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ABSTRACT 
 
The purpose of this paper is to introduce and construct a state dependent counting and persistent 
random walk.  Persistence is imbedded in a Markov chain for predicting insured claims based on 
their current and past period claim.  We calculate for such a process the probability generating 
function of the number of claims over time and as a result are able to calculate their moments.  
Further, given the claims severity probability distribution, we provide both the claim’s process 
generating function as well as the mean and the claim variance that an insurance firm confronts 
over a given period of time and in such circumstances.   A number of results and applictions are 
then outlined (such as a Compount Claim Persistence Process).   
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1.  Introduction  
Insured claims may be time dependent.  For example, an insured who has claimed one year might 

be more careful the following year and thereby alter the probability that a claim occurs.  By the 

same token, an insured whose health has been impaired one year may be more prone to claim 

subsequently.  Such persistence recurs in many instances motivated and implied in insured 

attitudes and expectations as well as recurring due to events inherent to the claim process (see for 

example Denuit, et al., 2006).  Questions such as, does car failure induce additional and 

subsequent car failures? Are terrorist attacks correlated (Telesca and Lovallo, 2006), one attack 

defining the propensity for a subsequent attack or a respite ? Does the severity of hurricanes one 

year imply the severity of the following year? etc., are obvously questions of importance for 

insurers.  Similarly, does a patient relapses following a treatment or not?  Do stock prices have an 

inertia, tending to increase (or decrease) following increases or decreases with the same 

probabilities?  Are fear regarding financial markets persistent? (The Financial Times, February 7, 

2008, p.28).  Most actuarial counting approaches assume a Poisson distribution, implying that 

events are independent.  In other words, prior events do not alter the basic probabilities laws that 

determine the occurrence of subsequent events.  To circumvent this lacuna, the credibility theory 

approach in actuarial science, evaluates the objectivity and the subjectivity of a source—

the insured that may potentially claim, and devises a statistical “learning” meachanism 

that allows the updating of the underlying claim probability.  Using Bayesian statistics for 

example, credibility theory divides insured into classes that have various propensities to 

claim, which are updated using subjective prior estimates of risk classes and an accrued 

experience—the claim history of insured which is observed.  The goal of credibility 

theory is then to set up an experience rating system to determine next year's premium, 

accounting for the individual and the collective group experience.  Unlike credibility 

theory, this paper presumes that there may be an inherent persistence in an underlying 

process that will dictate the probability laws with which subsequent events occur.  The 

probability of a subsequent claim for example, will then be determined by the past 

memory (in our case, the single past event of a claim or no claim) rather than be 

determined by a statistical estimator based on the accrued evidence of past claims.  

Explicitly, while credibility theory seeks to integrate “experience” in estimating the 

propensity to claim, a persistence to claim is an inherent property of the underlying 
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claiming (stochastic process) that determines, conditionally on the “claim memory”, the 

actual probabilities with which an insured will claim or not.  For example, if an insured 

claiming (or not) one year will be more careful (or less careful) the following year, then 

the underlying claiming process will account for such a behavior in defining the effects of 

the “process memory” on the claiming stochastic process.  The credibility approach 

however, will use the fact that a claim has been made to revise the probability that he will 

claim again in the following year with a credibly (larger) probability.  In this sense these 

approaches differ fundamentally.  

 

The purpose of this paper is to consider such a counting persistent process based on the Markov 

memory of the immediate and past event (and not only its state) and claculate the generating 

function of such a process (for example, see Patlak [1953], Weiss and Rubin [1983], Balinth 

[1986], Claes and Van den Brock [1987], Weiss [1994, 2002],  Pottier [1996], Vallois and 

Tapiero [2007] for prior research on such processes).  The resulting persistent counting process 

will be shown on the one hand to depart from the Poisson counting process and recognize the 

effects of the past memory on the claim process.  Given such a process, we assess the effects of 

persistent claims on an insurance contract and use such observation to better assess the risk 

premium needed to compensate its risk exposure.  The result obtain in this paper extend the 

results obtained in Vallois and Tapiero [2007].  Explicitly, we extend our previous result by 

providing the probability generating function of the persistent claim process, its moments as well 

as an explicit expresison for the probabilities of such a process.  In particular, the process kurtosis 

due to persistence is expressed explicitly.  Finally, a general expression for Persistent Compound 

processes is provided and an explicit recursive equations for its probability moments is given 

explicitly, generalizing thereby the often used Compount Poisson process.  Numerical analyses 

are then used to highlight the effects of persistence counting compared to traditional counting and 

claiming processes.   

 

2.  The Markov Memory Based Persistent Counting Process 

Assume that  a representative insured can in any one year claim or not,  denoting 

these events by (0,1).  The event « 0 » states that  no claim is made within the 

year while a « 1 » states that  the insured has f i led a claim during the year.   

Claim records indicate that  when a claim is  made in a given year,  then the 

following year,  the probabil i ty  of  no claim is  0>β .   When a claim is  not  made 
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in a given year,  then the probabili ty of a claim being made in the following 

year isα .  This defines a simple two-states Markov chain,  given by: 

 (1)  
1

,   0 , 1
1

α α
α β

β β
−⎡ ⎤

= < <⎢ ⎥−⎣ ⎦
P  

I f  we denote by ty  the values the random event can assume at  t ime t  then:  

(2)  
( ) ( )
( ) ( )

1 1

1 1

1 0 ,  0 0 1

1 1 1 ,  0 1
t t t t

t t t t

P y y P y y

P y y P y y

α α

β β
− −

− −

⎧ = = = = = = −⎪
⎨

= = = − = = =⎪⎩
 

Or 

 (3)  ( ) ( ) ( ) ( )1 10 1 1
0 1

1
t t

t t

P y P y
P y P y

α α
β β

− −⎡ = = ⎤ −⎡ ⎤⎣ ⎦⎡ = = ⎤ = ⎢ ⎥⎣ ⎦ −⎣ ⎦
 

Over a period of t ime t ,  the total  number of events (claims made,  etc.)  is 

therefore given by: 

 (4)  
0

t

t j
j

x y
=

=∑  

The number of claims are conditional on the initial  event ( the current memory 

of the event),  denoted by: 0 0y =  or  0 1y = .   In this memory-based persistent  

counting process,  we calculate first  the probabil i ty  generating function (PGF), 

summarized in Proposit ion 1 and subsequently use this  PGF to obtain some of 

the characterist ics of an underlying claim process.    

 

 Proposition 1 

 Let { }, 0tx t ≥  be a counting random variable of the number of claim 

events in a time interval (0, )t .   And let ( ),1α β−  be the probabilities that 

an event occurs at t ime t ,  conditional on its current (or not) occurrence in 

the previous period t-1.  Define ] [1 ,  1,1ρ α β ρ= − − ∈ − ,  as a “persistence 

index.   Let { }( , ) txG t Eλ λ=  be the probability generating function for the 

persistent counting process, for counting the number of claims, given by 

equation (4),  in a time interval ( )0,t  and let 0( 0)P x =  be the probability 

that initially no claim is made while 0( 1)P x =  denotes the probability that a 

claim was made initially and set for notational convenience.  Then: 
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(5)  1
( ,1) ( ,0)( , ) ,  1t t

G GG t tλ λλ λρ
δ δ −= Ψ − Ψ ≥  

with 

(6) 
( ) ( )( )( )

0 0

0 0

( ,0) ( 0) ( 1)

,1 (1 ) ( 0) 1 1 ( 1)

G P x P x

G P x P x

λ λ

λ α λα λ λ α ρ

= = + =

= − + = + + − + =
 

where 

( )
( )

2

0 1

0

1

1 ,   
( ) 4

1 ,   
2
1
2

t t
t

a
a

a

a

α λα

δ λρ λρ

μ μ

μ λρ δ

μ λρ δ

= − +

= + −

Ψ = −

= + +

= + −

 

 Proof:  See Appendix 1  

 

Such a generating function provides the means to calculate higher order 

moments of the underlying persistent  counting claim process as well  as the 

probabil i t ies of the number of claims.   Further,  i t  clearly  points out  to the 

effects of the persistence index on the counting process.   When 0ρ =  then 

1β α= −  and whatever the previous outcome (whether a claim or no claim), 

the subsequent probability to claim is α  while that of no claim is 1 α− .   

When the persistence index is positive, 0ρ >  then 1β α ρ= − − .   That is,  if 

in a given year a claim is made, then the probability that in a subsequent 

year a claim is made has a smaller probability.  And vice versa, when the 

persistence index is negative 0ρ <  and the underlying stochastic process 

would point out to a “contagious” claim process (for example, with 

Hurricanes of a high category following Hurricanes of High category).  

Inversely, for a positive persistence index 0ρ >  i t  will  indicate that the 

underlying claim process has a built-in “incentive effect”, reducing a 

claim probability in a given year following a claim made in the previous 

one.   
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Our results in proposit ion 1 allow an explici t  calculation of the moments of the 

persistent counting process,  defined recursively as shown below.  Note that:   

( )1( , ) tx
t

G t E xλ λ
λ

−∂
=

∂
,   ( )( )

2
2

2 ( , ) 1 tx
t t

G t E x xλ λ
λ

−∂
= −

∂
,   ( )( )( )

3
3

3 ( , ) 1 2 tx
t t t

G t E x x xλ λ
λ

−∂
= − −

∂
 

and so on for higher order terms.  Using these terms and sett ing 1λ = ,  we obtain 

the necessary equations which allow the calculat ion of the mean, the variance,  

the kurtosis and other moments of the persist ing counting process distr ibution.  

I t  is  also useful  to derive a number of special  and well  known cases to confirm 

the validity of our results.   First  note that  when 1λ =  then (1, ) 1G t =  as expected.   

Further,  when there is  no persistence (i .e 0ρ = ) ,  we have ( ,1)( , ) t
GG t

a
λλ = Ψ  ,  

0 1,   0 and t
ta aμ μ= = Ψ = and therefore:  

 (7)  { }0 0( , ) ( 0) ( 1) tG t P x P x aλ λ= = + =  

In part icular ,  i f  ini t ial ly,  0( 0)P x = =1, then ( , ) tG t aλ =  which corresponds as 

expected to the Probabil i ty Generating Function of a binomial distribution.  

However,  if  0( 1) 1P x = = ,  then ( , ) tG t aλ λ=  .    

 

A convenient  recursive expression for the generating function can be found by 

noting that 0 1 t t
t μ μΨ = −  where 0μ  and 1μ  solve ( )2 ( ) 1 0μ μ λ ρ α α λρ− + + − + = ,  

(proved in Appendix 1) and verify  the second order equation: 

 (8)  2 1( ) 0t t ta λρ λρ+ +Ψ − + Ψ + Ψ =  

As a result ,  (5) implies that the probabil i ty generating function ( , )G tλ  sat isfies 

as well  the second order recursive equation given by: 

 (9)  ( )( , 2) 1 ( ) ( , 1) ( , )G t G t G tλ α λ α ρ λ λρ λ+ = − + + + −  

Deriving (9) with respect to  λ with 1λ =  we obtain a recursive expression for 

the moments of the counting process.   Concentrating our at tention on the first  

moments only, derivatives of (9) yields the following recursive equation: 

  (10)  

( )

( )
1 1

1 1

( , 2) 1 ( ) ( , 1) ( , )

( , 2) ( , 1) ( , )1 ( )

( , 1) ( , )                                   ( ) ,   1,2,3,....

k k k

k k k

k k

k k

G t G t G t

G t G t G t

G t G tk k k

λ α λ α ρ λ λρ λ

λ λ λα λ α ρ λρ
λ λ λ

λ λα ρ ρ
λ λ

− −

− −

+ = − + + + −

∂ + ∂ + ∂
= − + + −

∂ ∂ ∂
∂ + ∂

+ + − =
∂ ∂

 



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

7 
 

With initial  condit ions:  

(11) 

( ) ( )( )( )

( )( )( )

( )

0 0

0 0

0 0 0

2 2

02 2

( ,0) ( 0) ( 1)

,1 (1 ) ( 0) 1 1 ( 1)

( ,0) ( ,1)( 1),   ( 0) 1 2 1 ( 1)

( ,0) ( ,1)0,   2 ( 1)

( ,0) ( ,1)0,   0,   for 3
j j

j j

G P x P x

G P x P x

G GP x P x P x

G G P x

G G j

λ λ

λ α λα λ λ α ρ

λ λ α λ α ρ
λ λ
λ λ α ρ
λ λ
λ λ
λ λ

= = + =

= − + = + + − + =

∂ ∂
= = = = + + − + =

∂ ∂
∂ ∂

= = + =
∂ ∂

∂ ∂
= = ≥

∂ ∂

 

These initial  condit ions are specified using equation (6) in Proposition1.   At  

λ =1, we can write these expressions in the following manner ( together with 

equation (9))  which simplif ies their  numerical  solution: 

    (12) 
( )

( )
1 1

1 1

(1, 2) 1 (1, 1) (1, )

(1, 2) (1, 1) (1, ) (1, 1) (1, )1 ( ) ,
k k k k k

k k k k k

G t G t G t

G t G t G t G t G tk k

ρ ρ

ρ ρ α ρ ρ
λ λ λ λ λ

− −

− −

+ = + + −

∂ + ∂ + ∂ ∂ + ∂
= + − + + −

∂ ∂ ∂ ∂ ∂

   

While the initial  condit ions stated above in equation (11) and leading to:   

(13) 

( )

( )

( )

0 0

2 2

02 2

(1,0) 1,   1,1 1
(1,0) (1,1)( 1),   1 ( 1)

(1,0) (1,1)0,   2 ( 1)

(1,0) (1,1)0,   0,   for 3.
j j

j j

G G
G GP x P x

G G P x

G G j

α ρ
λ λ

α ρ
λ λ

λ λ

= =

∂ ∂
= = = + + =

∂ ∂
∂ ∂

= = + =
∂ ∂

∂ ∂
= = ≥

∂ ∂

  

 Similarly,  we can calculate the probabil i t ies of persistent  counting process by 

sett ing λ =0 in the derivatives of the generating functions.   In this  case,  the 

probabil i t ies are given by:   

1 ( , )( ) , 0,1,2,3,...,
!

i

i i

G tp t i t
i

λ
λ

∂
= =

∂
 with: 

 (14) 

( )

( )
1 1

1 1

(0, 2) 1 (0, 1)

(0, 2) (0, 1)1

(0, 1) (0, )             ( ) ,

k k

k k

k k

k k

G t G t

G t G t

G t G tk k

α

α
λ λ

α ρ ρ
λ λ

− −

− −

+ = − +

∂ + ∂ +
= −

∂ ∂
∂ + ∂

+ + −
∂ ∂

 

With the init ial  conditions (specified by equation (6)):  
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(15)   

( )

( )

( )

0 0

0 0 0

2 2

02 2

(0,0) ( 0),  0,1 (1 ) ( 0)
(0,0) (0,1)( 1),   ( 0) 1 ( 1)

(0,0) (0,1)0,   2 ( 1)

( ,0) ( ,1)0,   0,   for 3.
j j

j j

G P x G P x
G GP x P x P x

G G P x

G G j

α

α α ρ
λ λ

α ρ
λ λ
λ λ
λ λ

= = = − =

∂ ∂
= = = = + − − =

∂ ∂
∂ ∂

= = + =
∂ ∂

∂ ∂
= = ≥

∂ ∂

 

These equations define a numerical  approach to calculating both the moments 

and the probabil i t ies of a persistent  process.   A more direct  approach will  be 

outlined subsequently however.  

 

Explici t  results for the f irst  two moments are provided below with proofs found 

directly from equations (12) and (13).  

  

 Proposition 2 

 Let   0 0x = ,  then: 

(16)  ( ) ( ) ( ) ( )( ) 1 ( 1) ( 2) ,   2E x t E x t E x t tρ ρ α= + − − − + ≥  

(17)  
( ) ( ) ( ) ( )2 2 2

1

( ) 1 ( 1) ( 2)

(1 )         2 1 2 ,   2
1 1

t t

E x t E x t E x t

t t

ρ ρ

α α α ρ ρα ρ
ρ ρ

+

= + − − − +

⎡ ⎤⎛ ⎞+ − −
+ + − ≥⎢ ⎥⎜ ⎟− −⎝ ⎠⎣ ⎦

 

In these equations,  note that we have as expected (Vallois and Tapiero [2007]):  

 (18)  ( )
11( ) 1

1 1

t

E x t tα ρ
ρ ρ

+⎡ ⎤−
= + −⎢ ⎥− −⎣ ⎦

 

This clearly indicates the nonlinear t ime effects of persistence in such counting 

processes.   A verification of (17) can also be reached.  First  note that  when 

there is  no persistence,  then ρ =0 and ( ) ( ) [ ]2 2( ) ( 1) 1 2 ( 1)E x t E x t tα α= − + + − .   

Summing for 1 t n≤ ≤ ,  we obtain ( ) ( )( )2( ) 1 1E x n n nα α= + − .   Since ( )x n  has a 

binomial  distr ibution ( , )B n α ,  we have ( ( ))E x n nα= ,  ( )ar ( ) (1 )V x n nα α= −  and 

thereby: ( ) ( )( )2 2 2( ) (1 ) 1 1E x n n n n nα α α α α= − + = + −  as expected.    
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Explici t  expressions for the persistent  counting probabili t ies can be determined 

as well  using the recursive probabili ty  generating functions.   In this case,  we 

calculate ( )( );0kp t k t≤ ≤  by recurrence.   Init ial ly these are specified by: 

 (19)  0 0 1(0) 1,  (1) 1 ,  (1)p p pα α= = − =  

Further,  ( )( 2);0 2kp t k t+ ≤ ≤ +  is defined as a function of ( )( 1);0 1kp t k t+ ≤ ≤ +  and 

( )( );0kp t k t≤ ≤  by using the recursive equation 

 (20)  1 1( 2) (1 ) ( 1) ( ) ( 1) ( ),k k k kp t p t p t p tα α ρ ρ− −+ = − + + + + −  

for al l  0 2k t≤ ≤ + ,  and by convention, we set  ( ) 0kp t =  i f  0k <  or k t> .    

 

Subsequent calculations will  indicate the underlying process probabil it ies.   In 

particular,  we have for the f irst  3 probabil it ies:  

(21) ( )

( )

0

2
1

2

2 4 2

( ) (1 )

( ) (1 ) (1 ) ,  1

( )(1 )
( ) ,  21 (1 ) (1 )( 2) (1 ) 2

2

t

t

t

t

p t

p t t t

p t t
t t

α

α α α ρ ρ

α ρ α
α

α α ρ α α ρ α ρ α αρ

−

−

−

= −

= − − − + ≥

⎧ ⎫+ −
⎪ ⎪= ≥⎨ ⎬
+ − − − − − − + + − +⎪ ⎪⎩ ⎭

 

Of course,  when there is  no persistence,  this is  reduced as expected to:   

 (22)  
0

1
1

2 2
2

( ) (1 )

( ) (1 ) ,   1
1( ) (1 ) ( 1),  2
2

t

t

t

p t

p t t t

p t t t t

α

α α

α α

−

−

= −

= − ≥

= − − ≥

 

 

3 .  Application:  The Compound Counting Persistent Process 

In many applications,  counting is used for summing events that  are independent 

(for example,  the Compound Poisson processes).  Expectedly,  when counting is  

persistent  (and therefore dependent),  such a stat ist ical  characterist ic has to be 

accounted for.  The analytical  results regarding the counting persistent  process 

can be used and applied to numerous problems.  For example,  say that  an 

insurance firm seeks to calculate the sum of claims (independently  distr ibuted 

but dependent on the persistent counting process—and therefore the Poisson 

distr ibution cannot be used).   Let  the sum of claims be 
1

tx

t j
j

Zξ
=

=∑ %  where claims 
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iZ%  are stat ist ically  independent with mean ( )iE Zμ = %  and known variance 

( )var iZ% .   Then, for independent (Poisson) counting processes,  the mean claims 

up to t ime t  are: 

( ) ( )
1

tx

i t i
i

E Z E x E Z
=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ % %   

while claims variance is  given by:   

( ) ( ) ( )2

1
var ( )

tx

i i t i t
i

Z E Z Var x Var Z E x
=

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎣ ⎦⎝ ⎠
∑ % % % .   

However,  when claims are persistence-dependent a more general expression can 

be found.  Explici t ly,  consider the following random claims:
 

 (23)  { } { }
0 1

0 1
0 0

1 1
i i

t t

t i iy y
i i

S Z Z= =
= =

= +∑ ∑% %   where 
0

t

t i
i

x y
=

=∑   

where 0
iZ%  is a “normal claim” occurring in any regular period (defined by 

the fact that no specific event has occurred) while 1
iZ%  is a “large claim” 

(of course, if 0 1
i iZ Z=% %  then t tS ξ=  as stated above).  We assume that { }0 1,i iZ Z% %  

are random variables independent of each other and independent of the 

Markov (persistent) claims. In this case, the compound claim mean and 

variance and the claim probability generating function are given by the 

following (with proofs provided in the appendix): 

(24)  ( ) ( ) ( ) ( )( ) ( )0 1 0
1 1 1( 1)t tE S t E Z E Z E Z E x= + + −% % %  

(25)  
( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

2 22 0 0 2 1 0
1 1 1 1

1 0 0 1 0
1 1 1 1 1

( 1) var ( 1)

           var var 2( 1)

t t

t

E S t Z t E Z E x E Z E Z

E x Z Z t E Z E Z E Z

⎡ ⎤ ⎡ ⎤= + + + + −⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤+ − + + −⎣ ⎦

% % % %

% % % % %
 

While their  Laplace Transform is:  

(26)   ( ) ( ) ( )
( )
( )

1
1

0

0
1

1

, ,   t i

Z
t

S Z

Z

E e
E e E e G z t z

E e

λ

λ λ

λ

−
+

− −

−
⎡ ⎤= =⎢ ⎥⎣ ⎦

%

%

%
,  0λ ≥  

where ( ),G z t  is a probabili ty generating function:  

( ) ( )
1

0
( , ) t

t
x i

t
i

G z t E z z P x i
+

=

= = =∑ .    
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Note that when 0
1Z%   is null ,  then,  from equation (26) we find that:  

(27)  ( ) ( ) ( )1
1t tE S E Z E x= %  and ( ) ( ) ( ) ( ) ( )( )21 1

1 1t t tVar S E x Var Z Var x E Z= +% %  

These results  can then be used to obtain approximate prices for the premium to 

be charged (based on mean–variance rules) when the counting process is  

persistent .   Note however that  the variance of this process has increased over 

t ime due to the process persistence.   Further,  based on these moments,  the 

Value at  Risk (VaR) risk exposure can be determined which would use these 

two moments as a f irst  approximation (although higher order moments can be 

calculated as well using (26),  the generating function of the persistent 

Compound Process).    

 

4.  Some Numerical Results  

A numerical  analysis of our equations will  reveal some of the characterist ics 

of a persistent process.   As expected,  the mean evolution of the persistent 

process has an almost l inear growth as indicated in our equation.   In the long 

run, the variance turns out to be also almost l inear,  as i t  is  the case for random 

walks.   However,  persistence ( ρ >0) has the effect  of increasing the variance as 

shown in Figure-1 below.  In the short  term however,  the variance evolution is  

nonlinear as our equations have indicated.   

 

Interestingly,  the rate of change in variance is  not constant  and growing over 

t ime which indicates a “persistent volatil i ty”.   Of particular interest  is the 

evolution of the third moment of the persistent  claim distr ibution.   Initial ly,  i t  

was increasing (over 4 periods) and subsequently declining (although remaining 

positive for ρ  posit ive).   When ρ  is  negative we note that  for the first  few 

periods the evolution of the mean and the variance are indeed nonlinear.   This 

is  particularly the case for the variance as shown in Figure 2 below.  In this 

Figure,  the variance init ial ly  declines,  then increases and again decreases.   

Finally,  i t  converged to a l inear growth.   This behavior is  indicative of the 

short  term effects of memory on the stochastic process as indicated earlier .   In 

Figure 3,  we note the divergence in the growth of volati l i ty  when the 

persistence parameter is  negative.   Finally, the third moment is  positive which 

demonstrate that  the distribution is  skewed reflecting the process memory-
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persistence.   This lat ter  observation is  part icularly important for i t  may be used 

to explain partly the skew of certain time series,  presuming that  this skew is 

due to the short  term memory effects prevalent in such series (for example,  in 

f inancial  t ime series).    

 

 
Figure 1:  Persistence and Variance of the Counting process 

 

Figure 2 :   Rho=-0.3 

 
Figure 3:  Rho=-0.3 
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Similarly, numerical analysis of some of the first persistent probabilities reveal a 

certain cyclicality, a function of the peristent indexr.  As shown in Figures 4 and 5,  the 

evolution of the claim probability is complex when there is persistence (memory) 

compared to that without persistence, oscillating initially and subsequently converging. 

 

Figure 4:  The Probability of a Claim, ρ =-0.3 

 
. 
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Figure 5:  The Probability of a Claim, ρ =0.3 

 
 

Conclusion  

The persistent counting process in insurance is both of theoretical and practical 

importance.  Such a process, appropriately structured and based on the relevant data that 

insurance companies possess may be used as an underlying process with respect to which 

premiums, risk exposure and risk management procedures may be determined when 

persistence is inherent to the insurance environment. While applications to insurance 

were emphasized, the results obtain here are equally applicable to numerous problems 

where counting processes are persistent.  Further research on the implications of this 

approach to multiple periods memories as well as the effects of memory on skewness and 

process cyclicality are needed however.  The numerical results and the moments 

calculations in this paper have indicated however that persistence matters and leads to 

numerous stochastic phenomena that are observed in practice and hardly explained. 
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Appendix 1:  Proof of Proposition 1 

Let  

{ }{ } { }{ }0 10 1( , ) 1  and ( , ) 1t t

t t

x x
y yF t E F t Eλ λ λ λ= == =    

And therefore, 

{ }{ }1
0 0( , ) 1t t

t

x y
yF t Eλ λ − +
== = { }{ } { }{ }1 1

1 10 11 (1 ) 1t t

t t

x x
y yE Eλ α λ β− −

− −= =− + .    

Similarly,  

{ }{ } { }{ } { }{ } { }{ }1 1 1

1 1

1
1 1 1 0 1( , ) 1 = 1 1 1 (1 )t t t t

t t t t

x x x x
y y y yF t E E E Eλ λ λ λ λ α λ λ β− − −

− −

+
= = = == = + − .    

As a result,  we can write: 

0 0

1 1

( , ) ( , 1)1
( , ) ( , 1)(1 )

F t F t
F t F t

λ λα β
λ λλα λ β

−−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ −−⎝ ⎠⎝ ⎠ ⎝ ⎠

  

Or in a matrix notation: 

 0

1

( , )1
, , ;   ;   ,

( , )(1 )
F t
F t

λα β
λ λ λ

λλα λ β
− ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠
tF( t) = A F( 0) A = F( t)  

Note that the matrix eigenvalues μ  are a solution to: 

( )( )1 (1 ) 0α μ λ β μ λαβ− − − − − =  

For convenience, define 1ρ α β= − − ,  then 

 ( )( )1 ( ) (1 ) 0α μ λ ρ α μ λα α ρ− − + − − − − =  

and the eigenvalues are a solution of the quadratic equation:  

 ( )2 ( ) 1 0μ μ λ ρ α α λρ− + + − + =  

Setting  1a λα α= + −  we have instead ( )2 0aμ μ λρ λρ− + + =  as a result:  

 ( )21 4 ,  0,1
2 2i

a a iλρμ λρ λρ+
= ± + − =   

Or 

 
( )

( )

2
0

2
1

1 4 ,
2 2

1 4
2 2

a a

a a

λρμ λρ λρ

λρμ λρ λρ

+
= + + −

+
= − + −

 

And  
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 ( )2
0 1 0 1,   ,  4a aμ μ λρ μ μ δ δ λρ λρ+ = + − = = + −  

Initial conditions are found by: 

 
( ) { }( )
( ) { }( )

0

0

0

0

0 00

1 01

,0 1 ( 0).

,0 1 ( 1).

x
x

x
x

F E P x

F E P x

λ λ

λ λ λ

=

=

= = =

= = =
  

While 

 ( ) { }( ) ( ) ( )1

10 0 10,1 1 (1 ) ,0 ,0 .x
xF E F Fλ λ α λ β λ== = − +  

And therefore 

 ( )0 0 0,1 (1 ) ( 0) ( 1).F P x P xλ α λβ= − = + =  

Which we rewrite conveniently by replacing β  by 1 α ρ− − ,  or: 

 ( ) ( )0 0 0,1 (1 ) ( 0) 1 ( 1).F P x P xλ α λ α ρ= − = + − − =  

Similarly,  

 ( ) ( ) ( )1 0 1,1 ,0 (1 ) ,0 .F F Fλ λα λ λ β λ= + −  

And therefore 

 ( ) ( )2
1 0 0,1 ( 0) ( 1).F P x P xλ λα λ ρ α= = + + =  

Since from the solution of our matrix equations we have: 

0 0 0 1 1 1 0 0 1 1( , )  and ( , ) .t t t tF t u u F t v vλ μ μ λ μ μ= + = +  

Where ( )0 1 0 1, , ,u u v v  are parameters calculated by the initial conditions we 

have defined previously.  As a result,  we have:  

 0 0 1

0 0 0 1 1

( ,0)

( ,1)  

F u u

F u u

λ

λ μ μ

= +

= +
 and   1 0 1

1 0 0 1 1

( ,0)

( ,1)

F v v

F v v

λ

λ μ μ

= +

= +
 

These lead to the following solutions: 

 

0 0 1 0 0 1
0

0 1

0 0 0 0 0 0
1

0 1

( ,1) ( ,0) ( ,1) ( ,0)= .

( ,0) ( ,1) ( ,0) ( ,1) .

F F F Fu

F F F Fu

λ λ μ λ λ μ
μ μ δ

λ μ λ λ μ λ
μ μ δ

− −
=

−

− −
= =

−

   

By the same token: 

 1 0 11 1 1
0 1

( ,0) ( ,1)( ,1) ( ,0) ,   F FF Fv v λ μ λλ λ μ
δ δ

−−
= =  
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0 0 1 0 0 0
0 0 1

1 0 11 1 1
1 0 1

( ,1) ( ,0) ( ,0) ( ,1)( , )

( ,0) ( ,1)( ,1) ( ,0)( , )

t t

t t

F F F FF t

F FF FF t

λ λ μ λ μ λ
λ μ μ

δ δ
λ μ λλ λ μλ μ μ

δ δ

− −
= +

−−
= +

 

Since, 0 1( , ) ( , ) ( , )txG t E F t F tλ λ λ λ⎡ ⎤= = +⎣ ⎦ ,  we obtain the following probability 

generating function: 

 

( ) ( )

( ) ( )

0 1 0 1 1
0

0 1 0 0 1
1

( ,1) ( ,1) ( ,0) ( ,0)
( , )

( ,0) ( ,0) ( ,1) ( ,1)
           .

t

t

F F F F
G t

F F F F

λ λ λ λ μ
λ μ

δ

λ λ μ λ λ
μ

δ

⎛ ⎞+ − +
= ⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞+ − +

+ ⎜ ⎟⎜ ⎟
⎝ ⎠

 

Or expressed in terms of the known initial conditions  

 01
0 1

( ,0) ( ,1)( ,1) ( ,0)( , ) .t tG GG GG t λ μ λλ λ μλ μ μ
δ δ

⎛ ⎞⎛ ⎞ −−
= + ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Which can be rewritten by: 

 ( ) ( )1 10 1
0 1 0 1

( ,0)( ,1)( , ) .t t t tGGG t λ μ μλλ μ μ μ μ
δ δ

− −= − − −  

Note that 0 1μ μ λρ=  and thereby, in a recursive form, we have: 

 1 0 1
( ,1) ( ,0)( , ) ,  t t

t t t
G GG t λ λρ λλ μ μ

δ δ −= Ψ − Ψ Ψ = −  

As stated in the proposition. In addition: 

 ( ) ( ) ( )0 1 0 0,0 ,0 ,0 ( 0) ( 1)G F F P x P xλ λ λ λ= + = = + =  

 and 

 ( ) ( )( )0 0 0,1 ( 0) ( 1) 1 ( 1)G aP x P x P xλ λ λ λ α ρ= = + = + − + =   

As stated in Proposition 1. 

          ∴ 
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Appendix 2 

 Since the random variables { }0 1,i iZ Z% %  are independent of ty ,  we have: 

 ( ) ( ) ( ) ( ) ( )0 1

0 0
0 1

t t

t i i i i
i i

E S E Z P y E Z P y
= =

= = + =∑ ∑% %  

However, ( ) ( ) ( ) ( )0 0 1 1
1 1  and  ,  1 i iE Z E Z E Z E Z i= = ∀ ≥% % % % ,  consequently,  

 ( ) ( ) ( )( ) ( ) ( )0 1
1 1

0 0
1 1 1

t t

t i i
i i

E S E Z P y E Z P y
= =

= − = + =∑ ∑% %  

And  

 ( ) ( ) ( ) ( )( ) ( )0 1 0
1 1 1

0
( 1) 1

t

t i
i

E S t E Z E Z E Z P y
=

= + + − =∑% % %  

But ( ) ( )
0

1
t

t i
i

E x P y
=

= =∑  which proves (2). 

         Q 

In order to calculate the variance of the Compound persistent claim 

process we first state the following Lemma: 

 

 Lemma 1: 

 Conditionally on ,tx k=  the Compound Claim tS  is distributed as: 

 
1

1 0

1 1

k t k

i i
i i

Z Z
+ −

= =

+∑ ∑% %  

 Proof:   

 Let 0 1, ,..., ti i i  be a series assuming values 0 and 1 and let k be the 

number the index j assumes a value 1, 1ji = .   Conditionally on  

0 0 1 1, ,..., .t ty i y i y i= = =  we have by the definition of ,tx k=  that: 

 
1

1 0

, 1 , 0
j j

j j

k t k

t i i
j i j i

S Z Z
+ −

= =

= +∑ ∑% %  

The first  sum consists of k terms while the second consists of t+1-k terms.  

As a result ,  their sum is distributed as defined in the Lemma. 

         Q 
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These results lead to the following Lemma, expressing the expected 

second moment: 

 

 Lemma 2: 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

22 0 0
1 1

1 0 0 1 0
1 1 1 1 1

22 1 0
1 1

( 1) var ( 1)

           var var 2( 1)

           

t

t

t

E S t Z t E Z

E x Z Z t E Z E Z E Z

E x E Z E Z

⎡ ⎤= + + +⎢ ⎥⎣ ⎦
⎡ ⎤+ − + + −⎣ ⎦

⎡ ⎤+ −⎣ ⎦

% %

% % % % %

% %

 

Proof: 

 

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

21
2 1 0

1 1
1 1

21 1
1 0 1 0
1 1 1 1

1 1 1 1

21 0 1 0
1 1 1 1

0 1 0 0
1 1 1 1

( 1 ) ( 1 )

( 1) ( 1)

k t k

t t
i i

k t k k t k

i i i i

E S x k E Z Z

Var Z Z E Z Z

kVar Z t k Var Z kE Z t k E Z

t Var Z k Var Z Var Z t E Z k E

+ −

= =

+ − + −

= = = =

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

= + + − + + + −

= + + − + + +

∑ ∑

∑ ∑ ∑ ∑

% %

% % % %

% % % %

% % % % ( ) ( )( ){ }2
1 0
1 1Z E Z−% %

 

Thus 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )( )
( ) ( )

22 0 0
1 1

1 0 0 1 0
1 1 1 1 1

22 1 0
1 1

( 1) ( 1)

                  2( 1)

                  

t tE S x k t Var Z t E Z

k Var Z Var Z t E Z E Z E Z

k E Z E Z

⎡ ⎤= = + + + ⎣ ⎦

+ − + + −

⎡ ⎤+ −⎣ ⎦

% %

% % % % %

% %

 

Since  

 ( ) ( ) ( )2 2

0
,t t t t

k
E S E S x k P x k

≥

= = =∑  

We obtain: 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( )

22 0 0
1 1

1 0 0 1 0
1 1 1 1 1

22 1 0
1 1

( 1) ( 1)

                  2( 1)

                  

t

t

t

E S t Var Z t E Z

E x Var Z Var Z t E Z E Z E Z

E x E Z E Z

⎡ ⎤= + + + ⎣ ⎦

+ − + + −

⎡ ⎤+ −⎣ ⎦

% %

% % % % %

% %

 

As stated in the Lemma. 

         Q 
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Finally, using the same procedure above, and for positive claims (random 

variables ( )0 10,  0,  0i i tZ Z S≥ ≥ ≥% % ) the Laplace Transform of the persistent 

Compound Poisson process can be calculated as well.  In this case, we 

have the following: 

 

 Lemma 3 

 Let 0,λ ≥  then: ( ) ( ) ( )
( )
( )

1
1

0

0
1

1

, ,   t i

Z
t

S Z

Z

E e
E e E e G z t z

E e

λ

λ λ

λ

−
+

− −

−
⎡ ⎤= =⎢ ⎥⎣ ⎦

%

%

%
 With 

 ( ) ( ) ( )
1

0
, t

t
x i

t
i

G z t E z z P x i
+

=

= = =∑  

 Proof: 

 The proof is based on Lemma 1 and follows a procedure similar to 

Lemma 2.  Namely,  

 

( ) ( ) ( ) ( )

( ) ( )
( )

1 1 0 0 1 01 1 1 1 1

1
1

0
1

0
1

1... ,...,

1

          

k t kt
k t kZ Z Z ZS Z Z

t

k
Z

t
Z

Z

E e x k E e E e E e

E e
E e

E e

λλ λ λ

λ

λ

λ

+ −
+ −− + + +− − −

−
+

−

−

⎛ ⎞ ⎡ ⎤ ⎡ ⎤= = =⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤
⎢ ⎥⎡ ⎤=

⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

% % % % % %

%

%

%

 

Further, it  is evident that: 

 ( ) ( ) ( )
0

t tS S
t t

k
E e E e x k P x kλ λ− −

≥

= = =∑  

which provides the desired result stated in the Lemma above. 

          Q 

 

 

 

 

 

 

 

 


