

(

π − 3
√

3

4

)

+ (4λǫ2)4π

(

π2

2
− 5

12
− π

√
3

2

)

+(4λǫ2)5
π2

4

(

π − 3
√

3

4

)2


 ·

4.2. Euler’s characteristic. Since we have an expression for the variance of the
number of k-simplices, it is possible to calculate one for the Euler characteristic.

Theorem 13. Let ǫ ≤ a/6. Then, the variance of the Euler characteristic in a d
torus is:

Vλ [χ] =
( a

2ǫ

)d ∞
∑

n=1

cd
n(λ(2ǫ)d)n,
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where

cd
n =

n
∑

j=⌈(n+1)/2⌉



2

j
∑

i=n−j+1

(−1)i+j

(n − j)!(n − i)!(i + j − n)!

(

n +
2(n − i)(n − j)

1 + i + j − n

)d

− 1

(n − j)!2(2j − n)!

(

n +
2(n − j)2

1 + 2j − n

)d
]

.

Proof. The variance of χ is given by:

Vλ [χ] = Eλ

[

(χ − Eλ [χ])2
]

= Eλ





(

∞
∑

k=1

(−1)kNk −
∞
∑

k=1

(−1)k
Eλ [Nk]

)2




= Eλ





(

∞
∑

k=1

(−1)k(Nk − Eλ [Nk]

)2




= Eλ





∞
∑

i=1

∞
∑

j=1

(−1)i+j(Ni − Eλ [Ni])(Nj − Eλ [Nj ])



 .

We remark that Ni ≤ Ni
1

i! , so there is a constant c such that

Eλ





∞
∑

i=1

∞
∑

j=1

|(Ni − Eλ [Ni])(Nj − Eλ [Nj ])|



 ≤
∞
∑

i=1

∞
∑

j=1

∣

∣

∣

∣

∣

N i
1

i!

N j
1

j!

∣

∣

∣

∣

∣

≤ cEλ [en1 ]
2

< ∞.

Thus the alternating serie converges absolutely allowing us to exchange the mean
with the sums and we can write

Vλ [χ] =

∞
∑

i=1

(−1)i
∞
∑

j=1

(−1)jCovλ [Ni, Nj] .

The result follows by Eq. (7) and some tedious but straightforward algebra. �

Lemma 14. Let n be a positive integer, then

n
∑

j=1

(

n

j

)((

j − 1

n − j − 1

)

−
(

j − 1

n − j

))

= (−1)n.

Proof. We first simplify the expression:

n
∑

j=1

(

n

j

)((

j − 1

n − j − 1

)

−
(

j − 1

n − j

))

=

n
∑

j=1

2n − 3j

j

(

n

j

)(

j

n − j

)

,

Then, applying hypergeometric functions, we solve the sum:

n
∑

j=1

2n − 3j

j

(

n

j

)(

j

n − j

)

= (−1)n.

�

Theorem 15. In one dimension, the expression of the variance of the Euler char-
acteristic is:

Vλ [χ] = a
(

λe−2λǫ − 4λ2ǫe−4λǫ
)

.
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Proof. If d = 1, according to Theorem 13:

Vλ [χ] =
a

2ǫ

∞
∑

n=1

c1
n(2λǫ)n,(9)

and we define

αn =

n
∑

j=⌈ n+1
2 ⌉



2

j
∑

i=n−j+1

(−1)i+jn

(n − j)!(n − i)!(i + j − n)!
− n

(n − j)!2(2j − n)!



 .

and βn = c1
n − α. It is well known that

2j−n
∑

i=0

(−1)i

(

j

i

)

= (−1)2j−n−1

(

j − 1

2j − n

)

,

using Stiffel’s relation, we obtain:

αn = (−1)n n

n!

n
∑

j=⌈ n+1
2 ⌉

[

(

n

j

)

2

2j−n
∑

i=0

(−1)i

(

j

i

)

+ 2(−1)n

(

n

j

)

]

=
1

(n − 1)!

n
∑

j=⌈n+1
2 ⌉

[

2

(

n

j

)(

j − 1

n − j − 1

)

−
(

n

j

)(

j

n − j

)

− 2(−1)n

(

n

j

)]

=
1

(n − 1)!

n
∑

j=⌈n+1
2 ⌉

[(

n

j

)((

j − 1

n − j

)

−
(

j − 1

n − j − 1

))

− 2(−1)n

(

n

j

)]

.(10)

The identity
(

n
j

)

=
(

n
n−j

)

allows us to write that

n
∑

j=⌈(n+1)/2⌉

(−2(−1)n)

(

n

j

)

=

n
∑

j=0

(

n

j

)

= 2n, n odd,

n
∑

j=⌈(n+1)/2⌉

(−2(−1)n)

(

n

j

)

=

(

n

n/2

)

+
n
∑

j=0

−
(

n

j

)

= −2n +

(

n

n/2

)

, n even.

Since
(

j−1
n−j

)

= 0 for j <
⌈

n+1
2

⌉

, we have

n
∑

j=⌈ n+1
2 ⌉

(

n

j

)((

j − 1

n − j

)

−
(

j − 1

n − j − 1

))

=

n
∑

j=1

(

n

j

)((

j − 1

n − j

)

−
(

j − 1

n − j − 1

))

for n odd and

n
∑

j=⌈n+1
2 ⌉

(

n

j

)((

j − 1

n − j

)

−
(

j − 1

n − j − 1

))

= −
(

n

n/2

)

+
n
∑

j=1

(

n

j

)((

j − 1

n − j

)

−
(

j − 1

n − j − 1

))

.

for n even. According to Lemma 14, we get:

n
∑

j=⌈(n+1)/2⌉

(

n

j

)[(

j − 1

n − j − 1

)

−
(

j − 1

n − j

)]

= −1, n odd,

n
∑

j=⌈(n+1)/2⌉

(

n

j

)[(

j − 1

n − j − 1

)

−
(

j − 1

n − j

)]

= 1 −
(

n

n/2

)

, n even.
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Then, we substitute these two last expressions in Eq. (10) to obtain

αn = (−1)n (1 − 2n)1[n≥1]

(n − 1)!
,

and thus
∞
∑

i=0

αnxn = −xe−x + 2xe−2x.

Proceeding along the same line, βn is given by

βn =

n
∑

j=⌈ n+1
2 ⌉



2

j
∑

i=n−j+1

(−1)i+j2(n − i)(n − j)

(n − j)!(n − i)!(i + j − n + 1)!

− 2(n − j)2

(n − j)!2(2j − n + 1)!

]

= (−1)n

(

(−2 + 2n)1[n≥1]

(n − 1)!
− 21[i≥2]

(i − 2)!

)

,

and again we can simplify the power serie
∑∞

i=0 βnxn:

∞
∑

i=0

βnxn = 2xe−x − 2(x + x2)e−2x.

Then, substituting αn and βn in Eq. (9) yields the result. �

Indeed, Corollary 15 suggests the possibility of finding a simple expression for
variance of the Euler’s characteristic in higher dimensions. Applying it for d = 2,
we have a sum in a squared term given by:
(

n +
2(n − i)(n − j)

1 + i + j − n

)2

= n2 +
4n(n − i)(n − j)

1 + i + j − n
+

(

2(n − i)(n − j)

1 + i + j − n

)2

·

With respect to the case in one dimension, no extra knowledge is needed to simplify
the first two terms, and, if x = λ(2ǫ)2, they are given respectively by:

( a

2ǫ

)2
(

(−x + x2)e−x + 2(x − 2x2)e−2x
)

and
( a

2ǫ

)2
(

4(x − x2)e−x + 4(−x + 2x2)e−2x
)

.

Unfortunately, we are not able to find a way to express the third term without an
infinite serie. This holds for any dimension: we can always find a closed-form for
the terms depending on nd and nd−1, but we cannot go any further.

Theorem 16. We have Dχ ≤ 2 and ‖Dχ‖L∞(Ω,L2(Td
a)) < ∞ and

P(χ − χ̄ ≥ x) ≤ exp

(

−x

4
log

(

1 +
2x

Vλ [χ]

))

.

Proof. In two dimensions, the Euler characteristic is:

χ = β0 − β1 + β2.

Therefore we can bound Dχ by the variation of β0 − β1 added to the variation of
β2 when we add a vertex to a simplicial complex.

If we add a vertex on the torus, either the vertex is isolated or not. In the first
case, it forms a new connected component incrementing β0 by 1, and the number
of holes that is β1 is the same. Otherwise, as there is no new connected component,
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β0 is the same, but the new vertex can at most fill a hole incrementing β1 by 1.
Therefore, the variation of β0 − β1 is at most 1.

Now, let us look at the variation of β2 when we add a vertex to a simplicial
complex. According to Proposition 3 is at most 1, showing that Dχ ≤ 2. Then, we
use Eq. (4) to complete the proof. �

5. Nth order moments

For this section, without loss of generality, using Proposition 9, we can choose
k = 1/2ǫ, so λτ = λ(2ǫ)d, ǫτ = 1/2 and ak = a/2ǫ.

We are interested in the central moment, so we introduce the following notation
for the centralized number of (k − 1)-simplices: Ñk = Nk − N̄k.

Finally, let us denote that
(

i
j

)

= 0 as soon as i ≤ 0 or j ≤ 0 or i − j ≤ 0 for i

and j integers.

Definition 7. We extend the Definition 6 used in the second order moments cal-
culations.

Let C1, C2 and C3 be three simplices with common vertices. For L ∈ P({1, 2, 3}),
let us denote mL the number of vertices belonging exactly to the list L of simplices.

Then M = m123 + m12 + m13 + m23 + m1 + m2 + m3 is the total number of
vertices and J3 represents the integral on these three simplices:

J3 =

∫

∆p1

∫

∆p2

∫

∆p3

hp1hp2hp3 dx1 . . . dxM .

with pi being the number of vertices of simplex Ci for i = 1, · · · , 3, for instance
p1 = m123 + m12 + m13 + m1, and x1, · · · , xM being the M vertices.

Definition 8. We denote J3(i, j, s, t) the integral defined above such that

• m123 = 2t − i − j + s ∨ 0
• m12 = i + j − s − t ∨ 0
• m13 = i − t ∨ 0
• m23 = j − t ∨ 0
• m1 = k − i ∨ 0
• m2 = k − j ∨ 0
• m3 = k − s ∨ 0.

Theorem 17. The third moment of the number of (k − 1)-simplices is given by:

Eλ

[

Ñk
3
]

=
∑

i,j,s,t

λ3k−i−j t!

(

k

i

)(

k

j

)(

k

s

)(

i

t

)(

j

t

)(

t

i + j − s − t

)

J3(i, j, s, t),

with s ≥ |i − j|.
Proof. The chaos decomposition of the number of (k − 1)-simplices is as shown in
lemma 10:

Ñk = I1(f1) + · · · + Ik(fk) =

k
∑

i=1

Ii(fi),

with

fi(x1, · · · , xi) =

(

k

i

)∫

h(x1, · · · , xk)λk−i dxk . . . dxi+1,

And

Ii(fi) =

∫

fi( dω(x1) − dλ(x1)) . . . ( dω(xi) − dλ(xi)).
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Then, we define gi,j,i+j−s =
∑i+j−s∧i∧j

t=⌈ i+j−s
2 ⌉

t!
(

i
t

)(

j
t

)(

t
i+j−s−t

)

fi ◦u−t
t fj and using the

chaos expansion (cf Proposition 6):

Ñk
3

= (I1(f1) + · · · + Ik(fk))3

=





k
∑

i=1

k
∑

j=1

Ii(fi)Ij(fj)



 (I1(f1) + · · · + Ik(fk))

=
k
∑

i,j=1

i+j
∑

s=|i−j|

Is(gi,j,i+j−s)(I1(f1) + · · · + Ik(fk))

=

k
∑

i,j,l=1

i+j
∑

s=|i−j|

Is(gi,j,i+j−s)Il(fl).

When taking the expectation of Ñk, we use the isometry formula in Eq. (1). De-
noting u = i + j − s, we obtain:

Eλ

[

Ñk
3
]

= Eλ





k
∑

i,j=1

i+j∧k
∑

s=|i−j|∨1

Is(gi,j,u)Is(fs)





=

k
∑

i,j=1

i+j∧k
∑

s=|i−j|∨1

∫

gi,j,ufsλ
s dx1 . . . dxs

=
k
∑

i,j=1

i+j∧k
∑

s=|i−j|∨1

u∧i∧j
∑

t=⌈ u
2 ⌉

λst!

(

i

t

)(

j

t

)(

t

u − t

)∫

(fi ◦u−t
t fj)fs dx1. . . dxs.

Then we recognize the integral defined in Definition 8:

Eλ

[

Ñk
3
]

=

k
∑

i,j,=1

i+j∧k
∑

s=|i−j|∨1

u∧i∧j
∑

t=⌈u
2 ⌉

λ3k−i−j t!

(

k

i

)(

k

j

)(

k

s

)(

i

t

)(

j

t

)(

t

u − t

)

J3(i, j, s, t).

Finally, relaxing the boundaries on the sums conclude the proof. �

Definition 9. Let C1, · · · , Cn be n simplices with common vertices. For L ∈
P({1, · · · , n}), let us denote mL the number of vertices belonging exactly to the
list L of simplices.

Then M =
∑

L∈P({1,··· ,n}) mL is the total number of vertices and Jn represents

the integral on these n simplices:

Jn =

∫

∆p1

· · ·
∫

∆pn

hp1 . . . hpn dx1 . . . dxM .

with pi being the number of vertices of simplex Ci for i = 1, · · · , n, and x1, · · · , xM

being the M vertices.

Theorem 18. The expression of the nth power of the number of (k − 1)-simplices
is given by:

(11) Ñn
k =

∑

i1,··· ,in

∑

s1,···sn−2

∑

t1,···tn−2





n−2
∏

j=1

tj !

(

mj,1

tj

)(

mj,2

tj

)(

tj
uj − tj

)





Ia(◦j∈Afij )Ib(◦j∈Āfij ).

With for j ∈ {1, · · · , n − 2}:
• 1 ≤ i1, · · · , in ≤ k,
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• sj ≥ |mj,1 − mj,2|,
• mj,1 = i2j−1 if 1 ≤ j ≤ ⌊n

2 ⌋ and s2(j−⌊n
2 ⌋)−1 otherwise,

• mj,2 = i2j if 1 ≤ j ≤ ⌊n
2 ⌋ and s2(j−⌊n

2 ⌋) otherwise,
• uj = mj,1 + mj,2 − sj,
• A ⊂ {1, · · · , n},
• If n is even, then a = sn−3 and b = sn−2,
• If n is odd, then a = sn−2 and b = in.

Proof. The decomposition of the centralized number of (k − 1)-simplices is:

Ñk = I1(f1) + · · · + Ik(fk) =
k
∑

i=1

Ii(fi).

Now, we raise Ñk to the nth power:

Ñk
n

=

(

k
∑

i=1

Ii(fi)

)n

.

First, we consider the case where n is even, we can group the factors by 2:

Ñn
k =

(

k
∑

i1=1

Ii1(fi1)

k
∑

i2=1

Ii2 (fi2)

)

. . .





k
∑

in−1=1

Iin−1(fin−1)

k
∑

in=1

Iin(fin)



 .

We then use the chaos expansion of Proposition 6:

Ii(fi)Ij(fj) =

2(i∧j)
∑

s=0

Ii+j−s





∑

s≤2t≤2(s∧i∧j)

t!

(

i

t

)(

j

t

)(

t

s − t

)

fi ◦s−t
t fj





=

i+j
∑

s=|i−j|

Is





∑

i+j−s≤2t≤2(i+j−s)∧i∧j)

t!

(

i

t

)(

j

t

)(

t

i + j − s − t

)

fi ◦i+j−s−t
t fj



 .

Let us denote gs = t!
(

i
t

)(

j
t

)(

t
i+j−s−t

)

fi ◦i+j−s−t
t fj, so we can re-write, relaxing the

boundaries on the sums:

Ii(fi)Ij(fj) =
∑

s≥|i−j|

∑

t

Is(gs).

Thus, we have:

Ñn
k =

k
∑

i1,i2=1

∑

s1≥|i1−i2|

∑

t1

Is1(gs1) · · ·
k
∑

in−1,in=1

∑

sn/2≥|in−1−in|

∑

tn/2

Isn/2
(gsn/2

).

We go on grouping terms by 2 until we only have a product of 2 chaos left: First we
made n/2 chaos expansions, leading to n/2 sums with indexes sj, j = 1, · · · , n/2.
To reduce the number of chaos to 2, we have to make other chaos expansions. For
j ≥ n

2 + 1, the sum indexed by sj represents the expansion of the chaos indexed
s2(j− n

2 )−1 and s2(j− n
2 )−1. We have 2 chaos remaining when j = 2(j − n

2 ) + 2, i.e.
when j = n − 2.

Moreover, there are as much sums indexed with tj as with sj , that is n−2. Thus
we can write:

Ñn
k =

k
∑

i1,··· ,in=1

∑

s1,···sn−2

∑

t1,···tn−2

Isn−3(φsn−3)Isn−2(φsn−2),

With sj ≥ |mj,1 − mj,2| for j ∈ {1, · · · , n − 2} if we denote:

• mj,1 = i2j−1 if 1 ≤ j ≤ n
2 and s2(j−n

2 )−1 otherwise,
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• mj,2 = i2j if 1 ≤ j ≤ n
2 and s2(j−n

2 ) otherwise.

Then, denoting uj = mj,1 + mj,2 − sj and A the subset of {1, · · · , n} such that if
j ∈ A then the chaos ij is expanded in the chaos sn−3, we have:

Isn−3(φsn−3)Isn−2(φsn−2) =




n−2
∏

j=1

tj !

(

mj,1

tj

)(

mj,2

tj

)(

tj
uj − tj

)



 Isn−3(◦j∈Afij )Isn−2 (◦j∈Āfij ).

The notation ◦j∈Afij represents the product defined in Eq. (3) of the functions
fij for j ∈ A, but whom variables depend on all the i1, · · · , in, s1, · · · , sn−2, and
t1, · · · , tn−2.

Now, if n is odd, we consider n − 1 which is even, therefore we have:

Ñn
k =

k
∑

i1,··· ,in−1=1

∑

s1,··· ,sn−3

∑

t1,··· ,tn−3

Isn−4(φsn−4)Isn−3(φsn−3)
k
∑

in=1

Iin(fin)

=

k
∑

i1,··· ,in=1

∑

s1,··· ,sn−2

∑

t1,··· ,tn−2

Isn−2(φsn−2)Iin (fin),

with sj ≥ |mj,1 − mj,2| for j ∈ {1, · · · , n − 2} using the same notations for n − 1
instead of n:

• mj,1 = i2j−1 if 1 ≤ j ≤ n−1
2 and s2(j−n−1

2 )−1 otherwise,

• mj,2 = i2j if 1 ≤ j ≤ n−1
2 and s2(j−n−1

2 ) otherwise.

And with uj = mj,1 + mj,2 − sj ,

Isn−2(φsn−2) =





n−2
∏

j=1

tj !

(

mj,1

tj

)(

mj,2

tj

)(

tj
uj − tj

)



 Isn−2(◦j∈{1,··· ,n−1}fij ),

concluding the proof. �

Theorem 19. The expression of the nth moment of the number of (k−1)-simplices
is given by:

Eλ

[

Ñk
n
]

=
∑

i1,··· ,in

∑

s1,··· ,sn−3

∑

t1,··· ,tn−2

λnk+c





n
∏

j=1

λ−ij

(

k

ij

)









n−2
∏

j=1

tj !

(

mj,1

tj

)(

mj,2

tj

)(

tj
uj − tj

)



Jn(i1, · · · , in, s1, · · · , sn−3, t1, · · · , tn−2).

With for j ∈ {1, · · · , n − 2}:
• if j ≤ n − 3, sj ≥ |mj,1 − mj,2|,
• mj,1 = i2j−1 if 1 ≤ j ≤ ⌊n

2 ⌋ and s2(j−⌊n
2 ⌋)−1 otherwise,

• mj,2 = i2j if 1 ≤ j ≤ ⌊n
2 ⌋ and s2(j−⌊n

2 ⌋) otherwise,
• mj,3 = sj if 1 ≤ j ≤ n − 3 and sn−3 otherwise,
• uj = mj,1 + mj,2 − mj,3,
• If n is even, then c = sn−3 and

sn−3 ≥ |mn−2,1 − mn−2,2| ∨ |mn−3,1 − mn−3,2|,
• If n is odd, then c = in and in ≥ |mn−2,1 − mn−2,2|.
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Proof. The expression of the nth power of the number of (k − 1)-simplices is given
in Eq. (11):

Ñn
k =

k
∑

i1,··· ,in=1

∑

s1,··· ,sn−2

∑

t1,··· ,tn−2





n−2
∏

j=1

tj !

(

mj,1

tj

)(

mj,2

tj

)(

tj
uj − tj

)





Ia(◦j∈Afij )Ib(◦j∈Āfij ).

If n is even, we have:

Ñn
k =

k
∑

i1,··· ,in=1

∑

s1,··· ,sn−2

∑

t1,··· ,tn−2





n−2
∏

j=1

tj !

(

mj,1

tj

)(

mj,2

tj

)(

tj
uj − tj

)





Isn−3(◦j∈Afij )Isn−2 (◦j∈Āfij ).

So let us focus on the only part of the equation which is likely to change when we
take the expected value, that we will denote:

K =
∑

sn−3

∑

sn−2

Isn−3(◦j∈Afij )Isn−2(◦j∈Āfij ).

We then use the property of Eq. (1) and recognize the integral from Definition 9:

Eλ [K] =
∑

sn−3





n
∏

j=1

λk−ij

(

k

ij

)



λsn−3Jn(i1, · · · , in, s1, · · · , sn−3, t1, · · · , tn−2)

=
∑

sn−3

λnk+sn−3





n
∏

j=1

λ−ij

(

k

ij

)



Jn(i1, · · · , in, s1, · · · , sn−3, t1, · · · , tn−2),

with sn−3 ≥ |mn−2,1 − mn−2,2| ∨ |mn−3,1 − mn−3,2|.
Then for n odd we directly write:

K ′ =
∑

in

∑

sn−2

Iin(◦j∈Ifij )Isn−2(◦j∈Īfij ),

Eλ [K ′] =
∑

in

λnk+in





n
∏

j=1

λ−ij

(

k

ij

)



Jn(i1, · · · , in, s1, · · · , sn−3, t1, · · · , tn−2),

with in ∈ {|mn−2,1 − mn−2,2| ∨ 1, k}.
The binomials with the ij allow us to relax the boundaries on the sums on ij ,

concluding the proof. �
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