
HAL Id: hal-00592079
https://hal.science/hal-00592079

Preprint submitted on 11 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistant velocity-pressure coupling for second-order
L2-penalty and direct-forcing methods

Arthur Sarthou, Stéphane Vincent, Jean-Paul Caltagirone

To cite this version:
Arthur Sarthou, Stéphane Vincent, Jean-Paul Caltagirone. Consistant velocity-pressure coupling for
second-order L2-penalty and direct-forcing methods. 2011. �hal-00592079�

https://hal.science/hal-00592079
https://hal.archives-ouvertes.fr


Consistant velocity-pressure coupling for second-order
L2-penalty and direct-forcing methods

Arthur Sarthou 1, Stéphane Vincent 2, Jean-Paul Caltagirone2

Abstract

The present work studies the interactions between fictitious-domain methods on structured grids and velocity-
pressure coupling for the resolution of the Navier-Stokes equations. The pressure-correction approaches are
mainly used in this context but the corrector step is generally not modified consistently to take into account the
fictitious domain. A consistent modification of the pressure-projection for a high-order penalty (or penalization)
method close to the Hikeno-Kajishima modification for the Immersed Boundary Method is presented here. Com-
pared to the first-order correction required for the L2-penalty methods, the small values of the penalty parameters
do not lead to numerical instabilities in solving the Poisson equation. A comparison of the corrected rotational
pressure-correction method with the augmented Lagrangian approach which does not require a correction is car-
ried out.

Keywords:Navier-Stokes equations, Fictitious domain, Velocity-pressure coupling, Augmented Lagrangian,
Pressure-correction methods, Projection methods, Fractionnal-step methods, Penalty method, Penalization method,
Immersed boundary method, Incompressible flows.

1 Introduction
The simulation of real heat and mass transfers often implies interactions between multiphase flows and complex
obstacles. Many simulation codes based on structured grids have shown their ability to deal with a large amount
of physical phenomena. However, structured grids can not generally match complex interfaces due to their lack
of flexibility, and the treatment of problems with complex shapes is unnatural and uneasy with this approach. The
fictitious-domain methods have been designed to improve the performances of structured grid codes when complex
shapes are necessary. A wide literature has been devoted to the subject during the last decades, especially the last
15 years with the emergence of high-order methods (see for a review [MI05, Sar09]).

A first approach to deal with immersed boundaries is the Distributed Lagrangian Multiplier method proposed
by Glowinski [GPHJ99]. Used for the Navier-Stokes equations with finite-element methods, the coupling between
fluid and solid media is ensured with Lagrange multipliers introduced into the weak formulation of the Navier-
Stokes equations.
Cartesian grid methods [JC98, MCJ01] propose to use structured grid in the whole domain except near obstacles
where unstructured cells are created from structured cells. The implementation of the method is not simple due to
the numerous different space configurations of the intersections between cells and objects. The existence of small
cells can induce solver trouble and need a special treatment.
The Immersed Boundary Method (IBM) was initially presented by Peskin [Pes72, Pes02]. Fictitious boundaries
are taken into account through a source term activated only near the boundaries. As the source term is weighted
with a discrete Dirac function with a non-zero support, the interface influence is spread over some grid cells and
a first order of spatial convergence is generally obtained. Another class of IBM, the Direct-forcing (DF) methods,
was initially proposed by Mohd-Yusof [Moh97]. The idea here is to impose a no-slip condition directly on the
boundary using a mirrored flow over the boundary. In [FVOMY00, VIFO01], the correct boundary velocity is
obtained by interpolating the solution on the boundary and far from the boundary on grid points in the near vicinity
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of the interface. In [TF03], Tseng and Ferziger use the same principle but extrapolate the solution in ghost cells
inside the boundary. This approach can be seen as a generalization of the mirror boundary condition used with the
Cartesian staggered grid to impose Dirichlet condition on pressure nodes. As the original conservation equations
are solved one node closer to the boundary this approach seems to be more accurate than [FVOMY00, VIFO01].

Originally presented in [Arq84] for the conservation equations, the penalty (or from the french designation,
penalization) methods for fictitious domains consist in adding specific terms in the conservation equations to play
with the order of magnitude of existing physical contributions so as to obtain at the same time and with the same
set of equations various physical properties. The Volume Penalty Method (VPM, [KAPC00] and the references
therein) is a simple way to impose a solution in a part of the numerical domain. The methods imposing the
solution are called the L2-penalty methods while the H1-penalty methods allows a derivative of the solution to be
imposed [ABF99]. Classical penalty methods are of first order only since they consider the projected shape of the
interface on the Eulerian grid to define the penalty parameters [RAB07]. In [SVCA08, SVAC08], Sarthou et al.
have extended penalty methods to higher orders by modifying the expression of the penalty term using implicit
interpolations as in [TF03]. The method is called the Sub-mesh penalty method (SMPM) and has been applied first
to elliptic equations. For the Navier-Stokes equations, the incompressibility of the flows has been ensured with an
augmented Lagrangian velocity-pressure coupling [FG82, VSC]. This method consists in solving the momentum
equation with an augmented Lagrangian term which enforces the divergence-free constraint during an iterative
process. Hence, the fulfilment of both incompressibility and boundary constraints is obtained with the resolution
of a unique equation.

An issue occurs with the pressure-correction methods as the resolution of an additional elliptic equation is
performed to rise a pressure and to obtain a solenoidal field. The IBM for the Navier-Stokes equations are generally
used with the pressure-correction methods and modify the predictor step only (where the momentum equation is
solved). As no modification of the corrector step is performed, the additional boundary constraint is not taken into
account in the final velocity and pressure fields and is then no more respected.

In [Dom08], Domenichini analyzes in details the application of the DF-IBM to the fractional step solution of
the Navier-Stokes equations. To focus on the error induced by the non-consistant application of the immersed
boundary condition, a spectral solver is used. As can be expected, he notices that the boundary condition is not
accurately imposed, even if sub-iterations of the time-splitting can be performed to reduce this error.

This problem is not frequently tackled in the literature and fully satisfactory solutions have been found only
recently. In [KKC01], authors use a mass source and sink term in the pressure equation to preserve the mass
balance in the boundary cells but the desired velocity is not exactly imposed on the wall. More recently, Taira and
Colonius [TC07] consider both the boundary forcing of the Peskin IBM and the pressure as Lagrange multipliers.
Hence, the time-splitting procedure is applied in the same time and in an equal manner to both quantities. It allows
the rigid body and the incompressibility constraints to be satisfied at the same time.

In [IK07], Ikeno and Kajishima propose a consistant correction for a second-order DF-IBM. The principle is
to add the boundary term in the projection step in a consistant way. The update equation of the velocity has to be
modified too.

Concerning the L2-penalty methods, a solution for the first-order method is recalled in [PAC08]. However,
applying this modification to a high-order method is quite more challenging. Recently, the correction of [IK07]
has been applied successfully to the SMPM [Sar09]. A correction for a direct-forcing penalty method has been
introduced by Belliard et al. [BF10].

A consistant correction for a fully implicit high-order L2-penalty method is proposed here. The formulation is
derived from the penalized momentum equation and thus naturally obtained. Compared to [BF10], all steps of the
method take into account the high-order of the penalty term.

The method is applied to the incremental Goda[God78] and rotational [TMV96] pressure-projection methods
coupled with the SMPM. These approaches are compared in time and space to the augmented Lagrangian method.

In Section 2, the conservation equations and their discretization are presented. Then, the SMPM is described.
The third Section focuses on the consistant correction for the time-splitting methods. In Section 4, numerical tests
are performed to study and compare the numerical convergence of the method. The last section concludes the
article with a discussion and perspectives are drawn.
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2 Governing equations and base discretization

2.1 Governing equations
We consider the following form of the incompressible Navier-Stokes equations in a domain Ω:

∇ · u = 0 (1)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · [µ(∇u+∇Tu)] (2)

with u the velocity, ρ the variable fluid density, p the pressure, g the gravity vector, and µ the dynamic viscosity.
The Navier-Stokes equations are discretized with implicit finite-volumes on a staggered Cartesian grid. A

second-order centered scheme is used to approximate the spatial derivatives while first-order Euler and second-
order Gear schemes are used for the time integration. All the terms are written at time (n + 1)∆t, ∆t being the
time-step, except for the non-linear term un+1 · ∇un+1 which is linearized as un · ∇un+1 for the first-order Gear
scheme and as (2un − un−1) · ∇un+1 for the second-order Gear scheme. The modified semi-discrete form of the
original equation (2) is then

ρ

(
γ1u

n+1 + γ2u
n + γ3u

n−1

∆t
+
(
(γ4u

n + γ5u
n−1) · ∇

)
un+1

)
= −∇(γ4p

n + γ5p
n−1) +∇ · [µ(∇un+1 +∇Tun+1)]

(3)

with the additional constraint ∇ · un+1 = 0. The values of γi depend on the temporal scheme as

• γ1 = 1, γ2 = −1, γ3 = 0, γ4 = 1, γ5 = 0 for the Gear 1 or Euler scheme

• γ1 = 3
2 , γ2 = −2, γ3 = 1

2 , γ4 = 2, γ5 = −1 for the Gear 2 scheme.

In the next parts, the Euler scheme is generally written for the sake of simplicity.
The linear system resulting from the discretization is solved with a BiCG-Stab II solver [Gus78], precondi-

tioned by a Modified and Incomplete LU method [Vor92].

2.2 The velocity-pressure coupling
2.2.1 Pressure-correction methods

Most of the finite-volume CFD codes on Eulerian grids use pressure-correction (or fractional-step) methods. The
idea is to obtain first a predicted velocity u∗ satisfying the momentum equation only. This field is not solenoidal
as nothing constrains this condition. In a second step, the projection, the pressure is risen with respect to the
divergence of u∗. The third step consists in updating the velocity according to the pressure gradient obtained with
the second step.
We consider RHS the sum of the convective and diffusive terms of the equation (2). The half discretization in
time gives:

ρ

(
un+1 − un

∆t

)
= RHSn+1 −∇pn+1. (4)

This equation is solved, but as here ∇·un+1 ̸= 0, the solution is denoted u∗. We define u′ such as un+1 = u′+u∗

and p′ such as pn+1 = p′ + p∗. Hence, the predictor step solves:

ρ

(
u∗ − un

∆t

)
= RHS∗ −∇pn. (5)

To obtain the final velocity, the following equation is used :

ρ

(
un+1 − u∗

∆t

)
= −∇p′. (6)

This equation can be constructed with two points of view. For the first one, we consider (4)-(5) while RHS′ is
neglected (implementations which keep RHS′ are more difficult to perform) introducing an additional error as the
convective and diffusive terms are only considered at step ∗. The second point of view uses the Hodge-Helmholtz
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orthogonal decomposition of the space L2(Ω)d = H⊕H⊥ where H =
{
u ∈ L2(Ω)d,∇ · u = 0,u · n = 0 on ∂Ω

}
and H⊥ =

{
∇ϕ, ϕ ∈ H1(Ω)

}
. Hence, the predicted velocity field can be corrected by a pressure gradient to obtain

a solenoidal field. Equation (6) is considered as the second step of a time-splitting where the part of the solution
deriving from a potential is added to the predicted field to obtain the solenoidal solution. The pressure increment
is practically obtained by solving the divergence of (6) :

∇ · u∗ = ∇ · ∆t

ρ
∇p′. (7)

Once the pressure increment is obtained, velocity and pressure are updated:

pn+1 = p′ + pn (8)

un+1 = u∗ − ∆t

ρ
∇p′. (9)

In [TMV96], Timmermans et al. proposes a correction of this last step replacing (8) by

pn+1 = p′ + pn − µ∇ · u∗. (10)

This correction gives a consistent pressure boundary condition while the standard incremental algorithms gives
an artificial Neumann boundary condition for the pressure. An overview of the different projection methods is
performed in [GMS06]. Concerning the fictitious domains, the IBM applied to the NS equations are generally
designed for the projector step only. As no modification of the corrector step is performed, the additional boundary
constraint is not taken into account and is then not respected.

2.2.2 The augmented Lagrangian method

The augmented Lagrangian (AL) method [FG82] consists in adding a term ∇(dr∇·u) to the momentum equation
of the NS equations so as to enforce the divergence free constraint. The pressure is updated with the Uzawa method
[AHU58]. The parameter dr sets the magnitude of the constraint and must be chosen according to the magnitude of
the other terms of the equation to avoid low numerical performances of the solver and to obtain a suitable physical
solution. Iterative solvers can be very sensitive to the magnitude of dr (the condition number of the matrix varies
linearly with respect to dr [FLPA09] and the direct solvers allow higher values of dr to be taken) and a high
parameter implies an increase of the number of internal iterations of the solver. A too high parameter penalizes
the initial equation and leads to a strictly incompressible velocity field with no respect to the initial momentum
equation. Choosing a suitable parameter is not trivial. Furthermore, multiphase flows [VSC] can induce strong
variations of the densities and viscosities, and require dr to vary accordingly. To tackle this issue, the parameter dr
can be determined according to the physical quantities [VCLR04] or the coefficients of the discretization matrix
[VSC].

The base algorithm of the augmented Lagrangian method is now described. Starting with u∗,0 = un and
p∗,0 = pn, while ||∇ · u∗,m|| > ϵ , solve

(u∗,0, p∗,0) = (un, pn)

ρ

(
u∗,m − u∗,0

∆t
+ u∗,m−1 · ∇u∗,m

)
−∇(dr∇ · u∗,m)

= −∇p∗,m−1 +∇ · [µ(∇u∗,m +∇Tu∗,m)]

p∗,m = p∗,m−1 − dr∇ · u∗,m

(11)

Although the AL method is an iterative procedure, one iteration is generally acceptable to reach a sufficiently
small divergence. To enforce an immersed Dirichlet BC, the penalty term χ

ε (Πu
n+1 − uD) (described in details

in section 3) is added to the momentum equation. We obtain the following simplified formulation :

ρ

(
un+1 − un

∆t
+ un · ∇un+1

)
−∇(dr∇ · un+1)

= −∇pn +∇ · [µ(∇un+1 +∇Tun+1)] +
χ

ε
(Pun+1 − uD)

(12)

pn+1 = pn − dr∇ · un+1. (13)
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This last equation is not a splitting in time. By taking the divergence of (13), on can see that ∇·pn+1 is still present
in (12) and dr∇ · un+1 can be seen as the implicit pressure increment.

Hence, the AL methods allows large time steps to be used. Furthermore, no boundary conditions are required
for the pressure. A small number of AL iterations could be required to obtain an acceptable divergence [VSC]. If
a machine accuracy fulfilment of the divergence-free constraint is desired, the number of required iterations can be
prohibitive (especially with iterative solvers). A simple solution is to use a penalty-projection method as presented
in the next section.

2.3 The penalty-projection methods
The penalty-projection methods [She92, FLPA09] are a combination of the augmented Lagrangian and pressure-
correction methods. An augmented Lagrangian term (called in this case the penalty term) is added to the momen-
tum equation which produces a velocity field u∗ with a moderate divergence. A projection step is then performed
to obtain a solenoidal velocity field un+1. The final pressure is obtained with pn+1 = pn + p′ − dr∇ · u∗ for the
standard incremental scheme. For the rotational scheme, dr is replaced by dr + µ in the pressure update. Com-
pared to the augmented Lagrangian method taken alone, the weaker requirement on the divergence for the first step
allows to use a smaller dr parameter (which decreases the conditioning number of the linear system) and less AL
sub-iterations. Compared to the pressure-correction methods, the intermediate predicted velocity field is closer to
the solenoidal final field. Another penalty-projection has been proposed by Breil and Caltagirone in [CB99]. The
difference lies in the projection step which solves a vector equation on the velocity:

∇(∇ · u′) = −∇(∇ · u∗) (14)

where u′ is a velocity increment such as un+1 = u∗ + u′. The authors demonstrates that a very small amount of
solver iterations (less than ten for a BiCG-Stab II with ILU preconditioning) are required to reach the divergence-
free constraint. An extension of this method is presented in [PAC08].

3 The L2-penalty methods
The L2-penalty methods are a class of fictitious domain method used to impose a Dirichlet or Neumann bound-
ary condition on a complex interface. We specify to avoid confusion that the penalty methods and the penalty-
projection methods are not related except that both add a term in the conservation equation to enforce a specific
behavior of the solution.

3.1 Base principle
Let us consider the original domain of interest denoted by Ω0, typically the fluid domain, which is embedded inside
a simple computational domain Ω ⊂ Rd. The auxiliary domain Ω1, typically a solid particle or an obstacle, is then
such that Ω = Ω0 ∪ Σ ∪ Ω1 where Σ is an immersed interface (see Fig. 1 left). Let n be the unit outward normal
vector to Ω0 on Σ. Our objective is to numerically impose the adequate boundary or interface conditions on the
interface Σ. The continuous L2-penalty method for the incompressible Navier-Stokes equations consists in adding
a term χ

ε (u− uD) into the momentum equation

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ ρg +∇ · [µ(∇u+∇Tu)] +

χ

ε
(u− uD) (15)

where 0 < ε ≪ 1 denotes the penalty parameter and χ is the Heaviside function such as

χ(x) =

{
1 if x ∈ Ω1

0 if x ∈ Ω0.

In Ω0, the penalty term vanishes and the original momentum equation is retrieved. In Ω1, the equation tends to
u = uD when ε −→ 0.
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3.2 Discretization
For the sake of simplicity the method is described in 2D for a scalar equation. The computational domain Ω is
approximated with a curvilinear mesh Th composed of N ×M (×L in 3D) cell-centered finite volumes (VI ) for
I ∈ E , E being the set of index of the Eulerian orthogonal curvilinear structured mesh. Let xI be the vector
coordinates of the center of each volume VI . The local characteristic space step hI of the volume VI is defined
as the maximum length of VI in each direction, whereas h denotes the Eulerian mesh step: h = supI∈E hI . This
grid is used to discretize the conservation equations. A dual grid is introduced for the management of the penalty
method (in finite-difference discretization, the primal mesh is used). The grid lines of this dual cell-vertex mesh
are defined by the network of the cell centers xI . The volumes of the dual mesh are denoted by (KI ). The Eulerian
unknowns are noted ϕI which are the approximated values of ϕ(xI), i.e. the solution at the cell centers xI .
The discrete interface Σh, hereafter called the Lagrangian mesh, is given by a discretization of the original inter-
face Σ. It is described by a piecewise linear approximation of Σ: Σh = {σl ∈ Pd−1

1 , l ∈ Lf}, K being the cardinal
of Lf and Lf being the set of index of the Lagrangian mesh. Typically, σl are segments in 2D and triangles in
3D. The vertices of each face σl are denoted by xl,i for i = 1, d and the set of all vertices is : {xl, l ∈ Lv}. The
intersection points between the grid lines of the Eulerian dual mesh and the faces σl of the Lagrangian mesh are
denoted by {xi, i ∈ I} (see Fig. 1 right).
The cell centers xI are sorted according to their location inside Ω0 or Ω1 with the discrete Heaviside function
χI = χ(xI). This function is computed from Σh with a Thread Ray-casting method [SVC10]. The principle is
to cast a ray from each Eulerian nodes. If the number of intersections between Σh and the ray is odd, the node is
inside the object, otherwise outside. The algorithm needs LMNK/max(L,M,N) intersection tests and is faster
than the classical Ray-casting method [OSF05] which requires LMNK intersection tests. New sets of Eulerian
points xI are defined near the interface such as one neighbor xJ verifying χJ ̸= χI exists, i. e. the segment
[xI ;xJ ] is cut by Σh. These Eulerian "interface" points are also sorted according to their location inside Ω0 or Ω1.
Two sets {xI , I ∈ N0} and {xI , I ∈ N1} are so obtained, where N0 = {I, xI ∈ Ω0,∃neighb(xI) ∈ Ω1} and
N1 = {I, xI ∈ Ω1,∃neighb(xI) ∈ Ω0}.

The spatial order of the L2-penalty method directly depends on the discretization of χ
ε (ϕ − ϕD). The VPM

[Ang89] discretizes the term for a node ϕi as χi

ε (ϕi − ϕD) with ϕD the boundary value at the vicinity of xi. As
the solution is considered as constant in each penalized cells, the shape of the immersed boundary is perceived by
the fluid as being stair-stepped, or rasterized. This inaccurate description of the interface implies a first-order of
spatial convergence [Ram07].

To reach a second-order of spatial accuracy, the sub-mesh penalty method (SMPM) [SVCA08, SVAC08] dis-
cretizes the penalty term with χi

ε (Πiϕ− ϕD(xl)) where Πi is a polynomial interpolator.
We consider a point xI with I ∈ N1 and only one neighbor xJ in Ω0. The Lagrangian point xl is the inter-

section between [xI ;xJ ] and Σh (Fig. 1 right). The solution ϕ = ϕl has to be satisfied at xl which implies in a
discrete point of view ΠIϕ(xl) = ϕD(xl) with Π the P1

1-interpolator (one-dimensional linear polynomial) between
the Eulerian unknowns uI and uJ :

ϕl = αIϕI + αJϕJ with 0 < αI , αJ < 1 and αI + αJ = 1 (16)

The coefficients αI and αJ are determined such as ΠIϕ(xI) = ϕI and ΠIϕ(xJ) = ϕJ . If now xI has a second
neighbor xK in Ω0, the intersection xm between [xI ;xK ] and Σh is considered. We choose xp, a new point of Σh

between xl and xm (see Fig. 1 left). Practically, the barycenter between xm and xl is used. The resulting point xp

is not necessarily on Σh but it does not spoil the second-order precision of the method since the distance d(xp,Σh)
between xp and Σh is varying like O(h2). The solution ϕp(xp) is then approximated using a P2

1-interpolation
(two-dimensional linear polynomial)of the values ϕI , ϕJ and ϕK :

ϕp = αIϕI + αJϕJ + αKϕK , 0 < αI , αJ , αK < 1 , αI + αJ + αK = 1 (17)

We can also use a Q2
1-interpolation of ϕI , ϕJ , ϕK and ϕL, by extending the interpolation stencil with the point xL

which is the fourth point of the cell of the dual mesh defined by xI , xJ and xK (see Fig. 1.right).
If Σh is regular enough, xI has almost never a third neighbor in Ω0. However, if it is the case, the first-order

L2-penalty term χI

ε (ϕI − ϕD(xl)) is used. In any case, by decreasing the Eulerian mesh step h, we also decrease
the number of points xI having more than two neighbors in Ω0.
It has to be noticed that the penalty term is only required for nodes xI with I ∈ N1, i.e. for the nodes in Ω1 with
at least one neighbor in Ω0. What happens inside Ω1 and far from Σ has no impact on the flow in Ω0 and so is
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of secondary interest (practically, the parts of the discretization matrix corresponding to these nodes are removed
before the resolution of the liner system).

Concerning the application of the method to a Curvilinear grid, the computational domain can be "unfold" into
a Cartesian domain where most of the computations are performed. Hence, the penalty constraints are build from
the Cartesian grid with the standard Cartesian routines. The curvilinear to Cartesian projection is described in
[SVC10] .

4 Penalty correction for the pressure correction methods

4.1 First-order correction
For a first-order penalty term, such a correction is easy to performed [PAC08]. Let us now write the momentum
Navier-Stokes equation with a first-order penalty term :

ρ
∂u

∂t
= +RHS −∇p+

χ

ε
(u− uD) (18)

In the standard method, (4)−(5) is considered to obtain the equation (6). The same operation is performed with
the penalty term and the equation (6) becomes:

ρ

(
un+1 − u∗

∆t

)
= −∇p′ +

χ

ε
(un+1 − u∗) (19)

and the equation (7) becomes:

∇ · u∗ = ∇ · (∆t

ρ
− χ

ε
)−1∇p′. (20)

The velocity is then updated using (19) :

un+1 = u∗ − (
∆t

ρ
− χ

ε
)−1∇p′. (21)

It is important to notice that the correction terms due to the fictitious domain method appears naturally with this
walkthrough. The standard pressure update is not modified.

Remark 4.1 A classical problem with the elliptic equation (20) in the penalized approach is that the diffusion
coefficient varies in O(ε−1) in Ω1. Hence, a strong imposition of the penalty constraint produces a very high
diffusion coefficient which leads to numerical instabilities. In [BF10], with the assumption that ρ is constant over
the domain, the authors propose the following correction to avoid numerical instabilities :

ρ

∆t
∇ · u∗ = ∇ · ε

ε+ χ
∇pn+1 +

1

ε
(pn+1 − p0) (22)

where p0 is a prescribed pressure. The last term produces a L2-penalization of the pressure equation.

Remark 4.2 In [BF10], authors use the non-incremental version of the scheme and a first-order correction for
the pressure equation. However, the boundary condition is explicitly chosen as being the linear extrapolation of
the solution and a second-order of spatial convergence is reached for a stationary case. In our approach, all the
terms due to the penalization are of second-order and implicit.

4.2 Higher-order correction
A fully implicit second-order correction is now proposed. A consistant correction following the precedent walk-
through with a penalty term of higher order is much more delicate. The first-order term χi

ε (ui−uD(xl)) is replaced
by χi

ε (Πiu− uD(xl)) with Πiu =
∑

j/xj∈Neighb(xi)

αjuj . The pressure equation (20) becomes, for each node xi:

∇ · u∗
i = ∇ · ( ρ

∆t
− χi

ε
Πi)

−1∇p′ (23)
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which requires the calculation of the matrix corresponding to ( ρ
∆t −

χi

ε Πi)
−1 before the resolution of the initial

system. A more simple method is chosen here even if it would be interesting to evaluate this first method. We start
back with the equation (6) with a penalty term by following the natural walkthrough of the first-order correction :

un+1
i − u∗

i = −∆t

ρ
∇p′ +

∆tχi

ρε
Πi

(
un+1 − u∗) (24)

developed as

(1− ∆tχi

ρε
Πi)(u

∗ − un+1) =
∆t

ρ
∇p′. (25)

The key of this construction is to introduce Π′
i, a new interpolator such as:

Π′
iu =

∑
j/xj∈Neighb(xi),i ̸=j

αjuj . (26)

Hence, Πiu = αiui +Π′
iu and we have(

1− ∆tχi

ρε
(αi +Π′

i)

)
(u∗ − un+1) =

∆t

ρ
∇p′. (27)

By construction, the nodes involved by Π′
i are always in Ω0 where χ = 0 so the original pressure-correction

method occurs. Hence, using (9) we have(
1− ∆tχiαi

ρε

)
(u∗

i − un+1
i )−

(
∆tχi

ρε
Π′

i

∆t

ρ
∇p′

)
=

∆t

ρ
∇p′ (28)

and we obtain

un+1
i = u∗

i −
(

∆tχi

ρε−∆tχiαi
Π′

i

∆t

ρ
∇p′ +

∆tεi
ρε−∆tχiαi

∇p′
)
. (29)

the equation of the velocity update. Using the divergence of (29) and ∇ · un+1
i = 0 we obtain the final correction

equation

∇ · u∗
i = ∇ ·

(
∆tχi

ρε−∆tχiαi
Π′

i

∆t

ρ
∇p′ +

∆tεi
ρε−∆tχiαi

∇p′
)
. (30)

The parameter ε ≪ 1 and we obtain at the limit :

∆tχi

ρε−∆tχiαi
−→ 0 and

∆tε

ρε−∆tχiαi
−→ ∆t

ρ
in Ω0 when ε −→ 0 (31)

as χ(xi) = 0 for xi ∈ Ω0 and

∆tχi

ρε−∆tχiαi
−→ − 1

αi
and

∆tε

ρε−∆tχiαi
−→ 0 in Ω1 when ε −→ 0. (32)

The pressure update is still pn+1 = pn + p′(−µ∇ · u∗). Using (24) to build the velocity update, the standard
equation (9) is recovered in Ω0.

A major advantage of this formulation is that the diffusion coefficient in the pressure equation (30) has generally
an absolute value of magnitude ∆t/ρ which avoid the numerical instability of the first-order method. Critical values
appears when the interface is very close to the penalized node or a neighbor of the penalized node. If we consider
the case where a node xI ∈ Ω1 has one neighbor xJ ∈ Ω0, the penalty constraint is αIuI +(1−αI)uJ = uD(xl),
and here Π′

Iu = (1− αI)uJ . Hence, the diffusion coefficient is (αI − 1)∆t/(αIρ) and is critical if the interface
Σh is close to the penalized node. In this case the coefficient is very small and the same problem as with the first-
order correction occurs. However we noticed that a correct solution can be obtained with a diffusion coefficient of
magnitude 10−10. If the interface position leads to a smaller value, one can slightly move the interface to decrease
αI . The case αI ≪ 1 provides a large diffusion coefficient and produces a H1-penalty term [ABF99], that is to
say a Neumann boundary condition in the considered cell.
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4.3 Comparison to the Hikeno-Kajishima correction
This approach has been proposed by [IK07] for a DF-IBM method and is presented here for our interpolator Π.
They propose the following velocity update

un+1
i = u∗

i −

(
(1− χi)

∆t

ρ
∇p′ − χi

Π′
i
∆t
ρ ∇p′

αi

)
(33)

which is directly introduced and not obtained from the solved momentum equation (the consistency of the method
is demonstrated afterwards). In our formulation, all the method is derived from the original momentum equation
and the prediction equation so the consistency is naturally deduced. From (33) and the incompressibility constraint,
the following equation is obtained :

∇ · u∗
i = ∇ ·

(
(1− χi)

∆t

ρ
∇p′ − χi

Π′
i
∆t
ρ ∇p′

αi

)
. (34)

and the pressure is updated as in the standard method

pn+1 = p′ + pn. (35)

The method is applied too to the non-incremental fractional step method.
As can be seen, the equations obtained are different than with the present approach. Obviously, it is due to the

way the boundary condition is imposed (penalty term with a coefficient 1/ε of dominant magnitude in our case or
IBM direct-forcing term with Dirac function in [IK07]). However, the final pressure correction equation with the
penalized correction (30) tends to (34) when ε tends to zero. The same result is obtained with the corresponding
velocity updates.

Remark 4.3 For this correction (and the penalty correction presented here when ε → 0), the velocity in Ω1 is
updated as

un+1
i = u∗

i +
Π′

i
∆t
ρ ∇p′

αi
(36)

By construction of the interpolator Πiu = αiui + Π′
iu, no node of Ω1 is involved in Π′

i. Hence, as the pressure
correction in Ω0 is

un+1
i = u∗

i −
∆t

ρ
∇p′, (37)

one can replace
∆t

ρ
∇p′ by (u∗

i − un+1
i ) to obtain

un+1
i = u∗

i −
Π′

i(u
∗
i − un+1

i )

αi
. (38)

Considering the initial interpolator Πi, we obtain

Πiu
n+1
i = Πiu

∗
i (39)

and the boundary constraint obtained in the predictor step is conserved. It induces as well that Πiu
′
i = 0. The

update of the velocity near the velocity is not necessarily null contrary to the linear combination of these velocities.

4.4 Temporal accuracy for the incremental pressure-correction
We study here the temporal accuracy of the pressure for the penalized incremental pressure-correction method with
a first-order Euler scheme. The temporal accuracy for the base method is O(∆t) [GMS06]. The ideal equation
system to solve is: [

A G
D 0

] [
un+1

pn+1

]
=

[
r
0

]
(40)

with G the gradient operator, D the divergence operator, A the following sub-matrix

A =
{ ρ

∆t
+N − V − χ

ε
Π
}

(41)
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with N the linearized discretization of the inertial term and V the discretization of the viscous term. The second
member r is defined as

ri =
∆t

ρ
u∗
i −

χi

ε
Πiu

∗. (42)

The velocity update (29) allows to write[
I BG
0 I

] [
un+1

pn+1

]
=

[
u∗

pn+1

]
(43)

with I the identity matrix and B the matrix such as

B =

{
∆tχi

ρε−∆tχiαi
Π′

i

∆t

ρ
+

∆tε

ρε−∆tχiαi

}
. (44)

At last, the pressure elliptic equation yields[
A 0
D −DBG

] [
u∗

pn+1

]
=

[
r
0

]
. (45)

As first noticed by Perot [Per93], the two systems (43) and (45) are a block LU decomposition of the system[
A ABG
D 0

] [
un+1

pn+1

]
=

[
r
0

]
(46)

which allows us to write the error of the scheme using (40) :

AB =

{( ρ

∆t
+N − V − χ

ε
Π
)( ∆tχ

ρε−∆tχα
Π′∆t

ρ
+

∆tε

ρε−∆tχα

)}
. (47)

We study the error in Ω0. We consider the matrices N0, N1, V0 and V1 such as V = V0 + V1 and N = N0 +N1.
The matrice N0 is such that {N0}i,j = {N}i,j if xj ∈ Ω0, else {N0}i,j = 0. The same occurs for V0. It is
necessary to split these contributions as the value of χ varies in B. Hence, we have

AB =

{( ρ

∆t
+N0 − V0

) ∆t

ρ
+ (N1 − V1)

(
∆t

ρε−∆tα
Π′∆t

ρ
+

∆tε

ρε−∆tα

)}
(48)

which tends to term in {1 + O(∆t)} when ε tends to zero. The first order is retrieved. We consider now the error
in Ω1 :

AB =
{(

N0 − V0 − 1
εΠ

′) ∆t
ρ +

(
ρ
∆t +N1 − V1 − 1

εα
) (

∆t
ρε−∆tαΠ

′∆t
ρ + ∆tε

ρε−∆tα

)}
= {(N0 − V0)

∆t
ρ +

(
− 1

ε + ρ
ρε−∆tα − ∆tα

ε(ρε−∆tα)

)
Π′∆t

ρ

+(N1 − V1)
(

∆t
ρε−∆tαΠ

′∆t
ρ + ∆tε

ρε−∆tα

)
+ ρε

ρε−∆tα − ∆tα
ρε−∆tα}

=
{
(N0 − V0)

∆t
ρ + (N1 − V1)

(
∆t

ρε−∆tαΠ
′∆t
ρ + ∆tε

ρε−∆tα

)
+ 1
} (49)

which also tends to a term in {1 + O(∆t)} when ε tends to zero. Hence, the order of the original method is
retrieved. The same result with a quite similar analysis is obtained by [IK07].

4.5 Value of the penalty parameter
The value of the penalty parameter ε has an influence on the solution as the solution u∗ obtained with the momen-
tum equations converges toward the desired solution for the L2-norm with an order 6 3/4 in ε [ABF99].

For the first-order method, the value of the parameter is more critical. In the present approach, the empirical
value ε ≈ 10−10 is used. This value can varies depending on the linear solver. Nonetheless, taking ε ≈ 10−20

in (21) will ensure the desired velocity inside the obstacle. For the second-order correction, ε can be taken suffi-
ciently small to ensure Πu∗ = uD at machine accuracy when the high-order penalty term is used. The converged
correction can be also directly implemented.
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5 Numerical experiments
The performances of the modified pressure-correction are evaluated here. The method is compared to the aug-
mented Lagrangian method which does not require a correction. It is also an opportunity to compare the approaches
in a more general point of view. When no analytical solution is available, a Richardson extrapolation is used to
compute a reference solution [Roa98]. We consider three values h1, h2 and h3 of a numerical parameter verifying
consecutive ratios of two. The convergence rate θ and the reference solution fext are given by:

θ =
ln
(

fh1
−fh2

fh2
−fh3

)
ln
(

h1

h2

) (50)

fext =

(
h2

h3

)θ
fh3 − fh2(

h2

h3

)θ
− 1

(51)

The asymptotical convergence zone has to be reached to obtain a relevant extrapolation.

5.1 Cylindrical Couette flow
We consider a Couette flow between two cylinders of radius R1 = 0.5m and R2 = 3m. Their angular velocities
are ω1 = 0 rad.s−1 and ω2 = 2 rad.s−1. The solution is

vθ(r) =
ω2R

2
2 − ω1R

2
1

R2
2 −R2

1

r +
(ω1 − ω2)R

2
2R

2
1

R2
2 −R2

1

1

r
(52)

for the velocity and

p(r) = ρa2
r2

2
− b2

2r2
+ 2ab log(r) (53)

for the pressure with

a =
ω2R

2
2 − ω1R

2
1

R2
2 −R2

1

and b = (ω1 − ω2)
R2

1R
2
2

R2
2 −R2

1

.

The NS equations are solved in a domain Ω = [−2 ; 2 + 0.1
√
2 ] × [−2 ; 2 + 0.2

√
2 ]. The analytical solution

is imposed on ∂Ω. The SMP method is used to impose a Dirichlet BC on the inner circle. For the augmented
Lagrangian method, a value of the parameter dr = 10 is chosen.

Mesh L2 rel. error. u Order L2 rel. error. p Order
16 3.409× 10−3 5.898× 10−3

32 4.708× 10−4 2.86 4.222× 10−3 0.48
64 1.307× 10−4 1.85 1.269× 10−3 1.73

128 3.314× 10−5 1.98 3.979× 10−4 1.67
256 8.032× 10−6 2.04 1.339× 10−4 1.57
512 2.111× 10−6 1.93 5.040× 10−5 1.41

1024 5.281× 10−7 2.00 2.040× 10−5 1.30

Table 1: L2 relative errors in space and corresponding orders for the velocity and the pressure - augmented La-
grangian an incremental pressure-correction methods

The convergence study of the L2 relative spatial error is given in table 1 and plotted in figure 2. These results are
obtained with the AL method. Similar results are obtained with the rotational pressure-correction with a negligible
differential on the L2 error demonstrating the spatial accuracy of the modification. As expected for such a case
[SVCA08], a second order is obtain for the velocity. The convergence rate for the pressure error is around 1.5.

The table 2 gives the same convergence study for the rotational method without immersed-boundary correction
for a time step ∆t = 1s. As can be seen in figure 2, the lack of correction has almost no influence on the pressure.
The convergence rate for the velocity is lower but acceptable. A factor ten is obtained between the solution with
and without the correction for the finest mesh.
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Mesh L2 rel. error. u Order L2 rel. error. p Order
16 5.652× 10−3 9.144× 10−3

32 1.451× 10−3 1.96 4.376× 10−3 1.06
64 5.242× 10−4 1.47 1.322× 10−3 1.73

128 1.412× 10−4 1.89 4.052× 10−4 1.71
256 5.260× 10−5 1.42 1.357× 10−4 1.58
512 1.673× 10−5 1.65 5.036× 10−5 1.43

1024 5.687× 10−6 1.56 2.039× 10−5 1.30

Table 2: L2 relative errors in space and corresponding orders for the velocity and the pressure -Timmermans
method without immersed boundary correction

The time evolution of the solution is now evaluated. For a case with Dirichlet boundary conditions, [GSLF05,
GMS06] give for the rotational method a rate of O(∆t2) for the velocity and O(∆t

3
2 ) for the pressure.

Simulations with a 64× 64 mesh are conducted with different time steps and velocity-pressure coupling meth-
ods. The instant Tp when the L2 error on the pressure reaches 1.5 × 10−3 and the instant Tv when the L2 error
on the velocity reaches 1.5 × 10−4 are considered to study the convergence. The table 4 shows the convergence
of these values for the augmented Lagrangian and rotational pressure-correction methods, and for the Euler tem-
poral schemes. The reference values are computed with the Richardson extrapolation using the three more refined
values. A clear first order of convergence is obtained for the velocity and the pressure for both velocity-pressure
coupling methods. Except for the larger time-steps, both methods gives the same results.

The figure 3 shows the evolution of the spatial error with respect to the number of time iterations for ∆t = 0.1s,
∆t = 1s and ∆t = 10s while the table 3 gives the values of Tv and Tp for these time steps. Due to its strong
implicitation, the AL method is always converged faster than the pressure-corrections. One can notice that the
temporal evolution of the solution for the rotational method without correction is quite similar to the evolution of
the corrected methods up to an error of 10−3 on the velocity. For this case, the interest of the correction seems
to be minor. The figure 3 shows that the convergence of the incremental pressure-correction is much slower than
with the other methods. For the present case, reaching the same level of error than with the two others methods is
prohibitive.

The curves of convergence for the second-order Gear scheme are show in figure 4 (the error convergence for the
velocity with the augmented Lagrangian method and for the first-order temporal scheme is given for comparison).
The values are given in table 5. An irregular convergence is observed for the velocity. For time steps inferior to
0.01s, the error is under the error for the Euler scheme for all values and the asymptotical convergence zone seems
to be reached. A first-order of convergence rate is obtained for the pressure. An order of about 0.8 is obtained for
the velocity with the pressure-correction which is far from the theoretical order of 2. The augmented Lagrangian
method has lower errors but its convergence rate is about 0.5 in the asymptotical zone. Studies conducted in
[FLPA09] suggest that the augmented Lagrangian should reach a first-order for the velocity and the pressure. The
same behavior is obtained in [AJL]. As the convergence rates are better for the first-order temporal scheme, a
saturation effect can be involved. Compared to the classical studies, we have the immersed boundary correction
here which could cause this saturation. The value of the parameter ε is not involved here as the converged equations
in ε gives the same results. In this case the theoretical error study suggests a first-order of convergence for the
pressure. The use of a relatively coarse mesh seems not to be involved as we use the Richardson extrapolation to
compute the solution so one can suppose that the spatial error does not mix with the temporal error. This point
has to be investigated further. The figure 4 shows the convergence for the augmented Lagrangian method with
dr = 100. The error on the pressure is close to the other methods. For the smallest time steps, the error on the
velocity oscillates around a value so we cannot use the Richardson extrapolation. This values is different from
the value obtained with the other methods, so another saturation effect seems to be involved. For this reason,
the reference value of the pressure-correction and the augmented Lagrangian with dr = 10 is taken. Even if the
convergence is stopped for the smaller time steps, an excellent error (compared to the other methods) is obtained.

To finish with this case, the table 6 shows the spatial errors for various time steps with the rotational method
without correction. Contrary to the corrected methods, the error at the stationary state depends on the time step
even if its influence is small here. A quite surprising results is that the error decreases when the time step increases
while Domenichini [Dom08] has noticed the contrary (but for different cases and with a spectral solver).
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∆t Tv AL Tp AL Tv SPT Tp SPT
10 42.27 47.76 439.8 538.2
1 5.801 5.811 24.18 29.99

0.1 2.506 2.266 2.573 2.4214

Table 3: Temporal convergence of the error on the velocity and the pressure for the augmented Lagrangian and the
rotational methods for large time steps for the Couette flow

∆t Tu AL Order Tp AL Order Tu SPT Order Tp SPT Order
Ref 2.107 1.863 2.107 1.863

128× 10−3 5.168× 10−1 5.172× 10−1 6.402× 10−1 1.034× 10+0

64× 10−3 2.591× 10−1 1.00 2.584× 10−1 1.00 2.835× 10−1 1.18 2.968× 10−1 1.80
32× 10−3 1.315× 10−1 0.98 1.304× 10−1 0.99 1.353× 10−1 1.07 1.381× 10−1 1.10
16× 10−3 6.630× 10−2 0.99 6.539× 10−2 1.00 6.651× 10−2 1.02 6.654× 10−2 1.05
8× 10−3 3.328× 10−2 0.99 3.268× 10−2 1.00 3.299× 10−2 1.01 3.259× 10−2 1.03
4× 10−3 1.665× 10−2 1.00 1.636× 10−2 1.00 1.640× 10−2 1.01 1.614× 10−2 1.01
2× 10−3 8.339× 10−3 1.00 8.185× 10−3 1.00 8.182× 10−3 1.00 8.019× 10−3 1.01
1× 10−3 4.177× 10−3 1.00 4.096× 10−3 1.00 4.082× 10−3 1.00 3.984× 10−3 1.01

Table 4: Temporal convergence of the error on the velocity and the pressure for the augmented Lagrangian and the
rotational methods - Gear 1 scheme for the Couette flow

∆t Tu AL Order Tp AL Order Tu SPT Order Tp SPT Order
Ref 2.107 1.863 2.107 1.863

128× 10−3 1.918× 10−1 8.743× 10−1 3.852× 10−2 6.724× 10−1

64× 10−3 2.531× 10−2 2.92 4.095× 10−2 4.42 6.041× 10−3 2.67 3.887× 10−2 4.11
32× 10−3 3.569× 10−3 2.83 2.356× 10−2 0.80 1.157× 10−3 2.38 1.846× 10−2 1.07
16× 10−3 2.769× 10−4 3.69 1.290× 10−2 0.87 1.802× 10−3 -0.64 9.048× 10−3 1.03
8× 10−3 6.918× 10−4 -1.32 6.687× 10−3 0.95 1.251× 10−3 0.53 4.632× 10−3 0.97
4× 10−3 5.336× 10−4 0.37 3.428× 10−3 0.96 7.212× 10−4 0.80 2.326× 10−3 0.99
2× 10−3 3.756× 10−4 0.51 1.753× 10−3 0.97 4.120× 10−4 0.81 1.168× 10−3 0.99
1× 10−3 2.645× 10−4 0.51 8.976× 10−4 0.97 2.357× 10−4 0.81 5.862× 10−4 0.99

Table 5: Temporal convergence of the error on the velocity and the pressure for the augmented Lagrangian and the
rotational methods - Gear 2 scheme for the Couette flow
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∆t L2 rel. error. u L2 rel. error. p
10−2 7.421× 10−4 5.954× 10−3

10−1 5.593× 10−4 1.929× 10−3

1 5.242× 10−4 1.322× 10−3

10 5.197× 10−4 1.288× 10−3

102 5.196× 10−4 1.287× 10−3

Table 6: L2 relative errors in space for the non-corrected rotational method for various time steps for the Couette
flow

∆t/∆tmin Period/∆tmin (RPC) Order Period/∆tmin(AL) Order
Ref 4.667× 102 4.694× 102

128 1.137× 103 1.043× 103

64 7.973× 102 1.02 7.506× 102 1.02
32 6.282× 102 1.03 6.241× 102 0.86
16 5.493× 102 0.96 5.530× 102 0.88
8 5.107× 102 0.90 5.134× 102 0.92
4 4.896× 102 0.94 4.920× 102 0.96
2 4.785× 102 0.96 4.806× 102 1.00
1 4.726× 102 0.96 4.750× 102 1.00

Table 7: Period of the oscillations with the rotational pressure correction (RPC) and the augmented Lagrangian
(AL) with a Gear 1 temporal scheme for the flow past a cylinder at Re = 100

5.2 Flow past a cylinder
The instationary flow past a cylinder of unit diameter is now simulated to study the temporal order of the method for
an instationary case. We consider a cylinder of diameter D in a domain Ω = [−10R ; 15R ]× [−10R ; 10R ]. The
inlet velocity V and the fluid properties are set such as the Reynolds number is equal to 100. The computational
mesh is composed of 175 × 150 cells with an inner zone of dimensions [−D ; 2D ] × [−D ; D ] with a constant
space step covered by 75 × 50 cells. The figure 6 shows the mesh and the position of the cylinder. An Orlanski
open boundary condition [Orl76] is imposed for the outflow.

The vorticity and the pressure are shown in figure (5). On can see that the vorticity in the periodic Bénard-von
Kármán vortex street is strongly decaying with the X direction compared to the standard solution of the litteraure.
This difference is due to the coarseness of the mesh. However, the aim here is not to compare our results with the
literacy so the size of the computational mesh is relatively moderate.

The table 8 gives the values of a period of oscillation (adimentionalised by the minimum time step) for different
time steps with the augmented Lagragian an rotational methods with the first and second-order Gear schemes for
the time derivatives. The convergence order is determined with the Richardson extrapolation performed with the
three more refined time steps. The results in term of relative error are given in figure 7.

For both time schemes, the differences between AL and the rotational methods are non-negligible for the larger

∆t/∆tmin Period/∆tmin (RPC) Order Period/∆tmin(AL) Order
Ref 4.673× 102 4.691× 102

128 1.083× 103 1.016× 103

64 7.386× 102 1.18 7.278× 102 1.08
32 5.671× 102 1.44 5.762× 102 1.27
16 5.051× 102 1.40 5.102× 102 1.39
8 4.832× 102 1.25 4.853× 102 1.36
4 4.740× 102 1.23 4.760× 102 1.27
2 4.701× 102 1.18 4.722× 102 1.21
1 4.685× 102 1.18 4.706× 102 1.21

Table 8: Period of the oscillations with the rotational pressure correction (RPC) and the augmented Lagrangian
(AL) with a Gear 2 temporal scheme for the flow past a cylinder at Re = 100
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time steps, with a greater accuracy for the AL. As for the precedent case, it shows the advantage of the AL to deal
with larger time steps. For the other time steps, both methodology reach an almost similar accuracy. For the
smaller time steps (where the asymptotic convergence seems to be reached) the convergence orders on the velocity
and the pressure is about 1 for the Euler scheme and about 1.2 for the second-order Gear scheme. From [GSLF05],
the rate of error for the L2-norm of the velocity of O(∆t

3
2 ) is expected.

6 Conclusion
The correction of the first-order L2-penalty method for the pressure-correction methods has been extended to a
second-order with the Sub-mesh penalty method. The correction converges toward the Hikeno and Kajishima
[IK07] correction which is designed for a direct-forcing IBM method. The consistency of the method is directly
deduced from its construction.

A brief theoretical analysis has proven that the temporal error of the pressure correction method with a first-
order Gear scheme was not altered. Again, this point is similar to the Hikeno-Kajishima correction. A study with
higher integration schemes is now desirable.

Numerical experiments have been carried out. The correction has been compared to the augmented Lagrangian
method and the same results have been obtained in space for the cylindrical Couette flow. For this first case, conver-
gence rates of 2 and 1.3 in the L2-error norm for the velocity and the pressure have been obtained. It corresponds
to the known performances of the rotational method with Dirichlet boundary conditions. Concerning the flow past
a cylinder at Re = 100, the study has shown a maximum convergence order for both augmented Lagrangian and
rotational methods of 1.20. Those results are close to the literature where a convergence rate between O(∆t) and
O(∆t

3
2 ) is expected [GMS06]. A combination with the second-order open boundary conditions of [PGA11] could

be investigated.
As for a small enough penalty parameter ε the present methodology is equivalent to a corrected direct-forcing

IBM, especially the method of [TF03], the conclusions of this study can be extended to this method.
This work is also a more general comparison between the rotational pressure-correction and the augmented

Lagrangian methods (and this last method can a priori be applied to any DF-IBM method). The results show
that the spatial accuracy is the same for both methods. Concerning the time accuracy, the AL approach seems to
be more efficient with very-high time steps. For moderate and low time-steps, one cannot conclude. Almost no
differences have been obtained with the case of the flow past a cylinder. For the Couette flow, quite similar results
are obtained for the pressure. For the velocity, the results depends on the time step. For the smaller time steps, the
convergence of the AL method decreases while the absolute temporal accuracy is still better than with the rotational
method. It has been shown that the value of the penalty parameter dr had an influence on the convergence rate. The
influence of the number of sub-iterations could be evaluated too. Increasing the number of sub-iteration generally
enhances the convergency at the expense of the computational cost. All these considerations show the complexity
of a comparative study between those methods (with and without immersed boundary modification). A future
work devoted to an extended comparison would be of high interest, especially if simulations of multiphase flows
are performed.
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Figure 1: Definition of the domains and discretization kernels
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Figure 2: Evolution of the spatial error for the velocity u and the pressure p with (COR) and without (NC) the
correction for the Couette flow
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Figure 3: Evolution of the L2-norm of the spatial error for ∆t = 0.1s, ∆t = 1s and ∆t = 10s for the Couette flow
for the augmented Lagrangian (AL), the incremental pressure-correction (PC), the rotational pressure-correction
(RPC) and the not-corrected the rotational pressure-correction (RPC NC)

20



Time step

E
rr

or

10-3 10-2 10-1

10-4

10-3

10-2

10-1

100

101

u AL 10 order 1
u AL 10
p AL 10
u RPC
p RPC
u AL 100
p AL 100
Order 1
Order 2

Figure 4: Time evolution of the L2-norm of the spatial error for the velocity and the pressure with the Gear
2 scheme for the augmented Lagrangian method with dr = 10 (AL 10) and dr = 100 (AL 100) and for the
rotational pressure-correction (RPC)

X

Y

-10 -5 0 5 10 15
-10

-8

-6

-4

-2

0

2

4

6

8

10

12

Figure 5: Pressure and vorticity contours for the case of the flow past a cylinder at Re = 100
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Figure 6: Mesh for the case of the flow past a cylinder at Re = 100

22



Time step

R
el

at
iv

e
er

ro
r

100 101 102

10-2

10-1

100

RPC G1
AL G1
RPC G2
AL G2
Order 1

Time step

R
el

at
iv

e
er

ro
r

20 40 60 80 100 120 140

0.5

1

1.5

RPC G1
AL G1
RPC G2
AL G2
Order 1

Figure 7: Evolution of the temporal error for the period of oscillation for the flow past a cylinder at Re = 100
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