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HIGH-DIMENSIONAL INSTRUMENTAL VARIABLES REGRESSION AND

CONFIDENCE SETS

ERIC GAUTIER, CHRISTIERN ROSE, AND ALEXANDRE TSYBAKOV

Abstract. This article considers inference in linear models with K regressors, some or many could

be endogenous, and L instruments. L can range from less than K to any order smaller than an

exponential in the sample size and K is arbitrary. For moderate K, identification robust confidence

sets are obtained by solving a hierarchy of semidefinite programs. For larger K, we propose the STIV

estimator. The analysis of its error uses sensitivity characteristics which are sharper than those in the

literature on sparsity. Data-driven bounds on them and robust confidence sets are obtained by solving

K linear programs. Results on rates of convergence, variable selection, and confidence sets which

“adapt” to the sparsity are given. We generalize our approach to models with approximation errors,

systems, endogenous instruments, and two-stage for confidence bands for vectors of linear functionals

and functions. The application is to a demand system with many endogenous regressors.

1. Introduction

This article is mainly concerned with inference in the structural model

∀i = 1, . . . , n, yi = x>i β + ui;(1.1)

E[ziui] = 0;(1.2)
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β ∈ R, P(β) ∈ P;(1.3)

where E[·] denotes the expectation under the distribution P of the data
(
yi, x

>
i , z

>
i

)n
i=1

, xi and zi

are random vectors of size K and L, and ui is the mean-zero structural error. The terms in (1.3)

are restrictions which we decompose as a set R for the high-dimensional parametric component and

P(β) for the distribution of
(
x>i , z

>
i , ui(β)

)n
i=1

implied by P, where ui(β) , yi − x>i β, and P is a non-

parametric class. Some or many regressors, called endogenous - as opposed to exogenous - regressors

can be correlated with ui. Endogeneity occurs when a regressor is determined simultaneously with

the response variable yi, when ui absorbs an unobserved variable which is partially correlated with

xi, or in the errors-in-variables model when the measurement error is independent of the underlying

variable. The vector zi in the moment conditions (1.2) comprises the instruments (also called instru-

mental variables or IV). Its components are all regressors known to be exogenous and, if available,

exogenous variables excluded from the right-hand side of (1.1). The number of instruments L could

be of any order smaller than an exponential in n. It could equally be smaller than K. When K is

large, possibly much larger than n, we assume that either:

(i) only few coefficients βk are nonzero (β is sparse);

(ii) β can be well approximated by a sparse vector (β is approximately sparse).

Estimation under the sparsity scenario when K can be much larger than n is an active and

challenging field. The most studied techniques are the Lasso, the Dantzig selector, and aggregation

methods. This literature proposes methods that are computationally feasible in high-dimensional set-

tings. For example, the Lasso is a convex program as opposed to the `0-penalized least squares method,

which is NP-hard and thus impossible to solve in practice when K is moderately large. Econometrics

for high-dimensional sparse models has become an active field as well, to name a few: Belloni and

Chernozhukov (2011a) studies the `1-penalized quantile regression, Belloni, Chen, Chernozhukov et

al. (2012) uses Lasso type methods to estimate the optimal instrument and make inference on a low-

dimensional structural equation. Caner and Fan (2014), Caner and (2014), Caner and Zhang (2015)

are recent contributions to the literature on instruments and large dimensions but do not handle the

high-dimensional regime. Fan and Liao (2014) consider a nonconvex approach to instrumental vari-

ables estimation. Zhu (2015) studies a type of two-stage least squares approach (henceforth, 2SLS).

With regard to inference in high-dimensional models, version 1 of this paper constitutes an early

reference. Recently this has been a very active field regarding inference for subvectors. The main

references are Zhang and Zhang (2014), Belloni, Chernozhukov, and Hansen (2014), van de Geer,
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Bühlmann, Ritov, et al. (2014), and Javanmard and Montanari (2014). Recently, using a 2SLS type

approach, Gold, Lederer, and Tao (2017) proposes such a solution in high-dimensional model with

endogenous regressors with some infeasible choice of the tuning parameters.

We now proceed to a more detailed exposition of our approach. The set

Ident , {β ∈ R : P(β) ∈ P and ∀i = 1, . . . , n, E[ziui(β)] = 0}

is the set of vectors compatible with (1.1)-(1.3). The dependence in n allows E[ziyi] and E
[
zix
>
i

]
to

vary with i. Ident is the usual identified set when they are constant. Assuming there exists a true

parameter β∗ which would be point identified if additional instruments or restrictions were available,

β∗ belongs to Ident. If the researcher is willing to specify an upper bound s on the number of nonzero

coefficients in a sub-vector of β (which could be β itself), which we call a sparsity certificate, it is

possible to restrict attention to sparse identifiable parameters. Our baseline methods are agnostic on

the size of the identified set or set of sparse vectors in the identified set, which would be NP -hard

to compute if the distribution of the data were known, and on the conditional distribution of the

endogenous regressors given the instruments, and hence are fully robust to weak instruments. This

is achieved by NOT relying on a model involving the conditional distribution like if we used 2SLS or

optimal instruments. Throughout our analysis, we put emphasis on the computational tractability

which is of particular importance when K and/or L are large and propose self-tuned, also called

pivotal, methods. Our main results are as follows.

We first introduce confidence sets around linear functionals of the vector of coefficients based

on self-normalization. They can incorporate prior restrictions and a sparsity certificate s. Coverage

is guaranteed uniformly over wide classes of data generating processes. Hence, we can draw nested

confidence sets with guaranteed coverage for all values of s. The confidence sets are robust to identifi-

cation and cover all parameters in the identified set which are compatible with the sparsity certificate

s. They do not rely on a pretest nor on selection of the instruments nor on a non standard asymptotic

analysis, and the confidence sets sometimes have finite sample validity. For moderate to large K, this

approach is feasible whereas test inversion is not. Testing can be performed using the duality between

confidence sets and hypothesis testing. The first confidence sets are obtained by solving nonconvex

programs, which are NP-hard but feasible for moderately large K by solving sequences of semidefinite

programs with increasing dimension. For arbitrarily large K, we propose an alternative approach and

introduce the STIV estimator. We rely on sensitivity characteristics, introduced in this paper, to
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analyze the estimation error for arbitrary loss functions which are homogeneous of degree one. Simi-

lar quantities are used in models without endogeneity and we show that, in that case, our constants

are sharper. They depend on the unknown parameter and involve solving nonconvex programs. We

provide computable bounds for given sparsity certificates using convex relaxation. Convex relaxation

is the key to estimation methods in high-dimensions and we use the same idea for inference. The

baseline confidence sets are supersets of what one would hope to be able to compute but which is NP-

hard. These sets cover, as many as we want, homogeneous of degree one functionals of the parameter

in the identified set compatible with the sparsity certificate s, for all tuning parameter of the STIV

estimator. The uniformity in the tuning parameter gives prescribed coverage for the intersection of

sets for all values of the tuning parameter. Hence, they do not depend on a smoothing parameter.

Computing the basic version of these sets rely on solving K linear programs, which is tractable even for

very large K. The confidence sets sometimes have infinite volume. This is unavoidable for confidence

sets which are robust to identification in the IV context (see Dufour (1997)).

Under stronger assumptions involving the conditional distribution of the endogenous regressors

given the instruments, we obtain rates of convergence of the STIV and results on variable selection

and confidence sets which are “adaptive” in the sparsity. Motivated by the empirical application

in the paper, we consider variants of model (1.1)-(1.3). First, we consider the case in which, the

error ui can be written as vi + wi where E[ziwi] = 0 and E[v2
i ] ≤ E2. This permits the analysis of

settings in which the outcome is measured in brackets, nonparametric or partially linear models, and

approximations of nonlinear models. Second, we consider the generalization to systems of equations.

Third, we allow some instruments to be endogenous, in which case some of the components of E[ziui]

need not be equal to zero, and do not require the knowledge of a subset of exogenous instruments.

A variant can be used when such a set is available. We present two two-stage methods which use

the STIV or one of its variants as a first stage estimator and build confidence bands for G vectors

of O functionals using bias correction. Our approach can be used to obtain confidence bands around

functions. The first method is demanding in terms of identification and computation, so we also

propose a computationally tractable alternative that can handle thousands of regressors and a large

number of functionals, and does not require some of the identification assumptions of the first. We

propose to combine these bands with the data-driven error bounds on the STIV types estimators to

obtain a bound on the bias rather than assuming the debiased estimator has negligible bias.

Our methodology is put into practice in a simulation study in which we consider situations such

as many instruments, fewer instruments than regressors, and many regressors with a large fraction of
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endogenous ones. We apply our method to a demand system with many endogenous regressors and

produce confidence bands for a system of Engel curves. Proofs and complements are in the appendix.

2. Preliminaries

2.1. Notations. For K ∈ N, [K] denotes {1, . . . ,K}. We write a.s. for almost surely. For random

variables (ri)
n
i=1, the sample and population means are En[R] ,

∑n
i=1 ri/n and E[R] ,

∑n
i=1 E[ri]/n.

Conditional expectations with non i.d. data are defined like population means. The sample and

population means for matrices are defined entrywise. When (ri)
n
i=1 are random vectors, R is the

matrix where each row is r>i for i ∈ [n]. We use the diagonal matrices D̂X and D̂Z to rescale

the regressors X and the instruments Z. The diagonal entries of D̂X are
(
D̂X

)
kk

= En
[
X2
k

]−1/2

for k ∈ [K] and those of D̂Z are
(
D̂Z

)
ll

= En
[
Z2
l

]−1/2
for l ∈ [L]. We write DZ and DX when

sample means are replaced by populations means. For a mean zero random variable A, σA denotes

E[A2]1/2. We denote by RD , {β1 − β2, ∀β1, β2 ∈ R} or a manageable subset. For β ∈ Ident,

we denote by Q̂(β) , En[U(β)2]. We refer to the particular case of the linear projection model

with random but exogenous regressors by writing “the case where Z = X”. For β ∈ MO,K , let

J(β) = {(o, k) ∈ [O]× [K] : βok 6= 0}. For J ⊆ [O]× [K], |J | is its cardinality and Jc its complement.

We primarily use these notations when O = 1 and we deal with vectors in RK . The set I ⊆ [K]

consists of the indices of the regressors for which the researcher is certain that they are exogenous.

The regressors with index in I are used as instruments. The set P ⊆ [K] of size p corresponds to

regressors for which we question relevance and is such that P c has fixed size. The sets P⊥ and P 6⊥

are respectively P ∩ I and P ∩ Ic. For 1 ≤ q ≤ ∞, the `q-norm of a vector ∆ is denoted by |∆|q.

When ∆ is a matrix, the `q-norm is defined entrywise and | · |p,q is the operator norm from `p to `q.

The operator norms | · |2,∞ and | · |∞,∞ are, respectively, the maximum `2 and `1-norm of the rows.

We denote by (ek)
K
k=1 the canonical basis of RK and (fl)

L
l=1 for RL. For ∆ ∈ RK and J ⊆ [K], we

define ∆J , (∆k1l{k ∈ J})Kk=1, where 1l{·} is the indicator function. For a vector β ∈ RK , we set
−−−−→
sign(β) , (sign(βk))

K
k=1, where sign(t) , 1l{t > 0} − 1l{t < 0}. 0 and 1 are vectors of zeros and ones.

Inequality between vectors is understood entrywise and, when M is a symmetric matrix, M < 0 means

that M is positive semidefinite. We denote by IK the K ×K identity matrix,ML,K the set of L×K

matrices with real entries, and L the set of functions from RK to [0,∞) which are homogeneous of

degree 1 (i.e., ∀∆ ∈ RK , a > 0, l(a∆) = al(∆)) and nondecreasing in its arguments. For a matrix ∆,

∆o· is the oth row of ∆. For a ∈ R, we set a+ , max(0, a). We use the conventions a/0 ,∞ for a > 0,

0/0 , 0, 1/∞ , 0, and inf ∅ , ∞. Φ is the CDF of the standard normal. CN(m) , e(2 ln(m) − 1)
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for m ≥ 3 is the Nemirovski constant (see, Theorem 2.2 in Dümbgen, van de Geer, Veraar et al.

(2010)). Some results in this paper rely on asymptotic arguments where n goes to infinity in which

case, though we do not make the dependence explicit, L, K, and s can increase with n.

2.2. Motivating Examples.

2.2.1. Rich Heterogeneity. Large datasets have become widely available and can provide rich infor-

mation on the heterogeneity of the economic agents. It is possible to account for this heterogeneity

by including many regressors and interactions.

2.2.2. Growth. Sala-i-Martin (1997) and Belloni and Chernozhukov (2011b) give examples from de-

velopment economics where it is unclear which growth determinant should be included. More than

140 growth determinants have been proposed and usually n is smaller than K. Searching among 2140

submodels is simply impossible. Many growth determinants are arguably endogenous.

2.2.3. Heterogeneous Treatment Effects. The researcher is interested in determining for which group a

policy has an effect in order to implement targeted measures. She interacts the endogenous treatment

variable with group dummies. It results in many endogenous regressors when there are many groups.

There could be sparsity if the policy has an effect on a few groups only. All treatments are equally

important and assessing the effects using independent significance tests is plagued by false discovery

(e.g., if the policy has an effect for 10% of 400 groups and we are assessing the significance using a

5% level test, then the policy is found to have an effect for 18 groups for which it has no effect).

2.2.4. Social Interactions with Unknown Networks. In social interactions models with n individuals,

an individual’s outcome is determined simultaneously by the outcomes of their peers, K individual

characteristics of her/his own and of her/his peers, and heterogeneity that is common to all individuals

(correlated effects). This defines a system of simultaneous equations, in which the outcomes of others

are endogenous. Assuming away correlated effects, when peers are not known, everyone could in

principle affect everyone, leading to n − 1 endogenous regressors and Kn exogenous regressors per

equation. Such models could be estimated using panel data (see Rose (2016) who applies this paper

to the study of R&D spillovers, see also Gautier and Rose (2015,2017)). In this example, the objects

of interest may not be subvectors but rather the whole network structure.



7

2.2.5. Partially Linear Model. One has: ∀i ∈ [n], yi = f(x̃i) + x>i γ + wi, where γ ∈ RM and f ∈ S

such that, for a set of functions (ϕk)k∈N and a decaying sequence (eN )N∈N,

(2.1) ∀N ∈ N, sup
g∈S

inf
b∈RN

E

(g (x̃i)−
N∑
k=1

ϕk (x̃i) bk

)2
 ≤ e2

N .

The class S is not a sharp class characterizing f but a large enough one so that this is consid-

ered a mild assumption It is usually achieved by assuming minimum smoothness. Taking xi =

(ϕ1(x̃i), . . . , ϕK−M (x̃i), w
>
i )>, vi = f(x̃i) −

∑K−M
k=1 ϕk(x̃i)βk, (βK−M+1, . . . , βK) = γ>, (1.1) holds

with ui = vi +wi and E[v2
i ] ≤ e2

K−M . The term vi is the approximation error made by approximating

the function in the high-dimensional space. The constant E is chosen small, usually n−1/2 (the para-

metric rate) or 1/n, so E[v2
i ] ≤ E2 for K large enough. The vector β is not sparse but if the function

is smooth there are usually many small coefficients and β is approximately sparse.

Now, if E [wi| x̃i, xi] 6= 0, we are in the presence of endogeneity and rely on a vector zi which is subvec-

tor of z∞i ∈ R∞ and contains nonlinear transformations of baseline instruments. When endogeneity

is due to x̃i, the model has K −M endogenous regressors. A classical situation is when f is an Engle

curve. Sometimes elements of xi could be endogenous and (ϕ1(x̃i), . . . , ϕK−M (x̃i))
> are not. This

occurs, for example, when one is interested in the parameter γ in yi = x>i γ + ũi, some variables in

xi are endogenous, and the researcher is willing to use as an instrument zi for which E[ziũi] 6= 0 but

E[ũi|x̃i, zi] = E[ũi|x̃i] for a vector of control variables x̃i. This yields yi = E[ũi|x̃i] + x>i γ + wi, where

wi = ũi − E[ũi|x̃i, zi], xi remains endogenous, but zi is an instrument.

2.2.6. Second Order Approximation of the Exact Affine Stone Index Model. This is the empirical

application of this article. The EASI model (Lewbel and Pendakur (2009)) is a model for a cost

function which implies that the vector of expenditure shares yi ∈ RG for G goods consumed by

household i satisfies

yi =

R∑
r=0

brt
r
i + Cz +Dziti +A0pi +

H∑
h=1

Ahpizhi +Bpiti + wi;(2.2)

ti =
xi − p>i yi + p>i (A0 +

∑H
h=1Ahzhi)pi/2

1− p>i Bpi/2
;(2.3)

where pi, and wi are vectors in RG of log-prices, and errors, zi are vectors ofH individual characteristics

and time trends. In the application, we have G = 9, and R = H = 5. The parameters are br ∈ RG

for r ∈ [5], the G× 5 matrices C and D, the G×G matrices A0, ..., A5, B which satisfy restrictions to

ensure that: (1) expenditure shares sum to one, (2) Slutsky symmetry, (3) monotonicity of cost, and
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(4) concavity of the exponential of the cost function. For computational reasons we avoid imposing

(3) but verify that it is satisfied post-estimation. This yields, using Sz to denote the support of z,

1>b0 = 1, 1>C = 1>D = 0, 1>B = 0; ∀r ∈ [5], 1>br = 0; ∀h ∈ [5], 1>Ah = 0, Ah = A>h ; B = B>;

∀z ∈ SZ , −

(
A0 +

5∑
h=1

Ahzh +B

)
< 0.

The system is nonlinear in the parameters and can be cumbersome to estimate. To facilitate estima-

tion, Lewbel and Pendakur (2009) proposes an approximate EASI system in which ti is replaced by

its first-order in prices approximation di = xi−p>i yi which corresponds to using nominal expenditures

deflated by a Stone price index. Rather, we consider a second-order in prices approximation. As a

starting point, we use (2.3) to obtain, for all r ∈ N,

tri = dri

(
1 +

r

2
p>i

(
A0 +

5∑
h=1

Ahzhi +B

)
pi

)
+O(|pi|22).(2.4)

Injecting (2.4) into (2.2) yields the second-order approximation

yi =

5∑
r=0

brd
r
i +

5∑
r=1

G∑
g=1

egp
>
i B̃g,rpid

r
i +

5∑
h=1

5∑
r=1

G∑
g=1

egp
>
i Ãh,g,rpizhid

r
i + Czi +Dzidi +A0pi +

5∑
h=1

Ahzhi

+Bpidi +
5∑

h=1

G∑
g=1

egp
>
i Bh,gpizhidi +

5∑
h=1

G∑
g=1

eg(pizi)
>Ah,g(pizhi)di + vi + wi,

where vi is an approximation error, B̃h,g,r = r(br)g(Ah+B)/2, Ãh,g,r = r(br)gAh/2, Bh,g = Dg,h(A0 +

B)/2, and Ah,g = Dg,hAh/2. These equality constraints define a nonconvex set, hence we do not

impose them directly. Instead we impose the constraints, for all h, r ∈ [5] and g ∈ [G],

B̃h,g,r = B̃>h,g,r, Ãh,g,r = Ã>h,g,r, Bh,g = B
>
h,g, Ah,g = A

>
h,g;

G∑
g=1

B̃h,g,r =

G∑
g=1

Ãh,g,r =

G∑
g=1

Bh,g =

G∑
g=1

Ah,g = 0;

which are implied by the restrictions on the parameters of (2.2). Each equation in (2.2) has K = 1879

parameters. This dimensionality stems from the reduction in the approximation error relative to

the approximate EASI system. Nonetheless, it is reasonable to expect that the parameter vector

is sparse, particularly for the second order approximation terms. In addition, since di = xi − p>i yi
depends on wi, every regressor which involves di is endogenous. This implies that 1819 of the 1879

regressors are endogenous and L = K instruments, where for each regressor involving di we replace

di by di = xi − p>i En[Y ] (i.e., we replace the individual shares by the mean shares in the sample).
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2.3. Restrictions and Penalization. The set R, if a proper subset of RK , accounts for restrictions.

The main text considers single equations and typical examples are the whole space RK , known signs,

or bounds on the coefficients. The empirical application in this paper considers a system with cross-

equation restrictions. The set P is also relevant for the application. For example, it is known that

Engle curves are nonlinear and, if approximated by a polynomial, should include at least a polynomial

of degree two in the implicit utility (see, e.g., Banks, Blundell, and Lewbel (1997)) and that the own

price has an effect on the demand of the good.

2.4. s-sparse Identified Set. Define s-sparse identifiable parameters as vectors in

Bs = Ident
⋂
{β : |J(β) ∩ P | ≤ s} .

We clearly have, for all s ≤ s′ ≤ p, Bs ⊆ Bs′ ⊆ Bp = Ident. Consider, for example, the case where

L < K, R = {γ ∈ RK : L = Rlγ}, and R>l ∈ MK×R has full column rank. The situation where

L < K occurs when one is uncertain about some exclusion restrictions (see, e.g., Kolesár, Chetty,

Friedman, et al. (2015)). Assume that E[ziyi] and E
[
zix
>
i

]
are constant for all i. If the identity of the

zero coefficients were known, we would have L+R+p− s restrictions. When L+R+p− s > K there

are
(
L+R+p−K

s

)
overdetermined systems and point identification is achieved if there exists a solution

for only one system and it is unique. Testing such an assumption is NP-hard. Assuming P = [K]

and R = 0, another NP-hard condition, which is clearly less sharp, is the extension of a condition

in Candès and Tao (2007) (page 2320): Bs is a singleton if every matrix formed by extracting 2s

columns from E
[
zix
>
i

]
has rank 2s (see Kang, Zhang, Cai, et al. (2016)). Assessing the size of Bs is

also NP-hard, hence infeasible when K − p is larger than a few dozens.

2.5. Uniformity/Honesty. Working with a class P of distributions P(β) and with a sparsity cer-

tificate s, a honest confidence set for a functional ϕ(β) with coverage at least 1− α in finite samples

is a set Ŝl(s) which could be computed from the data, s, R, and possibly parameters of P, such that

(2.5) inf
β,P: β∈Bs

P
(
ϕ(β) ∈ Ŝl(s)

)
≥ 1− α.

Sets with coverage asymptotically at least 1− α satisfy

(2.6) lim inf
β,P: β∈Bs

P
(
ϕ(β) ∈ Ŝl(s)

)
≥ 1− α.

The confidence sets cover each parameter in the identified set, hence the true parameter β∗, with

coverage probability 1 − α. If this holds asymptotically, the uniformity in P, ensures that for a
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coverage error ε, for n large enough, only depending on ε, we have

(2.7) inf
β,P: β∈Bs

P
(
ϕ(β) ∈ Ŝl(s)

)
≥ 1− α− ε.

Some sets will satisfy the stronger uniformity property, for all countable sets G implying c > 0:

(2.8) inf
β,P: β∈Ident

P
(
∀s ∈ [K], (c, ϕ) ∈ G, ϕ(β) ∈ Ŝl(s, c)

)
≥ 1− α− ε,

for all n and ε = 0 or for n large enough depending on ε, where Ŝl(s, c) are sets depending on a tuning

parameter c. Due to the uniformity in c, it is possible to work with any intersection of sets Ŝl(s, c)

for c on a grid and compare nested confidence sets. The fact that we obtain confidence sets uniform

only upon a class of distributions of the observed data is related to the Bahadur and Savage (1956)

impossibility result (see also Romano and Wolf (2000)). The joint confidence sets can be used for

joint hypothesis testing by duality between confidence sets and hypothesis testing and are particularly

important for the models of sections 2.2.3 and 2.2.4.

3. A First Approach to Confidence Sets and the STIV Estimator

3.1. Robustness. Three features are important in estimation and inference using instrumental vari-

ables: (1) for each endogenous regressor there should be an instrument which does not appear as a

right-hand side variable in (1.1), (2) instruments should be exogenous (i.e., not correlated with the

structural error), (3) they should be relevant (i.e., have sufficiently large predicting power for the

endogenous variables). This paper relaxes all three. (1) is the exclusion restriction and it is relaxed

throughout the paper if the structural equation is sparse, it is particularly important when L < K.

(2) is the instrument exogeneity, it is relaxed in Section 7.3 and a method is proposed when one does

not know in advance a set of variables which are known to be exogenous. (3) is the relevance of

the instruments and is relaxed in our first two inference procedures. The weak instrument or weak

identification problem occurs when E
[
zix
>
i

]
is nearly rank deficient.

When L and K are small and L ≥ K, it is a common practice to proceed in two-stages

and estimate a first stage linear projection model of the endogenous regressors on the instruments or

nonparametric regressions under the stronger exogeneity assumption E[ui|zi] = 0. This can be justified

using the concept of semiparametric efficiency. In the presence of weak identification and instances

such as in sections 2.2.3 and 2.2.4 where the researcher is genuinely interested in the high-dimensional

vector, the semi-parametric efficiency framework is not the right one. In the latter case, there did
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not exist inference procedures until recently1. Hence, appealing to a high-dimensional generalization

of 2SLS or GMM is not motivated. The approach of this paper does not rely on the estimation of

a first stage. For the sake of completeness, we include the simulation results of Section A.8 which

show that our baseline confidence sets are sharper than those obtained by a high-dimensional 2SLS

procedure even when the first stage is sparse. Also, it is shown in Bekker (1994) that when K is small

and L/n converges to 1, the bias of 2SLS and GMM estimators is of the order of the bias of the least

squares (henceforth, OLS) estimator and our framework allows for much larger L and K. Inference

after selecting instruments is difficult if one wants to account for model selection and is not feasible

when this first stage is not sparse (e.g., when all instruments are equally weak).

We now focus on the weak instrument problem. When E[ziz
>
i ] = I and all coefficients in the

linear projection are equal, their size is at most of the order of 1/
√
L which is much smaller than the

regime of weak instruments asymptotic when L � n (see Staiger and Stock (1997)). This does not

occur if the linear projection is sparse or approximately sparse but in the main part of the paper we

posit a sparsity assumption on the reduced form equation only. Also, in the case of nonparametric

IV (see also Example O2 in the appendix), the correlation between basis functions of the baseline

regressors and baseline instruments can decay very fast to zero. In the presence of weak instruments,

the approximations using asymptotic theory for classical estimators such as 2SLS cannot be trusted.

This happens even with very large sample sizes and for typical problems of empirical relevance (see

Nelson and Startz (1990) and Bound, Baker, and Jaeger (1995)). To deal with the weak instrument

problem, the literature (see Andrews and Stock (2007) and the references therein) relies on non-

standard asymptotics (weak IV, many IV, or many weak IV) or the inversion, at every parameter

value, of tests which are robust to weak instruments. When Ident = {β∗} and we take βIc = β∗Ic , the

Anderson-Rubin test is a F -test of κ = 0 in the model: for all i ∈ [n], yi− x>Iciβ∗Ic = z̃>i κ+ x>IiβI + ui,

where z̃i are the instruments other than xIi. It is robust to arbitrarily weak instruments and the

distribution of the test statistic under the null is independent of the parameter Π of the first stage

xIci = Πz̃i + ΓxIi + v2i. Similar level α tests have level α for all Π and can be constructed from

non-similar tests by using so-called conditional critical values. A common practice is to use a pretest

for weak instruments and to use 2SLS if they are not weak and a more complex method if the test

fails to reject the null hypothesis. This approach is subject to the criticism related to “uniformity”.

Inverting tests is only possible on a grid when Ic is small and in the framework of this paper this

might not be the case. Also, when L� n, we can no longer rely on a F -test. Even in low dimensions,

1Version 1 of this paper is the first up to our knowledge.
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the asymptotic distribution of the Anderson-Rubin test when |Ic| = 1 is χ2
L−|I|/(L − |I|) which can

be problematic when L − |I| > |Ic| (i.e., L > K). Rather, we make use of a standardized `∞-norm

statistic rather than a weighted squared `2-norm which mitigates the many instruments problem and

is introduced in Section 3.2. Also, rather than inverting a test, we aim directly at the estimation and

confidence sets and are based on convex relaxation ideas. Yet, our approach shares in common with the

Anderson-Rubin test that the two first proposals of this paper have guaranteed coverage irrespective of

identification. This is because the classes P in Section 3.5 do not restrict the conditional distribution

of X|Z nor require L ≥ K. Without model uncertainty, the STIV estimator trades-off minimization

of a `∞-norm accounting for the exogeneity of the instruments and OLS (see Remark 3.1).

Importantly, because we allow for a set P of indices of regressors for which we have a doubt

whether the coefficient is zero or not and this set could be empty, the paper applies not only to

the high-dimensional paradigm but also to more classical situations in Econometrics. It provides

algorithmically feasible solutions to robust estimation and inference with weak, many, endogenous,

and few IVs for low-dimensional structural equations.

3.2. A `∞-norm Statistic. The sample counterpart of condition (1.2) can be written as

(3.1)
1

n
Z>(Y −Xβ) = 0.

This is a system of L equations with K unknown parameters, where rank(Z>X) ≤ min(K,L, n).

Thus, when K > min(L, n), the matrix cannot have full column rank and, when L > min(K,n), the

system might not have a solution. Furthermore, even if the system had a unique solution, replacing

the population equations (1.2) by (3.1) induces a huge error when L, K or both are large and n is not

too large. So, looking for the exact solution of (3.1) in high-dimensional settings and finite samples

makes no sense. However, we can stabilize the problem by restricting our attention to a suitable

“small” candidate set of vectors β ∈ R, for example, to those satisfying the constraint

(3.2) max
l∈[L]

∣∣∣∣∣∣ 1n z>l (Y −Xβ)√
Q̂l(β)

∣∣∣∣∣∣ ≤ r0.

where, for l ∈ [L], Q̂l(β) , En
[
(ZlU(β))2

]
. We provide values of r0 for various choices of P in Section

3.5 that guarantee that, for all β ∈ Ident and P such that P(β) ∈ P, the probability of

G0 ,

{
max
l∈[L]

|En [ZlU(β)]|√
En [(ZlU(β))2]

≤ r0

}
,



13

exceeds 1 − α either in finite samples or asymptotically. A typical “reference” behavior is r0 ∼√
ln(L)/n. This is the usual parametric rate of convergence multiplied by ln(L). Note that ln(L)

increases very slowly with L. This is the key to handling a very large number of instruments.

3.3. Self-Normalized IV Confidence Sets: A NP-hard Problem. Assume that β ∈ R can be

written as certain polynomials in the parameters are nonnegative. From the above, the set

(3.3) Ŝ ,

β ∈ R : |J(β) ∩ P | ≤ s, max
l∈[L]

∣∣∣∣∣∣ 1n z>l (Y −Xβ)√
Q̂l(β)

∣∣∣∣∣∣ ≤ r0


satisfies (2.5) or (2.8) depending on the class P. (3.3) is a confidence set for β from which we obtain

a confidence set which covers all linear functionals λ>β with λ ∈ RK for β ∈ Bs via

(3.4)

[
min
β∈Ŝ

λ>β,−min
β∈Ŝ
−λ>β

]
.

For further reference, these are called the Self-Normalized Instrumental Variables (SNIV) confidence

sets. The minimizations on Ŝ are difficult because Ŝ is not convex. The constraint involving a

maximum in the definition of Ŝ can be written: ∀l ∈ [L], al + b>l β + β>Clβ ≤ 0, where

al = En [ZlY ]2 − r2
0En

[
Z2
l Y

2
]
,

bl = 2
(
r2

0En
[
Z2
l Y X

]
− En [ZlY ]En [ZlX]

)
,

Cl = En [ZlX]En [ZlX]> − r2
0En

[
Z2
l X
]
En
[
Z2
l X
]>
.

In general, the matrices Cl need not be positive semidefinite. The cardinality constraint |J(β)∩P | ≤ s

is not convex either. When K is very small, the optimization is feasible by taking β on a grid. When

K+p is moderately large, we can rely on the following observation. Using the following reformulation

of the cardinality constraint (see Feng, Mitchell, Pang et al. (2013))

Ŝ =

β ∈ R :

εP c = 0,
∑

k∈P εk ≥ p− s,

∀k ∈ P, εk ∈ [0, 1], εk(εk − 1) ≥ 0, and εkβk = 0,

∀l ∈ [L],
(
z>l (Y −Xβ)

)2 ≤ (nr0)2Q̂l(β)

 .

and that, if the polynomials in the definition of R are of degree strictly greater than two, we can

replace them by inequalities with polynomial of degree at most two by increasing the number of

variables, the optimization problems defining the upper and lower bounds of the intervals in (3.4) are

a type of nonconvex Quadratically Constrained Quadratic Programs (QCQP). If the polynomials in

the definition of R are of degree at most two, the number of variables is K + p. These problems are
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in general NP-hard. Various heuristics exist for such problems but, in order to obtain confidence sets

with coverage at least 1− α, it is important to find either a global minimum or a minimizer.

Rather than using methods which can fail to yield a global minimum, a basic idea is to replace Ŝ

by a larger manageable set. One classical approach to handle quadratic constraints is via Semidefinite

Programs (SDP) relaxations, this usually implies that the parameters of the relaxed problem is a

square of the number of parameter of the original problem. Rather, the confidence sets in Section

5.1, make use of the fact that if |J(β)| ≤ s then |β|q ≤ s1/q|β|∞ for all q ∈ [1,∞]. For moderate

K, we can find the minimum of the original QCQP by using Lasserre’s hierarchy of SDP relaxations

(see Lasserre (2015)). This is illustrated in Section 9.1.1 with K + p = 21. The Lasserre’s hierarchy

yields a sequence of lower bounds on the minimum of a QCQP which has theoretical guarantees that

it converges to the global minimum. Typically, for an optimization problem in K + p variables, the

SDP relaxation of order d in the hierarchy involves O
(
(K + p)2d

)
variables and O

(
(K + p)d

)
linear

matrix inequalities. Note that one does not need to consider the whole sequence of problems until

convergence. Indeed, the solution to each problem is a valid lower bound and working with lower

bounds produces a confidence set with guaranteed coverage but which could be conservative.

3.4. The Self-Tuned IV estimator. As this paper is mainly concerned with large K, we avoid

dealing with nonconvex constraints using SDP relaxations. First, notice that it makes sense to nor-

malize the matrix Z. This is quite intuitive because, otherwise, an instrument has a larger effect

simply because it is on a larger scale. Various choices are possible but in this paper we take D̂Z.

Instead of Ŝ, we can work with the following set with σ in RL and Ql(β) ,
(
D̂Z

)
ll
Q̂l(β)

(3.5)

{
β ∈ R : ∀l ∈ [L],

∣∣∣∣ 1n (D̂Z

)
ll

z>l (Y −Xβ)

∣∣∣∣ ≤ r0σl, Ql(β) ≤ σ2
l

}
,

and use an objective function that prevents σ to be large and a convex relaxation of the cardinality

constraint. For simplicity, we now replace the L constraints Ql(β) ≤ σ2
l by a single one and postpone

the discussion of variants of the STIV estimator using (3.5) to sections 7.2 and 7.3.

Definition 3.1. The set of IV-constraints is the set defined, for σ, r > 0, by

(3.6) Î(r, σ) ,

{
β ∈ R,

∣∣∣∣ 1nD̂ZZ>(Y −Xβ)

∣∣∣∣
∞
≤ rσ, Q̂(β) ≤ σ2

}
.

Definition 3.2. For c, r > 0 with c ∈
(
0, r−1

)
, a Self-Tuned Instrumental Variables (STIV) estimator

is any solution
(
β̂, σ̂

)
of the minimization problem

(3.7) min
β∈Î(r,σ),σ≥0

(∣∣∣D̂−1
X βP

∣∣∣
1

+ cσ
)
.
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We use the `1-norm because it is the convex relaxation of the cardinality constraint in the

definition of the set Ŝ. This usually ensures that the solution is sparse. We use the scaling matrix

D̂−1
X so the procedure is invariant to the scale of the regressors and avoids, for example, that it selects

a different model by changing units. Recall that the procedure is also invariant to the scale of the

instruments. The product rσ plays the role of the penalization parameter in the Lasso. The additonal

term cσ favors small σ, hence tightening the set Î(r, σ). If c were 0, the program would minimize the

`1-norm without constraints hence β̂ = 0 is the solution. This suggest taking c as large as possible,

hence close to r−1. The results of Section 4 allow to analyze the effect of c on the rates and confidence

sets. When K is large, the STIV estimator is not necessarily unique. This is not a problem since

our results hold for all minimizers. If the data is i.i.d., Q̂
(
β̂
)

and σ̂2 are estimators of the unknown

variance of ui(β). For the particular case Z = X, the STIV estimator provides an extension of

the Dantzig selector to the setting with unknown variance of the noise. In this particular case, the

STIV estimator can be related to the Square-root Lasso of Belloni, Chernozhukov, and Wang (2011).

The definition of the STIV estimator contains the additional constraint involving the instruments

not present in the conic program for the Square-root Lasso. A linear programming estimator and

confidence sets like in Gautier and Tsybakov (2013) could also be used (see here).

Remark 3.1. When P = ∅, (3.7) simplifies to

β̂ ∈ argminβ∈Rmax

(
Q̂(β),

1

r2

∣∣∣∣ 1nD̂ZZ>(Y −Xβ)

∣∣∣∣2
∞

)
(3.8)

The first component of the maximum in (3.8) corresponds to least squares. The second is derived

from the exogeneity of the instruments. Hence, without model uncertainty, STIV estimators trade off

OLS and a `∞-norm statistic derived from the IVs (see Andrews and Stock (2007) for references to

comparisons between 2SLS and least squares). (3.8) is a convex program when R is convex.

If R consists of linear equality or inequality constraints, finding a solution
(
β̂, σ̂

)
of (3.7)

reduces to the following second-order cone program, where C , {(t, v) ∈ R×Rn : t ≥ |v|2} is a cone.

Algorithm 3.1. Find β ∈ R and t > 0 (σ = t/
√
n), which achieve the minimum

(3.9) min
(β,t,v,w)∈V

(
K∑
k=1

wk + c
t√
n

)
,

where V is the set of (β, t, v, w) satisfying

v = Y −Xβ, −rt1 ≤ 1√
n

D̂ZZ> (Y −Xβ) ≤ rt1,

https://sites.google.com/view/eric-gautier/papers
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−w ≤ D̂−1
X β ≤ w, β ∈ R, w ≥ 0, (t, v) ∈ C.

Conic programming is a standard tool in optimization. It starts to be difficult when K is of

the order of several thousands.

3.5. Menu of Distributional Assumptions and Choice of r0 and r. For β ∈ Ident and i ∈ [n],

we have E[ziui(β)] = 0. We present a menu of classes P - called scenarii - from which the researcher

has to choose. We use the notation Pj for the class P defined in Scenario j. From this section

and onwards, we assume that the researcher has chosen a Scenario and simply use the notation P.

Choosing a confidence level 1− α, the constants r0 given below guarantee that

inf
β,P: P(β)∈P

P (G0) ≥ 1− α− ε

holds for all n and ε = 0 for scenarii 1-3 and for n large enough depending on ε for Scenario 4. We now

present four scenarii and the corresponding choice of r0 obtained using a union bound and moderate

deviations for self-normalized sums (see Section A.1).

Scenario 1: (ziui(β))ni=1 are i.i.d. and symmetric and L is such that L < 9α/
(
4e3Φ (−

√
n)
)
.

Under Scenario 1, taking

r0 = − 1√
n

Φ−1

(
9α

4Le3

)
yields, for all n, P (G0) ≥ 1− α.

Scenario 2: (ziui(β))ni=1 are i.i.d., for γ4 > 0 maxl∈[L] E[(zliui)
4](E[(zliui)

2])−2 ≤ γ4 and L <

α exp (n/γ4) /(2e+ 1).

Under Scenario 2, taking

r0 =

√
2 ln(L(2e+ 1)/α)

n− γ4 ln(L(2e+ 1)/α)

yields, for all n, P (G0) ≥ 1− α.

Scenario 3: (ui(β))ni=1 are independent and symmetric conditional on Z or (ziui(β))ni=1 are indepen-

dent and symmetric.

Under Scenario 3, taking

r0 =

√
2 ln(L/2α)

n

yields, for all n, P (G0) ≥ 1− α.

For scenarii 4 and 5 below, αB(n) is a finite sample bound on the coverage error, these bounds depend

on the parameters of the classes.

Scenario 4: (ziui(β))ni=1 are independent,

∣∣∣∣((E [|ZlU(β)|2+δ
]) (

E
[
Z2
l U(β)2

])−(2+δ)/2
)
l∈[L]

∣∣∣∣
∞
≤
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γ2+δ for δ in (0, 1] and γ2+δ ≥ 0 and L ≤ α/
(

2Φ
(
−n1/2−1/(2+δ)γ

−1/(2+δ)
2+δ

))
.

Under Scenario 4, taking

r0 = − 1√
n

Φ−1
( α

2L

)
.

yields, for all n, P (G0) ≥ 1 − α − αB(n), where αB(n) , αA0γ2+δ (1 +
√
nr0)

2+δ
n−δ/2 and A0 is a

universal constant.

Scenarii 1 and 3 rely on symmetry. This occurs if (1.1) is a first difference between two time

periods in a panel data model. Scenario 2 relaxes symmetry but requires fourth moments and the

upper bound γ4. When n − γ4 ln(L(2e + 1)/α) ≥ n/2 one can take r0 = 2
√

ln(L(2e+ 1)/α)/n. A

two-stage approach is used in Bertail, Gauthérat and Harari-Kermadec (2005). One starts by choosing

r0 with an upper bound on γ4, then one constructs the upper bound from a confidence interval for

γ4 and computes refined confidence sets. Scenarii 3 and 4 allow for conditional heteroscedasticity.

Scenario 3 allows for dependence in the matrix Z. Scenario 4 relies on an upper bound γ2+δ. The

choice of r0 in Scenario 4 is asymptotic because the moderate deviations result depends on A0 which

is not explicit. The four scenarii require that L does not exceed an exponential in n. Using Chen,

Shao, Wu, et al. (2016), one can obtain r0 for dependent data.

For the analysis of the STIV estimator, for β ∈ Ident, we make use of the event

G ,

max
l∈[L]

|En[ZlU(β)]|√
En[Z2

l ]En[U(β)2]
≤ r

 .

Note that G =

{
β ∈ Î(r,

√
Q̂(β))

}
and if we take r = r0

∣∣∣D̂ZZ>
∣∣∣
∞

we have G0 ⊆ G. Since
∣∣∣D̂ZZ>

∣∣∣
∞

can be large, we can further restrict scenarii 1-4 by maintaining Assumption 3.1 below. We use

the same denomination scenarii 1-4 and notation Pj for conciseness. Under Assumption 3.1, taking

r = r0
√

1 + τG , where 1 + τG = (1 + τZU )/ ((1− τ ′Z)(1− τ)), for arbitrary sequences τ, τ ′Z , τZU ∈ (0, 1)

converging to zero with n and αB(n) which is nonzero only for Scenario 4, we have

G0 ∩

max
l∈[L]

En
[
(ZlU(β))2

]
En[Z2

l ]En[U(β)2]
≤ 1 + τG

 ⊆ G
and P (G) ≥ 1−α−αB(n)−αC(n), where αC(n) =

(
m4/τ

2 + CN(L)
(
M ′Z(L)/(τ ′Z)2 +MZU (L)/τ2

ZU

))
/n.

This shows that we should take τ2n → 0 and max (τ ′Z , τZU )2 n/ log(L) → 0. Hence, we can take τG

very close to zero (in practice
√

1 + τG can be taken as 1.1 or 1.01 depending on the magnitudes of n

and L) and pay the price of a small coverage error.
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Assumption 3.1. L,K ≥ 3 and for j ∈ [4], m4, M ′Z(L), and MZU (L) positive, for all β,P such that

β ∈ Ident, where P = Pj, we have (S5.ii) and (S5.iv) defined below, Z and U(β) are independent,

and E

[∣∣∣∣((ZlU(β))2 /
(
E
[
Z2
l

]
E
[
U(β)2

])
− 1
)L
l=1

∣∣∣∣2
∞

]
≤MZU (L).

The union bound used in scenarii 1-4 does not account for the dependence in the vector ziui(β).

An alternative which does is the multiplier bootstrap (see Chernozhukov, Chetverikov, and Kato

(2013,2017)). Other types could be used (e.g., Zhang and Cheng (2014) for dependent data).

Scenario 5: Let L ≥ 3 and positive constants m4, MZ(L), M ′Z(L), b, q2, and B(n) ≥ 1, where MZ(L)

and M ′Z(L) can depend on L and B(n) can depend on n, and a sequence (αE(n))n∈N converging to

zero. We have, for all n ∈ N,

(S5.i) For all i ∈ [n], E
[
ui(β)2

∣∣ zi] = σ2
U(β);

(S5.ii) E
[((

U(β)/σU(β)

)2 − 1
)2
]
≤ m4;

(S5.iii) E
[∣∣DZ

(
ZZ> − E

[
ZZ>

])
DZ

∣∣2
∞

]
≤MZ(L);

(S5.iv) E
[∣∣∣(Z2

l /E
[
Z2
l

]
− 1
)L
l=1

∣∣∣2
∞

]
≤M ′Z(L);

(S5.v) max
(
E
[(

(DZ)ll ZlU(β)/σU(β)

)2+q1
]
,E
[
((DZ)ll Zlei)

2+q1
])
≤ B(n)q1, ∀l ∈ [L], q1 ∈ {1, 2};

(S5.vi) max
(
E
[(
|DZziui(β)|∞ /(B(n)σU(β))

)q2] ,E [(|DZziei|∞ /B(n))q2 ]
)
≤ 2, ∀i ∈ [n];

(S5.vii) minτ,τZ ,τ ′Z ,ζ1∈(0,1) (αB(n, τ, τZ , τ
′
Z , ζ1) + αC(n, τZ , τ

′
Z , ζ1)) , αB(n) + αC(n) ≤ αE(n);

where ei for i ∈ [n] are i.i.d. standard normals independent from Z and αB(n, τ, τZ , τ
′
Z , ζ1) and

αC(n, τZ , τ
′
Z , ζ1) are defined below.

Under Scenario 5, taking qW the quantile function of W ,
∣∣∣(∑n

i=1 D̂Zziei

)
/
√
n
∣∣∣
∞

treating Z as fixed,

r =
1√
n
qW (1− α),

yields, for all n and α ∈ (0, 1), |P (G)− 1− α| ≤ αB(n, τ, τZ , τ
′
Z , ζ1), where, for all τ, τZ , τ

′
Z , ζ1 ∈ (0, 1),

αB(n, τ, τZ , τ
′
Z , ζ1) ,2C1τ

1
3
Z log

(
L

τZ

) 2
3

+ 2C2ρ+
2CN(L2)MZ(L)

nτ2
Z

+ 2ζ2(ζ1, τ
′
Z) + ζ ′2(ζ1),

ρ , C2

((
B(n)2 (log(Ln))7 /n

) 1
6

+

(
B(n)2(log(Ln))3n

−1 2
q2

) 1
3

)
, C1 is universal and C2 a constant

which only depends on q2, and the values of ζ2(ζ1, τ
′
Z) and ζ ′2(ζ1) are in the appendix. Also, for all

τ, τZ , τ
′
Z , ζ1 ∈ (0, 1), we have P (r ≤ r(τZ , τ ′Z , ζ1)) ≥ 1 − αC(n, τZ , τ

′
Z , ζ1), where, denoting by qN0 the

quantile function of N0,

αC(n, τZ , τ
′
Z , ζ1) ,

CN

(
L2
)
MZ(L)

nτ2
Z

+ ζ2(ζ1, τ
′
Z),
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r(τZ , τ
′
Z , ζ1) ,

1√
n
qN0

(
1− α+ ζ2(ζ1, τ

′
Z) + C1τ

1
3
Z log

(
L

τZ

) 2
3

)
+ ζ1.

The conditional quantiles can be computed by simulation. Note that (S5.iv) can be viewed as

redundent once (S5.iii) is imposed. We write it for further reference and because we can take

M ′Z(L) ≤ MZ(L). Chernozhukov, Chetverikov, and Kato (2013) consider heteroscedastic errors in

the high-dimensional regression with non stochastic regressors. It uses a plug-in of estimated residu-

als and relies on a consistent preliminary estimator. We do not consider such an extension because,

in the main part of the paper, we are agnostic on features that would deliver a preliminary estimator

that converges fast enough, such as strong instruments.

4. Sensitivity Characteristics

In the linear regression in low dimension, when Z = X and X>X/n is positive definite, the

minimal eigenvalue of this matrix is an important quantity to obtain error bounds. It is the minimum

over all β ∈ RK of β>X>Xβ/(n|β|22). When β is sparse and one uses the `1-norm like in the Lasso and

Dantzig selector, one can consider a subset of RK which is a cone. This is typically expressed via the

restricted isometry property of Candès and Tao (2007) or the restricted eigenvalue condition of Bickel,

Ritov, and Tsybakov (2009). These cannot be used for models with endogenous regressors where we

have a rectangular matrix Z>X/n. Due to normalizations, we work with Ψ̂ , D̂ZZ>XD̂X/n.

4.1. Definition and Main Results on the Sensitivities. We introduce some scalar sensitivity

characteristics related to the action of Ψ̂ on vectors in the restricted set

(4.1) ĈJ ,
{

∆ : D̂X∆ ∈ RD,∆Jc∩J(β̂)
c = 0, |∆Jc∩P |1 ≤ |∆J∩P |1 + cr|∆I |1 + c|∆Ic |1

}
,

for J ⊆ [K]. The set ĈJ is a cone when RD is a set of the form {γ ∈ RK : Rlγ = 0}.

Remark 4.1. When I = P = [K], ĈJ can be written as

(4.2) ĈJ =
{

∆ : D̂X∆ ∈ RD, ∆
Jc∩J(β̂)

c = 0, (1− cr)|∆Jc |1 ≤ (1 + cr)|∆J |1
}
.

If the cardinality of J is small, the vectors ∆ in ĈJ have a substantial part of their mass

concentrated on a set of small cardinality. The set J that will be used later is the set J(β).

Remark 4.2. If P c ⊆ J(β), the set ĈJ(β) obtained by penalizing all coefficients can be written as

ĈJ(β) =
{

∆ : D̂X∆ ∈ RD, ∆
Jc∩J(β̂)

c = 0, |∆J(β)c∩P |1 ≤ |∆J(β)∩P |1 + |∆J(β)∩P c |1 + cr|∆I |1 + c|∆Ic |1
}
.

It has the additional term |∆J(β)∩P c |1 on the right-hand side of the inequality, hence is larger.
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We show that, for β ∈ Ident, on the event G, for all STIV estimator
(
β̂, σ̂

)
, ∆̂ , D̂−1

X

(
β̂ − β

)
,

and σ ,

(
σ̂ +

√
Q
(
β̂
))

/2, we have: ∆̂ ∈ ĈJ(β) and

(4.3)
∣∣∣Ψ̂∆̂

∣∣∣
∞
≤ r

(
2σ + r

∣∣∣∆̂I

∣∣∣
1

+
∣∣∣∆̂Ic

∣∣∣
1

)
.

Inequality (4.3) includes terms of different nature:
∣∣∣Ψ̂∆̂

∣∣∣
∞

on one side and the `1-norms of subvectors

on the other. The sensitivities allow one to relate them to each other. More generally, they allow

to relate a loss function l
(

∆̂
)

, where l ∈ L, to the quantity
∣∣∣Ψ̂∆̂

∣∣∣
∞

. The choice of the function l is

guided by the quantities which appear in the inequalities such as the `1-norms on the right-hand side

of (4.3) and eventually by the researcher who has to specify what feature is more important to her.

We define the sensitivity

κ̂l,J , min
∆∈ĈJ : l(∆)=1

∣∣∣Ψ̂∆
∣∣∣
∞
.

It depends on c, r, P , and I but for brevity we do not make the dependence explicit. A function of

interest for prediction and nonparametric estimation is

lF (∆) ,

(
n∑
i=1

(
x>i D̂X∆

)2
/n

)1/2

.

If one is interested in building confidence bands by applying Section 8, we use l(∆) = |∆|1. When l

is the `q-norm of the subvector βT for T ⊆ [K], we define the `q-T block sensitivity as

(4.4) κ̂q,T,J , min
∆∈ĈJ : |∆T |q=1

∣∣∣Ψ̂∆
∣∣∣
∞
.

By convention, we set κ̂q,∅,J = ∞ and, when J̃ = [K], we use the shorthand notation κ̂q,J and call

this sensitivity the `q sensitivity. κ̂∗λ,J denotes the sensitivity obtained when l(∆) =
∣∣λ>∆

∣∣ for some

λ ∈ RK . This is useful for a linear functional of the parameters λ>0 β in which case λ = D̂Xλ0. When

one is interested in O of them, stacking the vectors λ> as rows of Ω ∈ MO,K and using the diagonal

matrix D̂Ω with entries
(
D̂Ω

)
oo

=
(∣∣∣Ωo·D̂X

∣∣∣
2
/K
)−1

for o ∈ [O], one uses l(∆) =
∣∣∣D̂ΩΩ∆

∣∣∣
∞

and the

sensitivity is κ̂∗Ω,J . In the absence of sparsity, the sensitivities are defined replacing ĈJ by

Ĉγ,J ,
{

∆ : D̂X∆ ∈ RD, |∆Jc∩P |1 ≤ 2 (|∆J∩P |1 + cr|∆I |1 + c|∆Ic |1) + |∆P c |1
}
.

They are denoted by γ̂ instead of κ̂. The sensitivities based on l(∆) = |∆I |1 +r−1 |∆Ic |1 (resp., l(∆) =

min
(
|∆P |1 ,

1
2 (3 |∆J∩P |1 + cr |∆I |1 + c |∆Ic |1 + |∆P c |1)

)
) are denoted by κ̂σ,J and γ̂σ,J depending on

the restricted set (resp., γ̂Q,J) and are important for Section 4.2.
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To explain the role of sensitivities, let us sketch some elements of our argument. By definition

of the sensitivity, one has, for β ∈ Ident, on the event G, for all ∆ ∈ ĈJ(β),

(4.5) l (∆) ≤

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂l,J(β)
.

Take ∆ ∈ ĈJ(β). Inequality (4.5) is trivial if l (∆) = 0 and otherwise follows by homogeneity∣∣∣Ψ̂∆
∣∣∣
∞

l (∆)
≥ min

∆̃: ∆̃ 6=0, ∆̃∈ĈJ(β)

∣∣∣Ψ̂∆̃
∣∣∣
∞

l
(

∆̃
) .

From (4.3) and (4.5), we obtain, on G,

(4.6)
∣∣∣Ψ̂∆

∣∣∣
∞
≤ 2rσ

(
1− r2

κ̂σ,J(β)

)−1

+

.

As is apparent from (4.5) and (4.6), the sensitivities are core elements for error bounds for the

performance of the STIV. The remaining elements on the right-hand side of (4.6) are: r, of the order

of
√

log(L)/n (the parametric rate up to a logarithm), and σ̂. As shown in Section A.4, the sensitivities

are a useful tool to study the performance of the Dantzig selector, but also the Lasso. They provide

sharper results than the existing ones for the analysis of Dantzig selector and of the Lasso in classical

high-dimensional regression. They are also applicable to non-square non-symmetric matrices. Ye and

Zhang (2010) introduced similar quantities as (4.4) which differ in: the definition of ĈJ , the matrix

Ψ̂, and involve a scaling by |J(β)|1/q which is inadequate when dealing with endogenous regressors.

Chernozhukov, Chetverikov, and Kato (2013) proposes a variation with a slightly modified restricted

set for the classical high-dimensional regression but for which it seems hard to obtain feasible lower

bounds on the sensitivities because we cannot use arguments based on homogeneity.

The sensitivities measure how small
∣∣∣Ψ̂∆

∣∣∣
∞

can get for ∆ in a restricted set. Recall that, in

contrast, for the classical low dimension regression without sparsity, the minimum eigenvalue involves

a minimum over the whole space. As is apparent from (4.5), the error bounds are decreasing in the

sensitivities. Hence, a smaller set means a larger sensitivity and thus a sharper bound. The restricted

set accounts for the prior knowledge of the researcher through RD, P , and I, all of which make them

larger. The last elements in the definition of the restricted set are J(β) and J(β)c ∩ J
(
β̂
)c

. Small

J(β) implies a small restricted set. However, J(β) does not only play a role in the sensitivities via its

cardinality. In particular, I and Ic appear in the restricted set and it matters whether the nonzero

coefficients within P c belong to I or Ic. The sensitivities also depend on
∣∣∣Ψ̂∆

∣∣∣
∞

. The `∞-norm comes

from the definition of Î(r, σ). It is motivated by computational considerations and to handle possibly
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very many instruments. From this, we can see that one good instrument is enough to ensure a large

sensitivity. Adding instruments can only increase
∣∣∣Ψ̂∆

∣∣∣
∞

even if they are irrelevant. The price to

pay for having many is in r and takes the form of a logarithm in L, hence is very mild. To get the

intuition, consider the sensitivity κ̂∗ek,J(β) for k ∈ [K]. When P = ∅ and R = RK , the restricted set

becomes RK , κ̂∗ek,J(β) no longer depends on J(β) and can be written

κ̂∗ek = min
∆∈RK−1

∣∣∣∣∣∣D̂Z

 1

n

n∑
i=1

zixki −
∑
m 6=k

(
1

n

n∑
i=1

zixmi

)
∆m

∣∣∣∣∣∣
∞

.

It can be zero if
∑n

i=1 zixki/n is in the range of the matrix Ψ̃−k obtained from
∑n

i=1 zixmi by remov-

ing the kth column. This is unlikely if L exceeds K, even without sparsity. It is zero only under

multicolinearity. However, for large K, this can become very small. When the minimization is carried

over a subset, sparsity rules out certain combinations of the columns of Ψ̃−k.

In Section A.4, we analyze the sensitivities in the classical case of the linear regression without

endogeneity and show that they deliver sharper bounds than the ones previously introduced in the

literature on sparsity. In Section A.5, we relate the sensitivities for different losses to one another.

As is apparent from these inequalities, the cases c ∈ (0, 1) and P = I = [K] are more simple.

Else, the situation is complex. In Section 9, we present feasible confidence sets and study their

dependence in c. The case where c ∈ (0, 1) gives the sharper sets but usually requires large sample

size, overidentification, and strong instruments. In Section 6, we present bounds for specific types

of matrices Ψ̂ where we can get more information. The goal of such inequalities for sensitivities is

to obtain tractable lower bounds on them since they appear in denominators. This is useful because

the sensitivities involve an optimization problem so there are no closed form formulas. Most of them

involve the equality of a pseudo-norm to 1. This is not a convex constraint. The ones involving

κ̂∞,J and κ̂∗ek,J are more tractable from this perspective. Still, they involve a nonconvex constraint

due to the inequality with `1-norms on the right of the inequality in the restricted set. So these are

NP-hard to compute (see also Dobriban and Fan (2015)). Similar to the fact that for estimation we

rely on convex relaxations to overcome the NP-hardness, for inference we also rely on relaxations.

Else, we have to make strong unverifiable (due to NP-hardness) assumptions, in particular regarding

the strength of the instruments. The feasible bounds are in Section 5.

4.2. Basic Bounds. In this section, we give the basic error bounds for sparse and nonsparse vectors.



23

Theorem 4.1. Let β,P such that β ∈ Ident. On G, for all solution
(
β̂, σ̂

)
of (3.7), l ∈ L, and c > 0,

we have

l
(
D̂−1

X

(
β̂ − β

))
≤ 2r

κ̂l,J(β)
min

(
σ

(
1− r2

κ̂σ,J(β)

)−1

+

,

√
Q̂(β)

(
1− r

cκ̂1,J(β)∩P,J(β)

)−1

+

)
.

The bound involves a minimum of two terms. The one involving σ is at the basis of the

confidence sets and the one involving

√
Q̂(β) is used to obtain rates of convergence. The bounds at

the basis of the confidence sets depend on

(4.7)

(
1− r2

κ̂σ,J(β)

)−1

+

which is infinite on the event
{
κ̂σ,J(β) ≤ r2

}
. In the classical situation where the researcher knows

J(β), the error bounds are confidence sets. The fact that these could be infinite is in agreement with

Dufour (1997) which shows that confidence sets of infinite volume cannot be avoided for procedures

that are robust to weak instruments. Assuming that
{
κ̂σ,J(β) ≤ r2

}
has a vanishing probability is a

type of strong instrument assumption in our high-dimensional framework. Proposition A.4 allows to

obtain sufficient conditions for
{
κ̂σ,J(β) ≥ r2

}
. For example, the first upper bound in (A.40) yields{

κ̂σ,J(β) ≥ r2
}
⊇
{

2r2|J(β) ∪ P c|
κ̂∞,J(β)∪P c,J

+
r(1− r)|Ic|
κ̂∞,Ic,J(β)

≤ 1− cr
}
.

Also, using Proposition A.4 and Theorem 4.1 yields

l
(
D̂−1

X

(
β̂ − β

))
≤ 2r

κ̂l,J(β)

√
Q̂(β)

(
1− r|J(β) ∩ P |

cκ̂∞,J(β)∩P,J(β)

)−1

+

,

where the right-hand side is finite if r|J(β) ∩ P | is not too large and cκ̂∞,J(β)∩P,J(β) not too small.

The bounds are at the basis to obtain rates of convergence rely on
√
Q(β) and

(4.8)

(
1− r

cκ̂1,J(β)∩P,J(β)

)−1

+

instead of (4.7). In the case of i.i.d. data, the terms (4.7) and (4.8) appear because the variances of

the structural errors ui are unknown and we simultaneously estimate it.

Remark 4.3. In the model where Z = X, we have lF (∆)2 ≤
∣∣∣Ψ̂∆

∣∣∣
∞
|∆|1 hence κ̂lF ,J ≥

√
κ̂1,J .

Theorem 4.2. Let β,P such that β ∈ Ident. On G, for all solution
(
β̂, σ̂

)
of (3.7), q ∈ [1,∞],

T, J ⊆ [K], and c > 0, we have∣∣∣D̂−1
X

(
β̂ − β

)
T

∣∣∣
q
≤ 2 max

(
r

γ̂q,T,J
min

(
σ

(
1− r2

γ̂σ,J

)−1

+

,

√
Q̂(β)

(
1− r

cγ̂Q,J

)−1

+

)
, 3
∣∣∣D̂−1

X βJc∩P

∣∣∣
1

)
.
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Remark 4.4. In the model where Z = X, we have, on G,

lF

(
D̂−1

X

(
β̂ − β

))
≤ 2 max

(
r√
γ̂1,J

min

(
σ

(
1− r2

γ̂1,J

)−1

+

,

√
Q̂(β)

(
1− r

cγ̂Q,J

)−1

+

)
,

√
3r
∣∣∣D̂−1

X βJc∩P

∣∣∣
1

(
2

√
Q̂ (β) +

1

c

∣∣∣D̂−1
X βJc∩P

∣∣∣
1

))
.

5. Computable Lower Bounds on the Sensitivities and Robust Confidence Sets

5.1. Computationally Efficient Lower Bounds on the Sensitivities. The only unknown in the

upper bound in Theorem 4.1 is J(β). We may however have access to Ĵ such that J(β) ⊆ Ĵ and

hence to a lower bound on the sensitivities using Proposition A.4 (i). If
∣∣∣Ĵ ∪ P c ∪ Ic∣∣∣ is small then we

can apply the exact computations in Section A.6. We can also rely on a prior bound |J(β) ∩ P | ≤ s.

We now present easy to compute lower bounds on the sensitivities obtained by minimizing on a larger

and manageable set.

Proposition 5.1. For all J ⊆ Ĵ ⊆ [K] such that |J ∩ P | ≤ s and c > 0, we have

κ̂∞,J ≥ max
(
κ̂∞

(
Ĵ
)
, κ̂∞(s)

)
; κ̂∗λ,J ≥ max

(
κ̂∗λ

(
Ĵ
)
, κ̂∗λ(s)

)
;

κ̂1,J ≥ max
(
κ̂1

(
Ĵ
)
, κ̂1(s)

)
; κ̂σJ ≥ max

(
κ̂σ

(
Ĵ
)
, κ̂σ(s)

)
;(

1− r2

κ̂σ,J

)−1

+

≤ min
(
θ̂κ

(
Ĵ
)
, θ̂κ(s)

)
;

where the quantities in the bounds are defined in Table 1. The same holds for the sensitivities based

on the restricted set Ĉγ,J using, instead of the sets B, the sets B̃ and replacing θ̂κ by θ̂γ.

The lower bounds in Proposition 5.1 involve a maximum. One lower bound is useful when one

is given Ĵ ⊇ J and the other when one is given a sparsity certificate |J ∩P | ≤ s. The bounds in Table

1 involve two minima. The second one is a linear program. Hence, all lower bounds can be obtained

by solving multiple linear programs, for example: 2K for κ̂∗ek

(
Ĵ
)

or κ̂∗ek(s) and K for κ̂∞

(
Ĵ
)

or

κ̂∞(s). κ̂∞(s) and κ̂∗ek(s) are at the basis of confidence sets for the whole vector β using only a

sparsity certificate. The first approach is less sharp but requires solving only K linear programs while

the second requires solving 2K2 linear programs. Below, we sometimes refer to lower bounds such as

γ̂q,T (s) which are not in Table 1, they are obtained from them and Proposition A.4. The idea behind

the construction of the lower bounds can be applied to obtain the sharper bounds by considering

subsets of [K] of size m yielding 2m−1
(
K
m

)
or 2m

(
K
m

)
linear programs. This is feasible for small m if

K is not too large. Table 2 considers the case where m = 2. One can obtain lower bounds which are
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Table 1. Table of constants

κ̂∞
(
Ĵ
)
, min

k∈[K]
min

(∆,w)∈B̂(Ĵ)
∆k=1, w≤1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂∞(s) , min
k∈[K]

min
(∆,w)∈B̂(k)
∆k=1, w≤1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂∗λ

(
Ĵ
)
, min

k∈[K]
η=±1

min
(∆,w)∈B̂(Ĵ)

λ>∆=η, w≤∆k1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂∗λ(s) , min
k∈[K]
η=±1

min
(∆,w)∈B̂(k)

λ>∆=η, w≤∆k1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂1

(
Ĵ
)
, min

k∈[K]
min

(∆,w)∈B̂(Ĵ)∑
j=1,...,K wj=1, w≤∆k1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂1(s) , min
k∈[K]

min
(∆,w)∈B̂(k)∑

j=1,...,K wj=1, w≤∆k1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂σ
(
Ĵ
)
, min

k∈[K]
min

(∆,w)∈B̂(Ĵ)∑
j∈I wj+r

−1∑
j∈Ic wj=1, w≤∆k1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂σ(s) , min
k∈[K]

min
(∆,w)∈B̂(k)∑

j∈I wj+r
−1∑

j∈Ic wj=1, w≤∆k1

∣∣∣Ψ̂∆
∣∣∣
∞

θ̂κ
(
Ĵ
)
,

(
1− r2

κ̂σ(Ĵ)

)−1

+

θ̂κ(s) ,
(

1− r2

κ̂σ(s)

)−1

+

B̂
(
Ĵ
)
,

 (∆, w) ∈ D̂−1
X RD × RK : w ≥ 0, −w ≤ ∆ ≤ w, wĴc∩J(β̂)c = 0,

(1− cr)
∑
j∈I wj + (1− c)

∑
j∈Ic wj ≤ 2

∑
j∈Ĵ∩P wj +

∑
j∈Pc wj


B̂(k) ,

 (∆, w) ∈ D̂−1
X RD × RK : w ≥ 0, −w ≤ ∆ ≤ w,

(1− cr)
∑
j∈I wj + (1− c)

∑
j∈Ic wj ≤ 2swk +

∑
j∈Pc wj


B̂γ
(
Ĵ
)
,

 (∆, w) ∈ D̂−1
X RD × RK : w ≥ 0, −w ≤ ∆ ≤ w,

(1− 2cr)
∑
j∈I wj + (1− 2c)

∑
j∈Ic wj ≤ 3

∑
j∈Ĵ∩P wj + 2

∑
j∈Pc wj


B̂γ(k) ,

 (∆, w) ∈ D̂−1
X RD × RK : w ≥ 0, −w ≤ ∆ ≤ w,

(1− 2cr)
∑
j∈I wj + (1− 2c)

∑
j∈Ic wj ≤ 3swk + 2

∑
j∈Pc wj


Table 2. Table of constants for tighter sets (m = 2)

κ̂∞
(
Ĵ
)
, min

k,l=1,...,K
l 6=k
ε=±1

min
(∆,w)∈B̂(Ĵ)

∆k=1
w≤1, w−k≤ε∆l1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂∞(s) , min
k,l=1,...,K

l 6=k
ε=±1

min
(∆,w)∈B

∆k=1
w≤1, w−k≤ε∆l1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂∗λ

(
Ĵ
)
, min

k,l=1,...,K
l 6=k
η=±1
ε=±1

min
(∆,w)∈B̂(Ĵ)
λ>∆=η

w≤∆k1, w−k≤ε∆l1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂∗λ(s) , min
k,l=1,...,K

l 6=k
η=±1
ε=±1

min
(∆,w)∈B̂(k,l)

λ>∆=η
w≤∆k1, w−k≤ε∆l1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂1

(
Ĵ
)
, min

k,l=1,...,K
l 6=k
ε=±1

min
(∆,w)∈B̂(Ĵ)∑
j=1,...,K wj=1

w≤∆k1, w−k≤ε∆l1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂1(s) , min
k,l=1,...,K

l 6=k
ε=±1

min
(∆,w)∈B̂(k,l)∑
j=1,...,K wj=1

w≤∆k1, w−k≤ε∆l1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂σ
(
Ĵ
)
, min

k,l=1,...,K
l 6=k
ε=±1

min
(∆,w)∈B̂(Ĵ)∑

j∈I wj+r
−1∑

j∈Ic wj=1

w≤∆k1, w−k≤ε∆l1

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂σ(s) , min
k,l=1,...,K

l 6=k
ε=±1

min
(∆,w)∈B̂(k,l)∑

j∈I wj+r
−1∑

j∈Ic wj=1

w≤∆k1, w−k≤ε∆l1

∣∣∣Ψ̂∆
∣∣∣
∞

w−k is the vector in RK−1 obtained from w by removing the kth row, B̃ and B̃(k, l) are obtained similarly

B̂
(
Ĵ
)
,

 (∆, w) ∈ D̂−1
X RD × RK : w ≥ 0, −w ≤ ∆ ≤ w, wĴc∩J(β̂)c = 0

(1− cr)
∑
j∈I wj + (1− c)

∑
j∈Ic wj ≤ 2

∑
j∈Ĵ∩P wj +

∑
j∈Pc wj


B̂(k, l) ,

 (∆, w) ∈ D̂−1
X RD × RK : w ≥ 0, −w ≤ ∆ ≤ w,

(1− cr)
∑
j∈I wj + (1− c)

∑
j∈Ic wj ≤ s(wk + wl) +

∑
j∈Pc wj


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hybrid between the previous bounds and those of Section A.6. They are obtained by working with

vectors of signs (εj)j∈S , where S ⊆ [K] is small, and imposing that, for j ∈ S, εj = ±1. They are

obtained by adding the constraints wj = εj∆j for j in small subsets of [K] (e.g., P c, Ic, and Ĵ ∩ P ),

and adding to the first minimum a minimum over all signs.

5.2. Feasible Confidence Sets Under a Sparsity Certificate. The confidence sets in this section

are valid if the Scenario chosen from those of Section 3.5 is correct. They do not restrict the joint

distribution of (Z,X). Hence, the sets are robust to identification and many instruments.

Theorem 5.1. For all β,P such that β ∈ Ident, on G, for all solution
(
β̂, σ̂

)
of (3.7), s ∈ [K − p],

l ∈ L, T ⊆ [K], q ∈ [1,∞], and c > 0, we have, if β ∈ Bs,

l
(
D̂−1

X

(
β̂ − β

))
≤ 2rσθ̂κ(s)

κ̂l(s)
.(5.1)

These sets are all obtained on the same event G and when the researcher is uncertain about a

sparsity certificate she can draw nested sets for increasing values of s. The parameter c appears in

the definitions of the STIV estimator and in the bound in Theorem 5.1 . Choosing small c leads to a

smaller restricted set but implies that we penalize less σ in (3.7), which tends to increase the resulting

σ̂ and σ. Overall, there might be some optimal c. However, the dependency of the bounds on c does

not have a tractable form. Importantly, just like for s, the result of Theorem 5.1 is uniform in c and

the event does not depend on it. Because the procedure is fast to implement, it is possible to vary c

on a grid, intersect the obtained sets, and obtain a confidence set of coverage 1− α.

6. Rates, Model Selection, and Refined Confidence Sets

6.1. Deterministic Bounds. Denote by Ψ , DZE[ZX>]DX . We consider subclasses P̃j of Pj for

j ∈ [5] defined below. For asymptotic statements c can grow with n.

Assumption 6.1. L,K ≥ 3 and for j ∈ [5], α∞(n), m4, M(L,K), MX(K), M ′Z(L), MZU (L), and

B(n,L) positive, for all β,P such that β ∈ Ident, where P = P̃j ⊆ Pj, we have, if j ∈ [4], (S5.ii),

(S5.iv), and P
(∣∣DZZ>

∣∣
∞ > B(n,L)

)
≤ α∞(n) or Assumption 3.1 holds, and, for all j ∈ [5],

E
[∣∣∣DZ

(
ZX> − E

[
ZX>

])
DX

∣∣∣2
∞

]
≤M(L,K),(6.1)

E

∣∣∣∣∣∣
(

X2
k

E
[
X2
k

] − 1

)K
k=1

∣∣∣∣∣∣
2

∞

 ≤MX(K).(6.2)
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For scenarii 1-4 without Assumption 3.1, we use αC(n) = α∞(n)+
(
m4/τ

2 + CN(L)M ′Z(L)/(τ ′Z)2
)
/n

and r , r0B(n,L)/
√

1− τ ′Z as a deterministic upper bound on r. For scenarii 1-4 with Assumption

3.1, we use r , r0
√

1 + τG . For Scenario 5, we use r , r(τZ , τ ′Z , ζ1). We use αD(n) , αB(n)+αC(n)+(
CN(K)MX(K)/τ2

X + CN(LK)M(L,K)/r2
Ψ

)
/n for all scenarii. τ, τZ , τ

′
Z , τZU , ζ1, τX , rΨ ∈ (0, 1) are

arbitrary sequences decaying to zero with n and such that r ∈ (0, 1). In the rest of the section, we

consider that P = P̃j for some j ∈ [5] chosen by the researcher. The results are stated on the event

G∩GΨ which has probability at least 1−α−αD(n). The restricted sets for the population sensitivities

are defined as

CJ ,

{
∆ : DX∆ ∈ RD,

(√
1− τX
1 + τX

− cr
)
|∆I |1 +

(√
1− τX
1 + τX

− c
)
|∆Ic |1 ≤ 2|∆J∩P |1 + |∆P c |1

}
CγJ ,

{
∆ : DX∆ ∈ RD,

(√
1− τX
1 + τX

− 2cr

)
|∆I |1 +

(√
1− τX
1 + τX

− 2c

)
|∆Ic |1 ≤ 3|∆J∩P |1 + 2|∆P c |1

}
.

We denote by κ and γ the population sensitivities and their lower bounds where we replace, in the

definitions of κ̂ and γ̂ and the lower bounds in Proposition 5.1, Ψ̂, ĈJ , ĈγJ , and r, by Ψ, CJ , CγJ ,

and r. We define similarly θκ(s) and θγ(s). These restricted sets are almost identical to the ones for

the sensitivities and the results of Proposition A.4 hold with minor modifications for the population

sensitivities. The following result relates random quantities to their population counterparts.

Proposition 6.1. Under Assumption 6.1, for all β,P such that β ∈ Ident, on an event GΨ of

probability 1− αD(n) such that P (G ∩ GΨ) ≥ 1− α− αD(n), we have, for all c > 0, r ≤ r and

σ2
U(β)(1− τ) ≤ Q̂(β) ≤ σ2

U(β)(1 + τ);

∀b ∈ RK , l ∈ L,
√

1− τX l
(
D−1
X b
)
≤ l
(
D̂−1

X b
)
≤
√

1 + τX l
(
D−1
X b
)

;(6.3)

∀J ⊆ [K], l ∈ L, κ̂l,J ≥
κl,J√

(1 + τZ)(1 + τX)

(
1− rΨ

κ1,J

)
;(6.4)

γ̂l,J ≥
γl,J√

(1 + τZ)(1 + τX)

(
1− rΨ

γ1,J

)
.(6.5)

The lower bounds in Proposition 5.1 involving the sparsity certificates hold if we remove the hats.

For the lower bound (6.4) to be meaningful, we should have κ1,J > rΨ and rΨ could be taken

of the order of
√

ln(LK)M(L,K) log(n)/n and the same for (6.5) and γ1,J . The following proposition

follows from the definition of the population sensitivities. The condition, when holding for all J such

that |J | ≤ s, is a type of null-space property with order s. It can be satisfied even if rank (Ψ) < K.
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Proposition 6.2. Let J, P ⊆ [K]. The population sensitivities based on CJ , respectively on Cγ,J , are

positive if and only if, for all x ∈ ker (Ψ) \ {0}, we have x ∈ CcJ , respectively x ∈ Ccγ,J .

Lower bounds on the population sensitivities in benchmark cases are given in Section A.7.

These include a situation often encountered in nonparametric instrumental variables and one where

there are less instruments than potential regressors.

6.2. Rates of Convergence. In this section, we derive rates of convergence of STIV estimators. The

argument is based on replacing the random right-hand sides in Theorems 4.1 and 4.2 by deterministic

upper bounds. We make use of the following notations, for all J ⊂ [K],

Θκ(J) ,
√

(1 + τZ)(1 + τX)

(
1− rΨ

κ1,J
−
r
√

(1 + τZ)(1 + τX)

cκ1,J∩P,J

)−1

+

;

Θγ(J) ,
√

(1 + τZ)(1 + τX)

(
1− rΨ

γ1,J
−
r
√

(1 + τZ)(1 + τX)

cγQ,J

)−1

+

.

Theorem 6.1. Under Assumption 6.1, for all β,P such that β ∈ Ident, on G ∩ GΨ, for all solution(
β̂, σ̂

)
of (3.7) and c ∈

(
0, r−1

√
(1− τX)/(1 + τX)

)
, we have

(i) For all l ∈ L,

√
1− τX l

(
D−1
X

(
β̂ − β

))
≤

2rσU(β)

√
1 + τ

κl,J(β)
Θκ(J(β));

σU(β)

(√
1− τ − 2r2

√
1 + τΘκ (J(β))

κσ,J(β)

)
≤
√
Q̂
(
β̂
)
≤ σ̂ ≤ σU(β)

√
1 + τ

(
1 +

2rΘκ (J(β))

cκ1,J(β)∩P,J(β)

)
;

(ii) For all q ∈ [1,∞] and T ⊆ [K],

√
1− τX

∣∣∣D−1
X

(
β̂ − β

)
T

∣∣∣
q
≤ 2 min

J⊆[K]
max

(
rσU(β)

√
1 + τ

γq,T,J
Θγ(J), 3

√
1 + τX

∣∣D−1
X βJc∩P

∣∣
1

)
;

√
1− τ

(
σU(β) − min

J⊆[K]
max

(√
1 + τ

1− τ
2r2σU(β)Θγ (J)

γσ,J
,

√
1 + τX
1− τ

2

c

∣∣D−1
X βJc∩P

∣∣
1

))

≤
√
Q̂
(
β̂
)
≤ σ̂ ≤

√
1 + τ

(
σU(β) +

1

c
min
J⊆[K]

max

(
2rσU(β)Θγ (J)

γQ,J
, 3

√
1 + τX
1 + τ

∣∣D−1
X βJc∩P

∣∣
1

))
;

(iii) If we add to the definition of Ident the restriction

(6.6) ∀k ∈ J(β),
√

(1− τX)E[X2
k ] |βk| > ωk ,

2rσU(β)

√
1 + τ

κ∗ek,J(β)

Θκ(J(β))

then J(β) ⊆ J
(
β̂
)

and the inequalities of item (i) hold when we work with the sharper popu-

lation sensitivities where we add ∆J(β)c = 0 in the restricted sets;



29

If we compute the right-hand side of the inequality in Theorem 4.2 at J = J
(
β̂
)

, the second

term is smaller than
∣∣∣J(β) ∩ P \ J

(
β̂
)∣∣∣ 2rσU(β)

√
1+τ

κ∗
ek,J(β)

Θκ(J(β)).

The second inequalities of item (i) and (ii) allow to sandwich σ̂ and

√
Q̂
(
β̂
)

by expressions

in σU(β), hence both are consistent estimators when n→∞, L and/or K could increase with n, and

τ → 0 provided the other terms converge to zero. Alternatively, one can use the first inequalities and

the fact that, by the inverse triangle inequality,

∣∣∣∣√Q̂ (β)−
√
Q̂
(
β̂
)∣∣∣∣ ≤ lF

(
D̂−1

X

(
β̂ − β

))
. The first

inequality in item (ii) implies that our estimator adapts to the unknown β, i.e., it performs as well as

if we knew β and the optimal set J = J∗ such that

(6.7)
∣∣∣D−1

X

(
β̂ − β

)∣∣∣
1
≤

2rσU(β)

γ1,J∗

√
1 + τ

1− τX
Θγ(J∗).

This allows to define formally approximately sparse vectors as vectors which are sufficiently well

approximated by a sparse vector so that the right-hand side of (6.7) is small. For large enough sample

size (n� ln(L)), r and rΨ are small, and Θκ(J(β)) is approaching 1 as r, rΨ → 0. Also, (A.37) holds

for the population sensitivities and, when Ic∪P c = ∅ and Z = X, based on (4.1) and Proposition A.4,

one can take c of the order of r−1 to estimate well the noise level. Then, the bound (i) taking as l the

`q-norm is of the order O(r|J(β)|1/q) and O(r) respectively. These are the same rates, in terms of the

sparsity |J(β)|, the dimension L, and the sample size n, that were proved for the Lasso and Dantzig

selector in high-dimensional regression with Gaussian errors, fixed regressors, and without endogenous

variables in Candès and Tao (2007), Bickel, Ritov and Tsybakov (2009), and Lounici (2008). In the

presence of endogenous regressors, there is not such a clear dependence in c and the sparsity. We

refer to Proposition A.4 and the examples for various possible regimes depending on the strength of

instruments, the number of endogenous regressors, the identity of the coefficients which are nonzero,

which all play a role in a complicated way and through an optimization program. The advantage of

the feasible sets in Section 5 is to discipline the choice of c in practice. We provide a rule of thumb

which works well in practice in Section 9.1.3.

Condition (6.6) and (6.10) below are beta-min conditions. They restrict the joint distribution of

(Z,X) which affects the rates of convergence via the sensitivities. Hence, unlike those based on sparsity

certificates, the confidence sets relying on the beta-min conditions are not robust to identification.

6.3. Confidence Sets Based on an Estimated Superset of the Important Regressors. Based

on Proposition 5.1 and Theorem 6.1, we obtain the following confidence sets.
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Theorem 6.2. Let c ∈
(

0, r−1
√

(1− τX)/(1 + τX)
)

. Under Assumption 6.1, for all β,P such that

β ∈ Ident satisfies (6.6), on G ∩ GΨ, for all solution
(
β̂, σ̂

)
of (3.7), Ĵ = J

(
β̂
)

, and l ∈ L, we have

max
(√

1− τX l
(
D−1
X

(
β̂ − β

))
, l
(
D̂−1

X

(
β̂ − β

)))
≤

2rσθ̂κ

(
Ĵ
)

κ̂l

(
Ĵ
) .(6.8)

When we do not restrict Ident, the right-hand side of (6.8) becomes

2rσθ̂γ

(
Ĵ
)

γ̂l

(
Ĵ
) +

∣∣∣J(β) ∩ P \ J
(
β̂
)∣∣∣ 2rσU(β)

√
1 + τ

κ∗ek,J(β)

Θκ(J(β)).

6.4. Selection of Variables. Theorem 6.1 (iii) provides an upper estimate on the set of nonzero or

important components of β. Exact selection of variables can be performed as well. For this purpose,

we use the thresholded STIV estimator β̂ω which coordinates are defined, for k ∈ [K], by

(6.9) β̂ωk , β̂k1l

{√
En[X2

k ]
∣∣∣β̂k∣∣∣ > ω̂k(s)

}
, ω̂k(s) ,

2rσθ̂κ(s)

κ̂∗ek(s)
.

Denote by

θκ(s) ,
√

(1 + τZ)(1 + τX)

(
1− rΨ

κ1(s)
−
r
√

(1 + τZ)(1 + τX)

κσ(s)

)−1

+

;

Θσ
κ(s) ,

(
1− rΨ

κ1(s)
+
rs
√

(1 + τZ)(1 + τX)

cκ∞(s)

)(
1− rΨ

κ1(s)
−
rs
√

(1 + τZ)(1 + τX)

cκ∞(s)

)−1

+

;

ωk(s) ,
rσU(β)

√
1 + τ(Θσ

κ(s) + 1)θκ(s)

κ∗ek(s)
.

The following theorem shows that, based on thresholding a STIV estimator, on G ∩ GΨ, we

achieve sign consistency, hence J
(
β̂ω
)

= J(β).

Theorem 6.3. Let c ∈
(

0, r−1
√

(1− τX)/(1 + τX)
)

, and s ∈ [p]. Under Assumption 6.1, for all β,P

such that β ∈ Bs satisfies

(6.10) ∀k ∈ J(β),
√

(1− τX)E[X2
k ]|βk| > 2ωk(s),

on G ∩ GΨ, for all solution
(
β̂, σ̂

)
of (3.7) and β̂ω defined in (6.9), we have

−−−−−−→
sign

(
β̂ω
)

=
−−−−→
sign(β) and

the inequalities of Theorem 6.1 item (i) hold when we work with the sharper population sensitivities

where we add ∆J(β)c = 0 in the restricted sets.
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6.5. Adaptive Confidence Sets.

Theorem 6.4. Let c ∈
(

0, r−1
√

(1− τX)/(1 + τX)
)

and s ∈ [p]. Under Assumption 6.1, for all β,P

such that β ∈ Bs satisfies (6.10), on G ∩GΨ, for all solution
(
β̂, σ̂

)
of (3.7), Ĵ = J

(
β̂ω
)

where β̂ω is

defined in (6.9), the conclusion of Theorem 6.2 holds.

The sparsity certificate s can be taken large, possibly K. If the beta-min assumption holds for

that s, the width of the confidence sets matches the upper bound in the error bounds which depends

on the unknown and set of smaller cardinality J(β), hence the terminology adaptive here.

Remark 6.1. It is impossible to obtain honest confidence sets which diameter corresponds to the

optimal rate of estimation in high-dimensional regression (see Nickl and Van de Geer (2013) for the

`2-norm and Gaussian errors independent of the regressors). It becomes possible if one removes from

the parameter space vectors which are too close to |J(β)|-sparse vectors. (6.10) is a `∞-norm analogue.

7. Generalizations of the STIV

7.1. Model with Approximation Errors. We consider the model

∀i ∈ [n], yi = x>i β + vi + wi;(7.1)

E[ziwi] = 0;(7.2)

β ∈ R, P(β) ∈ P̃;(7.3)

where P̃ is either of P̃j for j ∈ [5] and we modify P̃j so that ui(β) = vi(β) +wi(β), where wi(β) plays

the role of ui(β) in the previous definition of P̃j , G is modified accordingly, and (S5.ii) also holds for

vi(β) with σV (β) ≤ E. E is a parameter of the class P̃. GΨ is defined like before replacing EcU by

EcV ∩ EcW , where both are defined like EU (c.f., the analysis of Scenario 5 in the appendix), and the

probability m4(τ2n)−1 by 2m4(τ2n)−1. The identified set for this model is

Ident ,
{
β ∈ R : P(β) ∈ P̃ and ∀i ∈ [n], E[ziwi(β)] = 0

}
.

Formulation (7.1) allows to handle the model in Section 2.2.5. It also allows to handle the case where,

for i in B ⊆ [n], the outcomes are observed in brackets. Indeed, we can assume that, for i ∈ Bc, yi

is the observed outcome and vi = 0, while, for i ∈ B, yi is the midpoint of the bracket, yi − vi is the

unobserved outcome. There, one has |vi| ≤ ei, where ei are half-widths of the brackets.
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Definition 7.1. For c > 0 and ρE ≥ En[V 2]1/2, the E-STIV estimator
(
β̂, σ̂

)
is any solution of

min
β∈ÎE(r,σ)

σ≥0

∣∣∣D̂−1
X βP

∣∣∣
1

+ cσ,

where

ÎE(r, σ) ,

{
β ∈ R,

∣∣∣∣ 1nD̂ZZ>(Y −Xβ)

∣∣∣∣
∞
≤ rσ + (r + 1)ρE , Q̂(β) ≤ σ2

}
.

This is a second-order cone program. For bracketed outcomes, we take ρE = n−1
∑

i∈B e
2
i and

E2 = EnE
[
1l{i ∈ B}e2

i

]
. For the partially linear model, we take ρE =

√
1 + τE so that En[V 2] ≤ ρ2

E

on GΨ. The following theorem, where r(β) , min

(
r + (r + 1)

(√
1−τ
1+τ

σW (β)
E − 1

)−1

+
, 1

)
and σ(β) ,

σW (β) + (r + 2)E, holds.

Theorem 7.1. All results of Theorem 6.1 hold for the E-STIV estimator, replacing r by r(β) in the

definition of the population sensitivities and the condition c ∈
(

0, r−1
√

(1− τX)/(1 + τX)
)

, but the

bounds for σ̂ and

√
Q̂(β̂) which become

√
1− τ

(
σW (β) −

√
1 + τ

1− τ

(
E +

2r r(β)σ(β)Θκ (J(β))

κσ,J(β)

))

≤
√
Q̂
(
β̂
)
≤ σ̂ ≤

√
1 + τ

(
σW (β) + E +

2rσ(β)Θκ (J(β))

cκ1,J(β)∩P,J(β)

)
for sparse vectors and, else,

√
1− τ

(
σW (β) −

√
1 + τ

1− τ

(
E + min

J⊆[K]
max

(√
1 + τ

1− τ
2rr(β)σ(β)Θγ (J)

γσ,J
,

√
1 + τX
1− τ

2

c

∣∣D−1
X βJc∩P

∣∣
1

)))

≤
√
Q̂
(
β̂
)
≤ σ̂ ≤

√
1 + τ

(
σW (β) + E +

1

c
min
J⊆[K]

max

(
2rσ(β)Θγ (J)

γQ,J
, 3

√
1 + τX
1 + τ

∣∣D−1
X βJc∩P

∣∣
1

))
.

7.2. Systems with Approximation Errors. Though, E-STIV estimators can be obtained for each

equation separately, we present a method which allows to handle cross-equation restrictions. Consider

∀g ∈ [G], i ∈ [n], yg,i = x>i βg + vg,i + wg,i;

E[zivg,i] = 0;

β , (β1, . . . , βG) ∈ R, P(β) ∈ P̃;

where P(β) is the distribution of
(
x>i , z

>
i , u1,i(β1), . . . , uG,i(βG)

)n
i=1

, we still denote by P̃j the classes

for each Scenario j ∈ [5], for g ∈ [G], ug,i(βg) , yg,i − x>i βg can be decomposed as vg,i(βg) +wg,i(βg).

We maintain the distributional assumptions of Section 7.1 with G errors and σVg(βg) ≤ Eg for g ∈ [G],
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where E is a vector in RG of small constants which is a parameter of the class, so we replace 2m4(τ2n)−1

from the E-STIV by 2Gm4(τ2n)−1, choose r as in Section 3.5 replacing α by α/G and use the event

G ,

max
g∈[G]
l∈[L]

|En[ZlVg(βg)]|√
En[Z2

l ]En[Vg(βg)2]
≤ r

 .

We rely on a union bound because there could be dependence between the errors in each equation

and we do not model them or rely on a multi stages approach. The identified set for this model is

Ident ,
{
β ∈ R : P(β) ∈ P̃ and ∀g ∈ [G], i ∈ [n], E[ziwg,i(β)] = 0

}
.

We make use of the following notations. For J1, . . . , JG ⊆ [K], we write J ,
∏G
g=1 Jg and Jc ,∏G

g=1 J
c
g . We also write J(β) ,

∏G
g=1 J(βg), I , I × · · · × I, and Ic , Ic× · · · × Ic . For two products

of subsets of [K] J and P , we denote by J ∩ P ,
∏G
g=1 Jg ∩ Pg. For ∆ in MK,G and J =

∏G
g=1 Jg,

where J1, . . . , JG ⊆ [K], we denote by ∆J =
(

(∆1)J1
, . . . , (∆G)JG

)
. The sparse identified set is

defined similarly. Sparsity can take various forms such as total sparsity of the matrix β, row, or

column sparsity. To avoid burdensome notations, when later we use s as a sparsity certificate, we

refer to total sparsity.

Definition 7.2. For c > 0 and ρg,E ≥ En[V 2
g ]1/2 for all g ∈ [G], the SE-STIV estimator

(
β̂, σ̂

)
is

any solution of

min
β∈ÎSE(r,σ),σ1≥0,...,σG≥0

∣∣∣D̂−1
X βP

∣∣∣
1

+ c|σ|1,

where

ÎSE(r, σ) ,

{
β ∈ R, ∀g ∈ [G],

∣∣∣∣ 1nD̂ZZ>(Yg −Xβg)

∣∣∣∣
∞
≤ rσg + (r + 1)ρg,E , Q̂(βg) ≤ σ2

g

}
.

Remark 7.1. An alternative is to rely on a scalar parameter σ like the C-STIV in Section 7.3.

This has the advantage that we have a single conic constraint. The population sensitivities are

obtained replacing |Ψ∆|∞ by
∑G

g=1 |Ψ∆g|∞, CJ and Cγ,J by

CJ ,

 ∆ : DX∆ ∈ RD, ∆
Jc∩J(β̂)

c = 0,(√
1−τX
1+τX

− cr(β)
)
|∆I|1 +

(√
1−τX
1+τX

− c
)
|∆Ic |1 ≤ 2 |∆J∩P |1 + |∆P c |1

 ,

Cγ,J ,

{
∆ : DX∆ ∈ RD,

(√
1− τX
1 + τX

− cr(β)

)
|∆I|1 +

(√
1− τX
1 + τX

− c
)
|∆Ic |1 ≤ 3 |∆J∩P |1 + 2 |∆P c |1

}
,

where

r(β) , max
g∈[G]

min

r + (r + 1)

(√
1− τ
1 + τ

σWg(βg)

Eg
− 1

)−1

+

, 1

 ,
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and using r(β) instead of r in the definition of the sensitivities. We use the same notations for them as

well as for Θκ(J) and Θγ(J) and denote by κσ,J(β) and γσ,J the sensitivities for l(∆) = maxg∈[G] lF (∆g)

and the set CJ and for l(∆) = maxg∈[G]

(∣∣(∆g)I
∣∣
1

+ r(β)−1
∣∣(∆g)Ic

∣∣
1

)
and the set Cγ,J .

Theorem 7.2. For all β,P such that β ∈ Ident, the following hold on G ∩ GΨ for all solution
(
β̂, σ̂

)
of (3.7) and c ∈

(
0, r(β)−1

√
(1− τX)/(1 + τX))

)
:

(i) For a sparse matrix β, for all l ∈ L, we have

l
(
D−1
X

(
β̂ − β

))
≤

2r
(∑G

g=1 σWg(βg) + (r + 2)Eg

)
κl,J(β)

√
1 + τ

1− τX
Θκ(J(β));

moreover, for all g ∈ [G],

√
1− τ

σWg(βg) −
√

1 + τ

1− τ

Eg +
2r
(∑G

g=1 σWg(βg) + (r + 2)Eg

)
Θκ (J(β))

κσ,J(β)

√
1− τX


≤
√
Q̂
(
β̂g

)
≤
√

1 + τ

σWg(βg) + Eg +
2r
(∑G

g=1 σWg(βg) + (r + 2)Eg

)
Θκ (J(β))

κσ,J(β)

√
1− τX

 ;

(ii) For all J =
∏G
g=1 Jg and T =

∏G
g=1 Tg, where J1, . . . , JG ⊆ [K] and T1, . . . , TG ⊆ [K], and

q ∈ [1,∞], we have

∣∣∣D−1
X

(
β̂ − β

)
T

∣∣∣
q
≤ 2 max

r
(∑G

g=1 σWg(βg) + (r + 2)Eg

)
γq,T,J

√
1 + τ

1− τX
Θγ(J), 3

√
1 + τX
1− τX

∣∣D−1
X βJc∩P

∣∣
1

 ;

in particular

max
g∈[G]

∣∣∣D−1
X

(
β̂g − βg

)∣∣∣
1
≤ 2 max

r
(∑G

g=1 σWg(βg) + (r + 2)Eg

)
ming∈[G] γ1,[K]×{g},J

√
1 + τ

1− τX
Θγ(J), 3

√
1 + τX
1− τX

∣∣D−1
X βJc∩P

∣∣
1

 ;

moreover, for all g ∈ [G],

σWg(βg) −
√

1 + τ

1− τ

(
Eg + min

J⊆[K]
max

(√
1 + τ

1− τ
2rr(β)σ(β)Θγ (J)

γσ,J
, 3

√
1 + τX
1− τ

∣∣D−1
X βJc∩P

∣∣
1

))
≤

√√√√Q̂
(
β̂g

)
1− τ

.

In a model where the vg,is are zero, we take ρg,E = 0 and can derive the same results as for the

STIV estimator, including the confidence sets.

7.3. Endogenous Instruments.
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7.3.1. The C-STIV estimator and confidence sets. We present a simple extension of the STIV that we

call C-STIV to emphasize that, like in Section 3.3, we rely on multiple conic constraints. The problem

of checking instrument exogeneity when there is overidentification is a classical problem studied in

Sargan (1958) and Basmann (1960) for the linear IV model, and in Hansen (1982) for GMM (see

also Andrews (1999), Cheng and Liao (2015)). The procedure in this paper handles high-dimensions

in the number of instruments and allows for fewer instruments than regressors, high-dimensions in

the number of regressors, and is robust to arbitrarily weak instruments. We start this section by

presenting a version that could be used without overidentification. We replace (1.2) by

E
[
ziui − β̃

]
= 0;(7.4)

E
[
xIizli

(
zliui − β̃l

)]
= 0;(7.5)

and (1.3) by
(
β, β̃

)
∈ R and P

(
β, β̃

)
∈ P̃, where P

(
β, β̃

)
is the distribution of(

x>i , z
>
i , ui(β), ziui(β)− β̃, xIizli

(
zliui(β)− β̃l

))n
i=1

implied by P. Equations (7.4)-(7.5) allow endogeneity of some of the instruments (i.e., E[zliui] 6= 0).

Equation (7.5) holds if, for example, we replace (7.4) by E
[
zliui − β̃l

∣∣∣ zi] = 0. The set R is a subset of

RK×RL which accounts for the restrictions on
(
β, β̃

)
. A first restriction is β̃

P̃ c
= 0. This means that

the indices in P̃ c correspond to instruments which the researcher knows are exogenous. When P̃ = ∅,

the researcher knows that there are no endogenous instruments. The researcher could also know

the sign of the correlation between an endogenous regressor and the structural error or that she has

imperfect instruments which have smaller correlation with the structural error than the endogenous

regressor (see Nevo and Rosen (2012)). The class P̃ corresponds to either of Scenario 1 to 4 where

zliui − β̃l (resp., 1 and xIizli), for l ∈ [L], play the role of ui (resp., zi) and we again use the notation

P̃j . Denote, for s ∈ [p], s̃ ∈ [p̃], and P ⊆ [K], by

Bs,s̃ =

(β, β̃) ∈ R :

 P
(
β, β̃

)
∈ P̃, |J(β) ∩ P | ≤ s,

∣∣∣J (β̃) ∩ P̃ ∣∣∣ ≤ s̃,
∀i ∈ [n], E

[
ziui(β)− β̃

]
= 0, ∀i ∈ [n], l ∈ [L], E

[
xIizli

(
zliui(β)− β̃l

)]
= 0


and by Ident the set Bp,p̃. For

(
β, β̃

)
∈ Ident, the following event plays the role of G before and for

conciseness we use the same notation

G ,

max

max
l∈[L]

∣∣∣En [ZlU(β)− β̃l
]∣∣∣√

En
[(
ZlU(β)− β̃l

)2
] , max

l∈[L],k∈I

∣∣∣En [XkZl

(
ZlU(β)− β̃l

)]∣∣∣√
En
[(
XkZl

(
ZlU(β)− β̃l

))2
]
 ≤ r0


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and r0 is obtained like in Section 3.5 (r0 plays the role of r0 and L(|I|+ 1), or L|I| when the model

has an intercept, plays the role of L).

Definition 7.3. For c ∈ (0, r−1
0 ), the C-STIV estimator

(
β̂,
̂̃
β, σ̂

)
is any solution of

(7.6) min
(β,β̃)∈ÎC(r0,σ),σ≥0

∣∣∣D̂−1
X βP

∣∣∣
1

+
∣∣∣D̂Zβ̃P̃

∣∣∣
1

+ cσ,

where

ÎC(r0, σ) ,

{(
β, β̃

)
∈ R :

∣∣∣∣D̂Z

(
1

n
Z>U(β)− β̃

)∣∣∣∣
∞
≤ r0σ, F̂

(
β, β̃

)
≤ σ

}
;

∀
(
β, β̃

)
∈ RK+L, F̂

(
β, β̃

)
, max

l∈[L]

√
Ql

(
β, β̃

)
, and Ql

(
β, β̃

)
,
(
D̂Z

)2

ll
En
[(
ZlU(β)− β̃l

)2
]
.

Remark 7.2. When we do not assume (7.5), we remove the second term in the maximum in the defini-

tion of G and replace ρ̂I and ρ̂Ic in the appendix by a single ρ̂ , max
l∈[L], k∈I

(
D̂Z

)
ll

(
D̂X

)
kk

√
En
[
(XkZl)

2
]
.

The cones are then larger hence the bounds are less tight.

The analogue of the results of sections 4.2, 5, and 6 are obtained with the correspondence of

Table 17 in the appendix where we also give the main results and proofs. Computing the C-STIV

estimator can carry a high computational cost for large L due to the L conic constraints.

7.3.2. The NV-STIV estimator and confidence sets. Instead of using the possibly endogenous instru-

ments, it is possible to only use the known to be exogenous instruments to obtain, using the STIV

or C-STIV estimator (see Remark A.1 in the appendix for its simple form in this case2), β̂ and the

upper bounds b̂ and b̂σ such that, on an event of probability close to 1,

(7.7)
∣∣∣(Ψ̂D̂−1

X (β̂ − β)
)
P̃

∣∣∣
∞
≤ b̂, ρ̂I

∣∣∣D̂−1
X (β̂ − β)I

∣∣∣
1

+ ρ̂Ic
∣∣∣D̂−1

X (β̂ − β)Ic
∣∣∣
1
≤ b̂σ,

where ρ̂I and ρ̂Ic are defined in the appendix. The sensitivities, their lower bounds and population

counterparts use
∣∣∣(Ψ̂∆

)
P̃ c

∣∣∣
∞

instead of
∣∣∣Ψ̂∆

∣∣∣
∞

. The one associated to the first bound in (7.7) is

κ̂Ψ
J , min

∆∈ĈJ : |(Ψ̂∆)
P̃
|∞=1

∣∣∣(Ψ̂∆
)
P̃ c

∣∣∣
∞
.

Let us assume that we use the STIV estimator as a pilot estimator and denote by G1 the usual event

G with p̃ moments, and by r1 the constant r under either of scenarii 1-5 adjusted so that G1 has

probability 1− α1 up to the usual coverage error for scenarii 4 and 5.

2This was the STIV estimator used throughout the paper in the revisions between 2012 and 2014, see e.g. 2012.

https://sites.google.com/view/eric-gautier/papers
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We distinguish 3 cases: (1) β ∈ Bs, (2) β ∈ Ident and satisfies (6.6), and (3) β ∈ Ident and satisfies

(6.10). Using the previous results for sparse vectors, (7.7) holds when b̂ and b̂σ are obtained as

b̂ =
2r1σθ̂κ(s)

κ̂Ψ(s)
, b̂σ =

2r2
1σθ̂κ(s)

κ̂σ(s)
in case (1) or b̂ =

2r1σθ̂κ

(
Ĵ
)

κ̂Ψ
(
Ĵ
) , b̂σ =

2r2
1σθ̂κ

(
Ĵ
)

κ̂σ
(
Ĵ
) in case (2) or (3),

where, in case (2), Ĵ = J
(
β̂
)

and, in case (3), Ĵ is the support of the thresholded estimator.

The NV-STIV estimator

(̂̃
β, ̂̃σ) is now simply, for c̃ ∈

(
0, r−1

2

)
, any solution of

(7.8) min
β̃∈ÎNV (σ̃,r2),σ̃≥0

∣∣∣D̂Zβ̃P̃

∣∣∣
1

+ c̃σ̃,

where, for a set of restrictions R̃ on β̃ including β̃
P̃ c

= 0,

ÎNV (σ̃, r2) ,

{
β̃ ∈ R̃ :

∣∣∣∣D̂Z

(
1

n
Z>
(
Y −Xβ̂

)
− β̃

)
P̃

∣∣∣∣
∞
≤ r2σ̃ + b̂, F̂2

(
β̂, β̃

)
≤ σ̃ + b̂σ

}
F̂2

(
β, β̃

)
, max

l∈P̃

√
Ql

(
β, β̃

)
∀
(
β, β̃

)
∈ RK+L,

where r2 is obtained using Scenario 4 so that the probability of the event

G2 ,

max

max
l∈P̃

∣∣∣En [ZlU(β)− β̃l
]∣∣∣√

En
[(
ZlU(β)− β̃l

)2
] , max

l∈P̃ ,k∈I

∣∣∣En [XkZl

(
ZlU(β)− β̃l

)]∣∣∣√
En
[(
XkZl

(
ZlU(β)− β̃l

))2
]
 ≤ r2

 ,

up to the usual coverage error, is 1− α2. Note that Remark 7.2 still applies.

We make use of the following notations, for s̃ ∈ [p̃],

ω̂ (c̃, s̃) , 2

(
1− 2r2

2 s̃

1− c̃r2

)−1

+

(
r2
̂̃σ + b̂+ r2

(
1 +

c̃r2

1− c̃r2

)
b̂σ
)

;

ω (c̃, s̃) , 2

(
1− 2r2s̃

(
1

1− c̃r2
+

1

c̃

))−1

+

(
r2

√
1 + τF

(
β, β̃

)
+ b∗ + r2

(
1 +

c̃r2

1− c̃r2

)
bσ∗

)
;

where b∗ and bσ∗ are the following deterministic upper bounds on b̂ and b̂σ on the event G1 ∩ G2 ∩ GΨ:

b∗ =
θ(β)

κΨ(s)
, b̂σ =

r1θ(β)

κσ(s)
in case (1) or bσ∗ =

θ(β)

κΨ (J(β))
, b̂σ =

r1θ(β)

κσ (J(β))
in case (3)

θ(β) , 2r1σU(β)

√
1 + τ

(
1 +

2r1Θκ (J(β))

cκ1,J(β)∩P,J(β)

)
θκ(s)

(
1− rΨ

κ1,J(β)

)−1

+

√
(1 + τZ)(1 + τX).

We still use the notation GΨ to denote the event on which we can relate random quantities to deter-

ministic quantities. Its formal definition can be obtained with now obvious modifications. Recall that

P (GcΨ) appears in the coverage error so we simply choose α1 and α2 so that α1 + α2 = α.
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Theorem 7.3. Let s̃ ∈ [p̃]. For all vector β̃ such that
(
β, β̃

)
∈ Bp,s̃ and either of (1)-(3) holds, we

have, on G1 ∩ G2 in case (1) and G1 ∩ G2 ∩ GΨ in cases (2) or (3), with inequalities holding for all

c̃ ∈
(
0, r−1

2

)
(and c ∈

(
0, r−1

1

)
in case (1)),∣∣∣∣D̂Z

(̂̃
β − β̃

)∣∣∣∣
∞
≤ ω̂ (c̃, s̃) ;(7.9) ∣∣∣∣D̂Z

(̂̃
β − β̃

)∣∣∣∣
1

≤ 2s̃

1− c̃r2
ω̂ (c̃, s̃) +

2c̃b̂σ

1− c̃r2
;(7.10)

on G1∩G2∩GΨ, in case (1) or (3) for any solution

(̂̃
β, ̂̃σ) of (7.8), we have, with inequalities holding

for all c̃ ∈
(
0, r−1

2

)
(and c ∈

(
0, r−1

1

)
in case (1)),∣∣∣∣DZ

(̂̃
β − β̃

)∣∣∣∣
∞√

1 + τZ
≤ ω

(
c̃,
∣∣∣J (β̃)∣∣∣) ;(7.11) ∣∣∣∣DZ

(̂̃
β − β̃

)∣∣∣∣
1√

1 + τZ
≤

2
∣∣∣J (β̃)∣∣∣
1− c̃r2

ω
(
c̃,
∣∣∣J (β̃)∣∣∣)+

2c̃bσ∗
1− c̃r2

.(7.12)

If c̃ and c are fixed and we restrict Bp,s̃ so that
∣∣∣β̃l∣∣∣ > ω

(
c̃,
∣∣∣J (β̃)∣∣∣)√(1 + τZ)E

[
Z2
l

]
, for all l ∈ P̃ ,

we have, on G1 ∩ G2 ∩ GΨ, J
(
β̃
)
⊆ J

(̂̃
β

)
, while, if we restrict Bp,s̃ so that, for all l ∈ P̃ ,

∣∣∣β̃l∣∣∣ >
2ω (c̃, s̃)

√
(1 + τZ)E

[
Z2
l

]
, then

−−−−−−−→
sign

(̂̃
β
ω
)

=
−−−−−→
sign

(
β̃
)

, where
̂̃
β
ω

,

(̂̃
βl1l

{∣∣∣∣̂̃βl∣∣∣∣ >√En[Z2
l ]ω̂ (c̃, s̃)

})L
l=1

.

Inequalities (7.9) and (7.10) are confidence sets and the uniformity in c̃ and sometimes c allows

to intersect the sets that various parameters would produce. The last statement yields “adaptive”

confidence sets by replacing s̃ by

∣∣∣∣J (̂̃βω)∣∣∣∣ in (7.9) and (7.10). This theorem is usefull when r2

is small (i.e., n � ln(L|I|) if the model includes a constant). The first upper bounds are finite if∣∣∣J (β̃)∣∣∣ = O
(
1/r2

2

)
= O (n/ ln(Lp̃)) is small enough. Bounds for `q-norms follow by interpolation.

8. Confidence Bands by a Two-Stage Procedure and Bias Correction

We now consider the construction of confidence bands using a bias correction device for the

models of the previous sections. To cover all cases, β is a matrix withG columns. When there is a single

equation, we have G = 1 and βg = β and, in the absence of approximation error, σWg(βg) = σUg(βg).

For s ∈ [Gp], Ω ∈MO,K , and β ∈ Bs, the confidence bands are around either:

(1) Each Ωβg for g ∈ [G], with or without approximation errors;

(2) Each Ωβg + Vg(βg) for g ∈ [G], when there are approximation errors.
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Case (2) corresponds to estimation of G functions at grid points and Vg(βg) are the approx-

imation errors at the grid points. Indeed, consider a system of equations like in Section 2.2.5 with

γ = 0 and suppose that the researcher wants to produce a band around fg , (fg(t1), . . . , fg(tO))>

where (to)
O
o=1 are the same grid points for all g ∈ [G]. With the notations of Section 7.1, each fg can

be written in the form (2) with Ω = (ϕk(to))o∈[O],k∈[K] and Vg(βg) ∈ RO is the approximation error

at every point of the grid. Any of the previous estimator from the STIV family can be used as a

preliminary estimator to obtain Ωβ̂g. We rely on the assumption

(8.1) ∃Λ ∈MO,L : E
[
ΛZX>

]
= Ω

and construct a suitable approximation Λ̂. This is the core ingredient for a “bias correction” which is

added to Ωβ̂g as follows

Ω̂βg , Ωβ̂g +
1

n
Λ̂Z>

(
Yg −Xβ̂g

)
∀g ∈ [G].

Because the multiplication by Λ appears on the left in (8.1), this amounts to estimating linear com-

binations of the instruments and interacting them with the estimated residuals from the first stage.

Because the set of matrices Λ which satisfy (8.1) is an affine space, Λ might not be point identified

unless one maintains a sparsity assumption on it. We denote, for s ∈ [Gp], s′ ∈ [OL], and sr ∈ [L], by

P (β,Λ) the distribution of
(
xi, zi, (ug,i(β))Gg=1 , ti (Λ) ,DΛZΛzi

)n
i=1

, where ti (Λ) = Ω − Λzix
>
i , DΛZ

and later D̂
ZΛ̂> are defined like DZ and D̂Z, and P is a nonparametric class for it, and by

Bs,s′,sr =

{
β ∈ Bs,Λ ∈MO,L : P (β,Λ) ∈ P; |J(Λo·)| ≤ s′; max

o∈[O]
|J(Λo·)| ≤ sr; ∀i ∈ [n],Ω = ΛE

[
zix
>
i

]}
.

Nonidentification of Λ is a concern when L > K. For this reason, we present two approaches. In the

first approach, we require assumptions so that Λ̂ is consistent and the rate of convergence is small

enough. In the second approach, we do not assume identification of a sparse Λ but rely instead on a

sample splitting argument.

8.1. Confidence Bands Under Consistent Estimation of Λ. We obtain Λ̂ by solving

(8.2) min
Λ∈Â(r′0,ν),ν>0

∣∣∣ΛD̂−1
Z

∣∣∣
1

+
λν

ρ̂
,

where λ ∈ (0, 1) and

ρ̂ = max
k∈[K],l∈[L]

(
D̂X

)
kk

(
D̂Z

)
ll

√
En
[
(XkZl)

2
]
;

Â(r′0, ν) ,
{

Λ ∈MO,L :

∣∣∣∣(Ω− 1

n
ΛZ>X

)
D̂X

∣∣∣∣
∞
≤ r′0ν, F̂ (Λ) ≤ ν

}
;
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∀Λ ∈MO,L, F̂ (Λ) , max
o∈[O],k∈[K]

√
Q′ok (Λ), and Q′ok (Λ) ,

(
D̂X

)2

kk
En
[
(Ωok − Λo·ZXk)

2
]

;

and r′0 is chosen like r0 from Scenario 4 in Section 3.5, taking for α a sequence converging to zero,

replacing L by OK and G0 by

G′0 ,

 max
o∈[O],k∈[K]

|En [Ωok − Λo·ZXk]|√
En
[
(Ωok − Λo·ZXk)

2
] ≤ r′0

 .

This is the C-STIV estimator for a system of O equations under the premises of Remark 7.2. We

do not allow for additional moments (for faster rates or to allow for larger values of λ and hence less

sparsity enhancing penalities like in (7.5)) because they do not make sense here. We simply handle

the system as in Remark 7.1, replace cσ by λν/ρ̂, X by Z, U (β) by U (Λo·) , ZΛ>o·, and note that∣∣∣∣(Ω− 1

n
ΛZ>X

)
D̂X

∣∣∣∣
∞

= max
o∈[O]

∣∣∣∣D̂X

(
1

n
X>U (Λo·)− Ω>o·

)∣∣∣∣
∞
.

When Ω = IK and Z = X, Λ̂ is an approximate inverse of the matrix X>X/n and Λ̂ is a “self-tuned”

version of the CLIME estimator of Cai, Liu, and Luo (2011).

For all g ∈ [G], the confidence bands, that we denote by Ĉg, are defined as: for all o ∈ [O],[(
Ω̂βg

)
o
− qWΛ

(1− α)√
n

√
En
[(

Λ̂o·Z
)2
]
Q̂
(
β̂g

)
,
(

Ω̂β
)
o

+
qWΛ

(1− α)√
n

√
En
[(

Λ̂o·Z
)2
]
Q̂
(
β̂g

)]
,

where qWΛ
(1 − α) is the 1 − α quantile of WΛ ,

∣∣∣D̂ZΛ̂>Λ̂Z>E
∣∣∣
∞
/
√
n acting as if Z and Λ̂ were not

random and E is a standard Gaussian random vector in Rn. This can be obtained by a Monte-Carlo

method. The bands Ĉg need not be unique because β̂g and Λ̂ are not necessarily unique.

The next assumption introduces a preliminary version of the class P that we consider.

Assumption 8.1. For K,L,O ≥ 3, s ∈ [p], s′ ∈ [Osr], sr ∈ [L], parameters of the class P5 and P4,

positive b, MΛZ(O), MΛ,1(O,K), MΛ,2(O), positive sequences (αβ(n))n∈N, (vβ(n))n∈N, and (vσ(n))n∈N

decaying to zero, we have, for all P, (β,Λ) ∈ Bp,s′,sr such that P(β,Λ) ∈ P, for all n ∈ N,

(DGP.1 ) P(β) ∈ P̃5;

(DGP.2 ) For all (o, k) ∈ [O]× [K], the distribution of ((ti (Λ))ok)
n
i=1 belongs to P4;

(DGP.3 ) E

[∣∣∣∣((T (Λ))2
ok /σ

2
(T (Λ))ok

− 1
)
o∈[O],k∈[K]

∣∣∣∣2
∞

]
≤MΛ,1(O,K) and

E

[∣∣∣∣((Λo·Z)2 /E
[
(Λo·Z)2

]
− 1
)
o∈[O],k∈[K]

∣∣∣∣2
∞

]
≤MΛ,2(O);
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(DGP.4 ) E
[∣∣DΛZΛ

(
ZX> − E

[
ZX>

])
Λ>DΛZ

∣∣2
∞

]
≤ MΛZ(O), E

[
(v′DZZ)2

]
≥ b for all v ∈ RL

such that |v|2 = 1 and |J(v)| ≤ sr;

(DGP.5 ) The preliminary estimator is such that, on an event of probability 1− αβ(n),

max
g∈[G]

∣∣∣D−1
X

(
β̂g − βg

)∣∣∣
1
≤ vβ(n), max

g∈[G]

∣∣∣∣∣
√
Q̂
(
β̂g

)
− σWg(βg)

∣∣∣∣∣ ≤ vσ(n).

We use the class P̃5 in the assumption above but an analogue holds for the other scenarii and

enables to use a preliminary C-STIV estimator. Like τZ , τX , and rΨ, the constants c, r, r and α in the

definition of the preliminary estimators can also vary with n, the last three converging to zero. The

restricted sets for the definition of the sensitivities for the rates of convergence of
(

Λ̂, ν̂
)

are denoted

C ′J ,

{
∆′ ∈MO,L :

∣∣∆′Jc∣∣1 ≤ 1 + λ

1− λ

√
1 + τZ
1− τZ

∣∣∆′J ∣∣1} , C ′γ,J , {∆′ ∈MO,L :
∣∣∆′Jc∣∣1 ≤ 2 + λ

1− λ

√
1 + τZ
1− τZ

∣∣∆′J ∣∣1} .
The population sensitivities are denoted with the letters κ′ and γ′. They are defined in the same way re-

placing |Ψ∆|∞ by |∆′Ψ>|∞. We use the notation κ′(∞,∞),J and γ′(∞,∞),J for the sensitivities for l(∆′) =

|∆′|∞,∞, κ′lF,∞,J and γ′lF,∞,J for the sensitivities for lF,∞(∆′) , maxo∈[O]

(∑n
i=1 (∆′o·DZzi)

2 /n
)1/2

,

Θ′κ(J) ,
√

(1 + τZ)(1 + τX)

(
1− rΨ

κ′(∞,∞),J

−
r′0ρ
√

(1 + τZ)(1 + τX)

λκ′1,J,J

)−1

+

;

Θ′γ(J) ,
√

(1 + τZ)(1 + τX)

(
1− rΨ

γ′(∞,∞),J

−
r′0ρ
√

(1 + τZ)(1 + τX)

λγ′Q,J

)−1

+

.

The event E ′Z is defined in the appendix. The event ET is defined like EX in the appendix for the

random matrix T (Λ) using τT instead of τX and we define F (Λ) ,

∣∣∣∣((DX)kk σ(T (Λ))ok

)
o∈[O],k∈[K]

∣∣∣∣
∞

.

Theorem 8.1. Under Assumption 8.1, for all (β,Λ),P such that (β,Λ) ∈ Bs,OL,L, on G′0∩GΨ∩EcZ′∩EcT ,

for all solution
(

Λ̂, ν̂
)

of (8.2) with λ ∈ (0, 1), we have

(i) If Λ is sparse,

∣∣∣(Λ̂− Λ
)

D−1
Z

∣∣∣
∞,∞

≤ 2r′0F (Λ)

κ′(∞,∞),J(Λ)

√
1 + τT

(1− τZ′)(1− τX)
Θ′κ(J(Λ));

ν̂ ≤ F (Λ)

√
1 + τT
1− τX

(
1 +

2r′0ρΘ′κ (J(Λ))

λκ′1,J(Λ),J(Λ)

)
;

max
o∈[O]

En
[((

Λ̂o· − Λo·

)
Z
)2
]1/2

≤ 2r′0F (Λ)

κ′lF,∞,J(Λ)

√
1 + τT

(1− τZ′)(1− τX)
Θ′κ(J(Λ));
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(ii) Else,

∣∣∣(Λ̂− Λ
)

D−1
Z

∣∣∣
∞,∞

≤ 2 min
J⊆[O]×[L]

max

(
r′0F (Λ)

mino∈[O] γ
′
1,{o}×[L],J

√
1 + τT

(1− τZ′)(1− τX)
Θ′γ(J),

3 + λ

1− λ

√
1 + τZ′

1− τZ′
∣∣ΛJcD−1

Z

∣∣
1

)
;

ν̂ ≤ min
J⊆[O]×[L]

max

(
F (Λ)

√
1 + τT
1− τX

(
1 +

2r′0ρΘ′γ (J)

λγ′Q,J

)
,
3ρ
√

1 + τZ′

λ

∣∣ΛJcD−1
Z

∣∣
1

+ F (Λ)

√
1 + τT
1− τX

)
.

We denote by αΛ(n) the probability of the complement of the event in Theorem 8.1, by vΛ(n)

and vν(n) the two first upper bounds on the right of (i) and (ii), and by vΛ,2(n) the last upper

bound of (i). This last bound is used to handle the scaling by D̂
ZΛ̂> of the leading stochastic term of

the expansion of the bias corrected estimator. Without this scaling, we can handle both sparse and

approximately sparse matrices with minor modifications. We now only consider the case of sparse

matrices where we can make use of all three inequalities of (i). For further use of this result for

inference after bias correction, the sensitivities appearing on the right-hand side of the inequalities

need to be well behaved so that, on an event of probability converging to 1, the first right-hand side

goes to zero and the second remains bounded. By working under enough sparsity, Bs,s′,sr could be a

singleton. This is important when L > K. The sensitivities depend again on Ψ through Ψ> and the

fact that Θ′κ(J(Λ)) is close to one is a type of strong instruments assumption.

We obtain the following result where we denote by Ĉg,v(n) a v(n)-neighborhood of Ĉg.

Theorem 8.2. Let (αC(n))n∈N,
(
αBE(n)

)
n∈N, (v(n))n∈N, and (vv(n))n∈N be positive sequences con-

verging to zero and further reduce the class P defined in Assumption 8.1 so that, for all n ∈ N,

αβ(n) + αΛ(n) + αBE(n) ≤ αC(n);

√
nr′0vβ(n)vν(n)

√
1 + τX ≤ vv(n);(8.3)

where αBE(n) is an upper bound on the coverage error of the bootstrap for the bands. Then, for all

P, (β,Λ) such that (β,Λ) ∈ Bs,s′,sr and n ∈ N, every collection
(
Ĉg
)G
g=1

satisfies

P
(

Ωβg ∈ Ĉg,v(n)

)
≥ 1− α− αC(n) ∀g ∈ [G].

For bands around functions evaluated on a grid, assume that P is such that all approximation errors

are bounded in absolute value by vv(n)/
√
n and there exists τΛ, τΛZ > 0 such that, for all n ∈ N,

αβ(n) + αΛ(n) + αBE(n) + CN(O)MΛ,2(O)/(nτ2
Λ) + CN(OL)MΛZ(O)/(nτ2

ΛZ) ≤ αC(n);

√
nr′0vβ(n)vν(n)

√
1 + τX + vv(n)

((√
1 + τΛZ − 1

)
+
√

1 + τΛ

∣∣∣(σΛo·Z)o∈[O]

∣∣∣
∞

+ vΛ,2(n)
)

+ vv(n) ≤ v(n);
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then, for all P, (β,Λ) such that (β,Λ) ∈ Bs,s′,sr and n ∈ N, every collection
(
Ĉg
)G
g=1

satisfies

P
(

Ωβg + Vg(βg) ∈ Ĉg,v(n)

)
≥ 1− α− αC(n) ∀g ∈ [G].

The bound αBE(n) can be computed like for Scenario 5 and depends as well on sr, MΛZ(O),

MΛ,2(O), and vσ(n). Importantly, based on condition 8.3, we need to have
√
nr′0vβ(n) → 0. This is

flexible enough so that one rate can be fast only. It is not needed that both are faster than n1/4.

8.2. Confidence Bands Using Sample Splitting. We now allow for non identification of Λ, pro-

pose a more numerically efficient method to obtain Λ̂, and do not require that Λ̂ converges. To simplify

the arguments, we rely on a sample splitting argument. The main reason for splitting the sample is

that the leading stochastic term in the expansion of the debiased estimator is Λ̂Z>W(β)/
√
n and

using all the sample implies that Λ̂ depends on X thus on W(β) because of endogeneity. This is

problematic if Λ̂ does not converge. Constructing Λ̂ using a different sample avoids this concern.

We split the sample in two and use the index - for the first sample of size n− and the index

+ for the second sample of size n+. The subsample sizes n+ and n− increase to infinity with n

and we assume that we use a deterministic rule to obtain (n−, n+) from n. The sample size which

matters for the width of the bands is n+ so, provided the bias remains small, we can avoid paying

a price for splitting the sample asymptotically if we take n+/n → 1. The observations in the first

sample have indices in −[n−] and those in the second sample in [n+]. The sigma-field generated

by (Z,X−,W1−(β1), . . . ,WG−(βG)) is denoted by Fn and F∞ is the smallest sigma-field containing⋃
n∈NFn. The first sample is used to obtain Λ̂ as

(8.4) Λ̂ ∈ argminΛ∈MO,L

(∣∣∣∣(Ω− 1

n−
ΛZ>−X−

)
D̂X−

∣∣∣∣
∞

+ λ1

∣∣∣ΛD̂−1
Z−

∣∣∣
∞,∞

+
λ2√
n+

∣∣∣ΛZ>+

∣∣∣
2,∞

)
,

where λ1 and λ2 are nonnegative parameters. The role of the first term in the objective function

is to minimize the bias. The second term is introduced to minimize an additional term induced by

sample splitting and enhances row sparsity of Λ̂. It is used to obtain conditions under which the bias

could be neglected asymptotically. With the approach of Section 8.3, we can take λ1 = 0. The last

term is the maximum of the inverse of the diagonal elements of the scaling matrix D̂
Z+Λ̂> . It controls

their dispersion and prevents the confidence bands from being too U-shaped. This is useful for bands

around functions for which there is little data close to the end points of the support. It plays a role

in reducing the bias when there are approximation errors. When λ2 = 0, (8.4) is a linear program.

When λ2 > 0, (8.4) is a conic program with O cones only. In contrast, the method of the previous
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section involves OK conic constraints which quickly becomes prohibitive. The second sample is used

to obtain preliminary estimators β̂g+ and apply the bias corrections.

The debiased estimators are defined as

Ω̂βg , Ωβ̂g+ +
1

n+
Λ̂Z>+

(
Y+ −X+β̂g+

)
.

For all g ∈ [G], the confidence bands, that we denote by Ĉg, are defined as: for all o ∈ [O],[(
Ω̂βg

)
o
− rΛ

+

√
En+

[(
Λ̂o·Z

)2
]
Q̂
(
β̂g+

)
,
(

Ω̂βg

)
o

+ rΛ
+

√
En+

[(
Λ̂o·Z

)2
]
Q̂
(
β̂g+

)]
,

where En+ is the mean over the second sample. We adjust rΛ
+ using one of scenarii 1-4 replacing Z

with Z+Λ̂, L with O and n with n+. The scenario has to hold conditional on F∞. This is possible,

for example, when U+(β) is independent of F∞ and symmetric. An alternative approach is to assume

that Z and U(β) are independent and that ui(β) for i ∈ [n] are i.i.d. normally distributed. In this case,

rΛ
+ can be replaced by the quantile qW+(1 − α)/

√
n+ where WΛ+ ,

∣∣∣D̂Z+Λ̂>Λ̂Z>+E/(
√
n+(1− ε))

∣∣∣
∞

computed holding fixed Z+ and Λ̂, in which ε is an arbitrarily small positive constant, and E is a

standard Gaussian random vector in Rn+ independent of the observed data. This conditional quantile

can be obtained by a Monte-Carlo method. The constant r when the preliminary estimator is a

STIV or E-STIV estimator can be taken simply as a quantile of
√

1− τ(n+)
∣∣∣D̂Z+Z>+E/

√
n+

∣∣∣
∞

conditional on Z, where τ(n+) → 0. In which case, the coverage error is less than 2/(n+τ(n+)2)

for a STIV or E-STIV estimator. The coverage errors are the same because, like in the previous

section, we maintain the assumption that all approximation errors are bounded in absolute value by

vv(n)/
√
n for some sequence (vv(n))n∈N converging to zero. For a SE-STIV estimator, when we allow

for arbitrary dependence between the errors in different equations, one has to replace 1− α quantiles

by 1− α/G quantiles and the coverage error is less than 2G/(n+τ(n+)2).

Let rΨ+, rΨ−, τX−, and τ ′Z−, play the role of rΨ, τX , and τ ′Z before and taken as positive

sequences indexed by either n+ or n− depending on the sample and which converge to 0. We define

r′0− is defined on the first sample like r′0 for the full sample taking for α a sequence αG′0− which

converges to zero. Define, for additional positive sequences τT− and τΛ+ converging to zero in the

same way as the other slackness parameters,

Sλ1,λ2 , argminΛ:ΛE[ZX>]=Ω

(
r′0−

√
1 + τT−
1− τX−

F (Λ) + λ1

√
1 + τ ′Z−

∣∣ΛD−1
Z

∣∣
∞,∞ + λ2

√
1 + τΛ+

∣∣∣(σΛo·Z)o∈[O]

∣∣∣
∞

)

and denote the minimum by mλ1,λ2 .
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Theorem 8.3. Let λ1, λ2 ≥ 0 and P be defined via Assumption 8.1 maintaining only (DGP.1),

(DGP.2), (DGP.3), and replacing (DGP.5) by

max
g∈[G]

∣∣∣D−1
X

(
β̂g − βg

)∣∣∣
1
≤ vβ(n), and, ∀g ∈ [G],

√
Q̂
(
β̂g

)
≥ σWg(βg) (1− vσ(n)) ,

for all Λ ∈ Sλ1,λ2, either of Scenario 1-4 holds for the distribution of
(

Λ̂ziui(β)+

)n+

i=1
given F∞ or

zi and ui(β) are independent for all i ∈ [n] and ui(β) for i ∈ [n] are i.i.d. normally distributed. Let

(αC(n))n∈N, (v1(n))n∈N and (v2(n))n∈N be positive sequences converging to zero, and further reduce

the class P so that, for all P, (β,Λ) such that (β,Λ) ∈ Bs,s′,sr and n ∈ N,

αβ(n+) + αB(n+) +
CN(KL)M(L,K)

n−r2
Ψ−

+
CN(K)MX(K)

n−τ2
X−

+
CN(L)M ′Z(L)

n−(τ ′Z−)2

+ CN(O)

(
MΛ,1(O)

n−τ2
T−

+
MΛ,2(O)

n+τ2
Λ+

)
+ αG′0− + αB(n−) ≤ αC(n);

√
n+vβ(n+)M(λ1)mλ1,λ2 ≤ v1(n);(8.5)

vσ(n+) ≤ v2(n);(8.6)

where αB(n+) is nonzero only if we maintain Scenario 4 for the distribution of
(

Λ̂ziui(β)+

)n+

i=1
and

M(λ1) ,
√

1 + τX−max

1,
rΨ− + rΨ+

λ1

√
(1 + τX−)(1− τ ′Z−)

 .

Then3, for all P, (β,Λ) such that (β,Λ) ∈ Bs,s′,sr and n ∈ N4, every collection
(
Ĉg
)G
g=1

satisfies

P
(

Ωβg ∈ Ĉg,v1(n)

)
≥ 1− α− αβ(n+)− αB(n+) ∀g ∈ [G].

For bands around functions evaluated on a grid, assume that P is such that all approximation errors

are bounded in absolute value by vv(n)/
√
n and we replace (8.5) by

√
n+

(
vβ(n+)M(λ1) +

vv(n)

λ2

√
n+

n

)
mλ1,λ2 ≤ v1(n),(8.7)

then5, for all P, (β,Λ) such that (β,Λ) ∈ Bs,s′,sr and n ∈ N6, every collection
(
Ĉg
)G
g=1

satisfies

P
(

Ωβg + Vg(βg) ∈ Ĉv1(n),g

)
≥ 1− α− αβ(n+)− αB(n+) ∀g ∈ [G].

3Add here for normal errors: for all ε > 0, there exists n0 such that.

4Replace for normal errors by: n+ ≥ n0.

5Add here for normal errors: for all ε > 0, there exists n0 such that.

6Replace for normal errors by: n+ ≥ n0.
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A natural choice for λ1 to ensure a small bias is to take M(λ1) = 1. In practice, this often

puts too much emphasis on sparsity. We describe the empirical rule in the next Section 9.1.3. In the

absence of approximation error, the bias is smallest for λ2 = 0. When there are approximation errors,

the penalty involving λ2 plays a role on the bias and appears in the denominator of (8.7) so it should

not be too small. The penalty involving λ2 can be viewed as providing robustness to approximation

errors. In the definition of Sλ1,λ2 , the first and last terms could be comparable in terms of magnitude

so that λ2 should not exceed r′0−.

8.3. Confidence Bands with a Data-Driven Upper Bound on the Bias. In the previous

sections, we have made assumptions to guarantee that the bias of the bias-corrected estimator is

negligible. This might not hold in practice, especially for small sample sizes or in the presence of weak

identification or non identification without sparsity. One way to restore coverage is to combine the

approach with the one-stage confidence sets. It also allows to remove entirely (8.3).

For the confidence bands of Section 8.2, we use that the `∞-norm of the bias term is less than

(8.8)
√
n+

∣∣∣∣(Ω− 1

n+
Λ̂Z>+X+

)
D̂X+

∣∣∣∣
∞

∣∣∣D̂−1
X+

(
β̂g+ − βg

)∣∣∣
1

+ vv(n)
1√
n

∣∣∣Λ̂Z>+

∣∣∣
2,∞

+ vv(n),

where vv(n) = 0 when there are no approximation errors. For the confidence bands of Section 8.1, we

drop the index + above. We can now make use of sections (5.2), (6.3), (6.5) to have a data-driven

bound on
∣∣∣D̂−1

X+

(
β̂g+ − βg

)∣∣∣
1

holding on the same event as the one used to obtain the bands which

ignore the bias. In sum, we add to the upper bound and substract to the lower bound of the confidence

bands of the previous sections this upper bound on the bias.

The additional advantage of enlarging the confidence bands to account for the bias is that all

confidence bands are valid, whatever the value of the parameters λ, λ1, and λ2. These only play a

role in the estimation of Λ̂. We see now clearly that the penalization involving λ2 allows to have a

small second term in (8.8), hence that it is particularly important in the presence of approximation

errors. Moreover, we see that λ1 plays no role in the data-driven upper bound on the bias. This is

important because we can take λ1 = 0 and Λ̂ can be nonsparse and not even approximately sparse.

A similar feature occurs in Javanmard and Montanari (2014) with the important difference that they

ignore the bias while we account for it. The penalty involving λ2 is similar in spirit to the objective

function in Javanmard and Montanari (2014). Ours extends theirs and allows for confidence bands.

9. Inference Put Into Practice



47

9.1. Simulation Study. We consider the model

yi =

K∑
k=1

xkiβk + ui,

xki =
L∑
l=1

zliζkl + vki for k ∈ Ic, xki = eki otherwise

For vi the |Ic| dimensional vector stacking vki for k ∈ Ic, the data (yi, x
>
i , z

>
i , ui, v

>
i ) are i.i.d. and

the random vector (ui, v
>
i ) follows a mean zero normal distribution, E[u2

i ] = σ2
str, E[v2

ki] = σ2
end,

E[vkiui] = ρ|Ic|−1/2 for k ∈ Ic, and eki are i.i.d. draws from the standard normal distribution

truncated to the interval [−5, 5]. We take σstr = σend = 1 and ρ = 0.3. All of the remaining

covariance terms are equal to zero. We take J(β) = {1, 2, 3, 4, 5} and βJ(β) = (1,−2,−0.5, 0.25,−1)>.

All of the inference is at the α = 0.05 level. We use the MATLAB freeware GloptiPoly 37

(see Henrion, Lasserre, and Lofberg (2009)) in Section 9.1.1 and the CVX package (see Grant and

Boyd (2013)) with the solver Mosek for the subsequent optimization routines. We report a coefficient

of zero whenever the estimated value is smaller than the tolerance of the solver, which is 10−8. We

simulate the estimators both for K > n and K < n. For the confidence sets, we deal only with K < n

but take K so large that BIC is not feasible. We use the results of Section A.6 to calculate the lower

bounds on the sensitivities when they are based on an estimated support Ĵ . We use the notation p

2.5 for the 2.5 percentile and similarly for p 50 and p 97.5.

9.1.1. The SNIV Confidence Set. We illustrate the confidence sets from Sections 3.3 with n = 1000,

K = 12, Ic = {1}, L = 11, and ζkl = 0.3. We suppose that it is known that x1i, x2i, and x3i

are included in the true model but there is uncertainty regarding x4i, ..., x12i. That is, we take

P = {4, 5, ..., 12} in the definition of the s-sparse identified set Bs. We choose r based on Scenario 3,

hence the confidence sets have coverage at least 1−α in finite samples. We compute nested confidence

sets, taking the sparsity certificate s from 2 to 8. The true sparsity is 2, since β4 and β5 are nonzero.

Table 3 displays these nested confidence sets. The number in each cell is obtained by solving

Lasserre’s relaxations of order two for one SCQP problem. Cells in gray correspond to cases in which

it is known that the iteration has reached the global minimum. Stopping at order 2, whether or not

the hierarchy has converged, could produce non-nested sets. This did not occur.

For comparison, Table 4 presents the infimum and supremum of each of the parameters in the

sparse identified set Bs under the various sparsity certificates. This is obtained by solving a QCQP.

7 www.laas.fr/∼henrion/software/gloptipoly3
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Table 3. Confidence sets based on Ŝ with fewer instruments than regressors

βl,8 βl,7 βl,6 βl,5 βl,4 βl,3 βl,2 β∗ βu,2 βu,3 βu,4 βu,5 βu,6 βu,7 βu,8

β1 -9.043 0.285 0.349 0.397 0.445 0.507 0.589 1 1.247 1.264 1.363 1.410 1.460 1.551 2.343

β2 -2.558 -2.297 -2.264 -2.249 -2.223 -2.203 -2.175 -2 -1.807 -1.729 -1.693 -1.684 -1.655 -1.641 2.489

β3 -1.009 -0.794 -0.7547 -0.732 -0.713 -0.699 -0.687 -0.5 -0.316 -0.296 -0.275 -0.258 -0.243 -0.206 2.815

β4 -0.045 -0.001 0 0.028 0.049 0.077 0.101 0.25 0.483 0.533 0.580 0.590 0.602 0.640 4.806

β5 -1.509 -1.236 -1.210 -1.192 -1.173 -1.156 -1.141 -1 -0.801 -0.778 -0.759 -0.729 -0.712 -0.671 0

β6 -0.557 -0.276 -0.251 -0.213 -0.203 -0.186 0 0 0 0.207 0.240 0.262 0.294 0.330 3.366

Here: r = 0.097

Table 4. The sparse identified set with fewer instruments than regressors

βl,8 βl,7 βl,6 βl,5 βl,4 βl,3 βl,2 β∗ βu,2 βu,3 βu,4 βu,5 βu,6 βu,7 βu,8

β1 -2.333 1 . . . . . . . . . . . . 1 1 1 . . . . . . . . . . . . 1 1.8333

β2 -2.25 -2 . . . . . . . . . . . . -2 -2 -2 . . . . . . . . . . . . -2 -1

β3 -0.75 -0.5 . . . . . . . . . . . . -0.5 -0.5 -0.5 . . . . . . . . . . . . -0.5 0.5

β4 0 0.25 . . . . . . . . . . . . 0.25 0.25 0.25 . . . . . . . . . . . . 0.25 1.25

β5 -1.25 -1 . . . . . . . . . . . . -1 -1 -1 . . . . . . . . . . . . -1 0

β6 -0.25 0 . . . . . . . . . . . . 0 0 0 . . . . . . . . . . . . 0 1

This is a rare instance in which we can compute the sparse identified sets and is due to the fact that

K is not large. Point identification is obtained under sparsity certificates ranging from 2 to 7, whilst

partial identification is obtained for a sparsity certificate of 8 or larger. When the sparsity certificate

is 8, β is the solution of either of 9 linear systems with 11 equations and 11 parameters. In contrast,

if it is 7, β is the solution of either of 36 linear systems with 11 equations and 10 parameters.

9.1.2. Estimation when K > n, K � L. We take n = 500, L = 30, K = 600, and Ic = {1, 552, ..., 600}.

Thus, we are under the high-dimensional regime. There are many more regressors than variables known

to be exogenous and used as instruments. There are 50 endogenous regressors, one of the indices of

which is in J(β). We set zli = xl′i for l′ = l + 1 and l ∈ [L]. We take ζkl = 0.3 for k ∈ Ic and l ∈ [L]

and vary c such that 0 < cr < 1. We adjust r using Scenario 5.

The results are summarized in tables 5 and 6. Table 5 studies the performance of the estimator

at cr = 0.95, which corresponds to the least shrinkage to zero. The parameter vector β is sparse since

|J(β)| = 5 and K = 600. Sparsity provides exclusion restrictions and possible overidentification for

each submodel. The coefficients β3 and β4 are smaller than the detection level (see Theorem 6.3).

Indeed, not even accounting for the sensitivities, we have 4σendr
En[X2

k ]1/2
> 0.5 for all k. We expect from
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Table 5. Monte-Carlo study (1000 replications, n = 600)

p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5

β̂1 0.818 0.883 0.940 β̂6 0 0 0

β̂2 -1.906 -1.814 -1.713
...

...
...

...

β̂3 -0.407 -0.309 -0.212
...

...
...

...

β̂4 0.022 0.121 0.212 β̂600 0 0 0

β̂5 -0.904 -0.809 -0.709 σ̂ 0.997 1.063 1.132

Here: cr = 0.95.

Theorem 6.1 that β3 and β4 are impossible to distinguish from 0. The results highlighted in the grey

box correspond to the nonzero coefficients of the estimator. The estimator performs well in terms of

selecting the nonzero components of β, though the point estimates are biased towards zero due to

shrinkage. The shrinkage also results in a slight upwards bias of the estimator of the variance. The

estimator also performs well for the components with true parameter equal to zero.

Table 6 summarizes the performance of the estimator over various choices of c such that cr

ranges from 0.05 to 0.95. For c = 0.05/r we have c ≈ 1/3. This is because r ≈ 0.15. For larger values

of c, the estimation error is smaller for the nonzero elements of β. However, it is also the case that

some of the zero coefficients are estimated to be nonzero. The converse is true for smaller values of c:

the estimation error is larger for the nonzero coefficients but smaller for the zero coefficients. This is

because there is more shrinkage as c becomes smaller.

9.1.3. Choice of c for Confidence Sets and λ, λ1, λ2 for Confidence bands. In this simulation study,

we do not intersect the confidence sets based on a sparsity certificate for different values of c. This

means that the confidence sets are more conservative than they could have been. We rather started by

estimating each model with c = r−1, which corresponds to the least shrinkage of β̂, and compared the

estimates obtained for decreasing c. For sufficiently large sample size, the estimators remain almost

unchanged when c decreases, until the point at which σ̂ starts to increase. We chose c at that value.

We apply the same strategy to choose λ.

We follow an identical heuristic to choose λ1. We start by solving (8.4) for λ1 close to zero,

which corresponds to the least shrinkage of Λ̂. As λ1 increases, Λ̂ remains almost unchanged until a

point at which the first term in the objective function in (8.4) starts to increase. We chose λ1 at that

value. Throughout this section, we do not include approximation errors and take λ2 = 0.
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Table 6. Monte-Carlo study at different values of c, (1000 replications, n = 600)

p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5∣∣∆J(β)∩I
∣∣
∞ 0.163 0.230 0.313 0.206 0.274 0.359 0.296 0.385 0.491∣∣∆J(β)∩Ic
∣∣
∞ 0.122 0.223 0.345 0.159 0.264 0.386 0.278 0.393 0.521∣∣∆Jc(β)∩I
∣∣
∞ 0 0 0.045 0 0 0.012 0 0 0∣∣∆Jc(β)∩Ic
∣∣
∞ 0 0 0.093 0 0 0.066 0 0 0.015

σ̂ 0.997 1.066 1.1294 1.026 1.097 1.174 1.122 1.209 1.289

cr=0.95 cr=0.80 cr=0.60

p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5∣∣∆J(β)∩I
∣∣
∞ 0.573 0.703 0.875 1.870 2.000 2.121 1.865 2.001 2.120∣∣∆J(β)∩Ic
∣∣
∞ 0.611 0.779 0.965 1.792 1.923 2.046 1.805 1.918 2.048∣∣∆Jc(β)∩I
∣∣
∞ 0 0 0 0 0 0 0 0 0∣∣∆Jc(β)∩Ic
∣∣
∞ 0 0 0 0 0 0 0 0 0

σ̂ 1.448 1.567 1.710 2.684 2.855 3.042 2.677 2.848 3.036

cr=0.40 cr=0.20 cr=0.05

Here: ∆ = DX
−1(β̂ − β).

9.1.4. Confidence Sets: Fewer Instruments than Potential Regressors. Under the simulation design of

the previous section, the confidence sets are infinite. Consider now the following modification in which

K = 50, Ic = {1, 27, 28, ..., 50}, and ζkl = 1 if (k, l) = (1, 6), (27, 7), (28, 8), ..., (49, 29), (50, 30) and 0.1

otherwise. This implies that there is one strong instrument for each endogenous regressor, and the

remaining 24 instruments are “weak”. We maintain K � L, n = 500 and set zli = xl′i for l′ = l + 1

and l ∈ [25], and zli = eli for l ∈ [26, ..., L], where eli is drawn from the standard normal truncated

to the interval [−5, 5]. We adjust r using Scenario 5. We illustrate here the confidence sets for one

dataset. The 5 true nonzero coefficients are detected to be nonzero based on the STIV estimated

values. All of the remaining 45 estimated coefficients are zero. The confidence sets based on sparsity

certificate with s = 5 are infinite. However, those based on the estimated support Ĵ = J
(
β̂
)

are

finite. They are presented in Table 7. The parameter β1 corresponds to an endogenous regressor. The

associated sensitivity is smaller than those of the exogenous regressors.

9.1.5. Confidence Sets: One Strong and Many Weak Instruments. Here we consider the case of

many “weak” instruments. We take L = 155, K = 150, Ic = {1, 149, 150}, ζkl = 1 for (k, l) =

(1, 153), (149, 154), (150, 155) and ζkl = 0.1 otherwise. Thus, there is one strong instrument for each

endogenous regressor and the remaining 154 are “weak”. We set zli = xl′i for l′ = l+ 1 and l ∈ [149],

and zli = eli for l ∈ [150, ..., L]. We adjust r using Scenario 5. This model cannot be estimated using
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Table 7. Fewer instruments

than regressors (estimated

support, n = 500)

βl β̂ βu κ̂∗ek

β1 0.385 0.892 1.398 0.586

β2 -2.408 -1.778 -1.148 0.730

β3 -0.854 -0.349 0.156 0.904

β4 -0.469 0.082 0.634 0.817

β5 -1.430 -0.847 -0.265 0.801

Here: r = 0.140, c = 0.854 and σ̂ = 1.091.

Table 8. One strong and

many weak instruments (esti-

mated support , n = 500)

βl β̂ βu κ̂∗ek

β1 0.254 0.913 1.573 0.492

β2 -2.670 -1.860 -1.049 0.773

β3 -0.953 -0.232 0.488 0.897

β4 -0.618 0.168 0.953 0.784

β5 -1.664 -0.812 0.040 0.726

Here: r = 0.159, c = 0.950 and σ̂ = 1.098.

Table 9. One strong and many weak instruments (sparsity certificate, n = 4000)

βl,10 βl,9 βl,8 βl,7 βl,6 βl,5 β̂ βu,5 βu,6 βu,7 βu,8 βu,9 βu,10

β1 −∞ -8.641 -1.881 -0.603 -0.043 0.254 0.934 1.614 1.910 2.471 3.749 10.508 ∞

β2 −∞ -8.728 -3.943 -3.0480 -2.662 -2.460 -1.944 -1.428 -1.227 -0.841 0.055 4.840 ∞

β3 −∞ -7.235 -2.443 -1.545 -1.155 -0.947 -0.426 0.095 0.302 0.692 1.591 6.383 ∞

β4 −∞ -6.690 -1.808 -0.899 -0.505 -0.296 0.219 0.734 0.943 1.336 2.246 7.128 ∞

β5 −∞ -8.812 -3.231 -2.192 -1.747 -1.514 -0.931 -0.348 -0.115 0.3300 1.369 6.951 ∞

β6 −∞ -7.389 -2.178 -1.204 -0.777 -0.561 0 0.561 0.777 1.204 2.178 7.389 ∞
...

...
...

...
...

...
...

...
...

...
...

...
...

...

β150 −∞ -8.454 -2.491 -1.366 -0.875 -0.614 0 0.614 0.875 1.365 2.490 8.451 ∞

Here: r = 0.0569 and c = 0.3505 and σ̂ = 1.0129

BIC since the first stage would require solving around 1045 least squares problems. The estimated

values of the nonzero entries of β are clearly distinct from zero. We present in Table 8 the confidence

sets based on the estimated support with Ĵ = J
(
β̂
)

.

For n = 500 the confidence sets based on a sparsity certificate are infinite. We consider instead

n = 4000 and obtain the sets in Table 9. We use the notation βl,s and βu,s for the lower and upper

bounds of the nested confidence sets computed using the sparsity certificate for various degrees of

sparsity s. The thresholded estimator depends on a sparsity certificate. When 0 does not lie in the

projected confidence intervals, the thresholded STIV estimate corresponds to the STIV estimate. For

comparison, the confidence sets based on Ĵ are in Table 10. These are tighter than the confidence

sets under the sparsity certificate s = 5.



52 GAUTIER, ROSE, AND TSYBAKOV

Table 10. One strong and

many weak instruments (esti-

mated support , n = 4000)

βl β̂ βu κ̂∗ek

β1 0.791 0.934 1.076 0.506

β2 -2.089 -1.944 -1.799 0.924

β3 -0.579 -0.426 0.2734 0.870

β4 0.070 0.219 0.368 0.909

β5 -1.096 -0.931 -0.766 0.832

Here: r = 0.0569, c = 0.3518, and σ̂ = 1.0129.

Table 11. Many endogenous

regressors and instruments,

(estimated support, n=750)

βl β̂ βu κ̂∗ek

β1 0.407 0.855 1.302 0.483

β2 -2.430 -1.843 -1.345 0.897

β3 -0.907 -0.331 0.245 0.802

β4 -0.440 0.101 0.641 0.821

β5 -1.301 -0.772 -0.235 0.861

Here: r = 0.134, c = 0.849, and σ̂ = 1.103.

9.1.6. Many Endogenous Regressors and Many Instruments. We now consider many endogenous re-

gressors and many instruments. We take n = 750, L = 205, K = 200, Ic = {1, 102, 103, ..., 200}, and

ζkl = 1 for (k, l) = (1, 106), (102, 107), (103, 108), ..., (200, 205) and 0.1 otherwise. Thus there are 100

endogenous regressors and there is one strong instrument and 99 “weak” instruments for each. We

set zli = xl′i for l′ = l+ 1 and l ∈ [100], and zli = eli for l ∈ [101, ..., L]. We adjust r using Scenario 5.

The estimated values of the nonzero components of β are clearly distinct from zero. The remaining

entries are 0. Table 11 summarizes the confidence sets based on Ĵ = J
(
β̂
)

. The confidence sets based

on a sparsity certificate are infinite.

9.1.7. Endogenous Instruments. Here we consider endogenous instruments as in Section 7.3. We first

study case (1), in which we do not rely on beta-min assumptions. We take n = 4000, K = 60,

L = 100, Ic = {1} and ζ1l = 1 if l = 90 and 0.1 otherwise. We consider the case where there is

uncertainty regarding the exogeneity of the instruments and P̃ = {91, 92, ..., 100}. We set zli = xl′i

for l′ = l + 1 and l ∈ [59], zli = eli for l ∈ [60, 61, ..., 99], and zli = eli + 0.9ui otherwise, where eli

are drawn from the standard normal truncated to the interval [−5, 5]. Consequently instrument 100

is endogenous and β̃100 = 0.9, whilst all other entries are equal to zero. We use the STIV for the first

stage estimator using only the instruments in P̃ c, taking α1 = 0.025, using Scenario 5 for r1 = 0.057

and choosing c = 0.358 as described in Section 9.1.3. We compute b̂ and b̂σ with a sparsity certificate

s = 5. We choose sparsity certificate 5 since the first stage estimator has only 5 entries larger than

10−12 in magnitude. This yields b̂ = 0.104 and b̂σ = 0.657. For the second stage we use the NV-STIV

estimator with α2 = 0.025 and compute r2 = 0.065 based on Scenario 4. We choose c̃ = 0.087 as

described in Section 9.1.3 and compute nested confidence sets for β̃ using sparsity s̃ from 5 to 10.

Since α1 + α2 = 0.05, the sets are at the 0.05 level.
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Table 12. Detection of endogenous instruments (sparsity certificate, n = 4000)

β̃l,10 β̃l,9 β̃l,8 β̃l,7 β̃l,6 β̃l,5
̂̃
β β̃u,5 β̃u,6 β̃u,7 β̃u,8 β̃u,9 β̃u,10

β̃91 -0.427 -0.423 -0.419 -0.415 -0.412 -0.408 0 0.408 0.412 0.415 0.419 0.423 0.427

β̃92 -0.432 -0.428 -0.424 -0.421 -0.417 -0.413 0 0.413 0.417 0.421 0.424 0.428 0.432

β̃93 -0.423 -0.419 -0.415 -0.411 -0.408 -0.404 0 0.404 0.408 0.411 0.415 0.419 0.423

β̃94 -0.424 -0.4200 -0.416 -0.412 -0.409 -0.405 0 0.405 0.409 0.412 0.416 0.420 0.424

β̃95 -0.420 -0.416 -0.413 -0.409 -0.405 -0.402 0 0.402 0.405 0.409 0.413 0.416 0.420

β̃96 -0.420 -0.417 -0.413 -0.409 -0.405 -0.402 0 0.402 0.405 0.409 0.413 0.417 0.420

β̃97 -0.430 -0.426 -0.422 -0.418 -0.415 -0.411 0 0.411 0.415 0.418 0.422 0.426 0.430

β̃98 -0.429 -0.425 -0.421 -0.417 -0.413 -0.410 0 0.410 0.413 0.417 0.421 0.425 0.429

β̃99 -0.431 -0.427 -0.423 -0.419 -0.415 -0.412 0 0.412 0.415 0.419 0.423 0.427 0.431

β̃100 0.331 0.335 0.339 0.342 0.346 0.350 0.756 1.162 1.166 1.170 1.173 1.177 1.181

Here: r1 = 0.0574, r2 = 0.0648, c̃ = 0.3579 and ̂̃σ = 0.7360

The results are presented in Table 12. Each of the exogenous instruments is estimated as such.

The endogenous instrument is, however, detected. The point estimate of β̃100 is 0.756 compared to

a true value of 0.9. The point estimate is biased towards zero due to the shrinkage. The projected

confidence intervals for β̃100 does not include 0 for any level of the sparsity in the table, and always

includes 0.9. This means that the thresholded NV-STIV estimate of this coefficient corresponds to

the NV-STIV estimate.

Next we consider case (2), which requires beta-min assumptions. In this setting we consider a

more demanding data generating process. We take the data generating process of Section 9.1.5 with

n = 1000, and suppose that there is uncertainty regarding the exogeneity of the instruments and

P̃ = {141, 142, ..., 150}. We take β̃150 = 0.9 and all other entries equal to zero. We choose r1, r2,

c, c̃ in the same way as for case (1). The first stage STIV estimator uses only the 140 instruments

which are known to be exogenous, which is smaller than K. We compute b̂ and b̂σ using the estimated

support Ĵ = J
(
β̂
)

, which is equal to J(β). The entries of β̂ with coordinates in Ĵc are effectively

0. This yields b̂ = 0.120 and b̂σ = 0.931. We use the second stage NV-STIV estimator to compute

nested confidence sets for β̃ using sparsity s̃ from 5 to 10.

The results are displayed in Table 13. Each of the exogenous instruments is estimated as such.

The endogenous instrument is, however, detected. The point estimate of β̃150 is 0.666 compared to a

true value of 0.9. The confidence set for β̃150 does not include 0 for s̃ ≤ 9.
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Table 13. Detection of endogenous instruments, (estimated support, n = 1000)

β̃l,10 β̃l,9 β̃l,8 β̃l,7 β̃l,6 β̃l,5
̂̃
β β̃u,5 β̃u,6 β̃u,7 β̃u,8 β̃u,9 β̃u,10

β̃141 -0.722 -0.689 -0.658 -0.630 -0.6044 -0.581 0 0.581 0.604 0.630 0.658 0.689 0.722

β̃142 -0.732 -0.698 -0.667 -0.639 -0.6123 -0.588 0 0.588 0.612 0.638 0.667 0.698 0.732

β̃143 -0.724 -0.690 -0.660 -0.631 -0.6056 -0.582 0 0.582 0.606 0.631 0.659 0.690 0.724

β̃144 -0.703 -0.670 -0.641 -0.613 -0.5881 -0.566 0 0.565 0.588 0.613 0.641 0.670 0.703

β̃145 -0.727 -0.693 -0.662 -0.634 -0.6081 -0.584 0 0.584 0.608 0.634 0.662 0.693 0.727

β̃146 -0.730 -0.696 -0.665 -0.637 -0.6105 -0.587 0 0.587 0.611 0.637 0.665 0.696 0.7300

β̃147 -0.727 -0.693 -0.662 -0.634 -0.6083 -0.584 0 0.584 0.609 0.634 0.662 0.693 0.727

β̃148 -0.737 -0.702 -0.671 -0.643 -0.6163 -0.592 0 0.592 0.616 0.643 0.671 0.702 0.737

β̃149 -0.722 -0.688 -0.658 -0.630 -0.6039 -0.580 0 0.580 0.604 0.6300 0.658 0.688 0.722

β̃150 -0.010 0.021 0.050 0.076 0.1002 0.122 0.666 1.209 1.231 1.256 1.282 1.310 1.342

Here: r1 = 0.1188, r2 = 0.1361, c̃ = 0.1444 and ̂̃σ = 0.5460

9.1.8. Two-Stage Confidence Bands. We illustrate the confidence bands of Section 8 and compute

confidence bands for the nonzero components of β. We consider the challenging data generating

process of Section 9.1.4 with n = 4000. We take Ω as the first five rows of IK . For the sets of Section

8.1, we take αβ(n) = αΛ(n) = 0.01, α = 0.03, and λ = 0.95, which yield asymptotic coverage 0.95

under the premises of Theorem 8.2. The first stage estimator is the STIV adjusting r using Scenario

5. For the sets of Section 8.2, we take n+ = 3200 and n− = 800. We also adjust our sets to account

for the possibility of non-negligible bias, as explained in Section 8.3, based on an estimated support

Ĵ = J
(
β̂
)

. In most cases the estimated support is equal to J(β), though it is sometimes a superset.

The results for the method of Section 8.1 are depicted in Table 14. Columns 2-4 summarize

the distribution of the preliminary estimator Ωβ̂. The shrinkage of the STIV estimator leads to a

mild bias towards zero for each element of βJ(β). Columns 5-7 summarize the distribution of the bias

corrected estimator Ω̂β. The bias correction increases the magnitude of the parameters relative to

the preliminary estimator, which become centered around their true values. The difference between

the 97.5 and 2.5 percentiles is around 0.06 in all cases. Columns 8-10 summarize the width for each

of the parameters and coverage of the confidence bands. That is, the width of the interval around

(Ωβ)o for each o. These sets have coverage 0.93, which is marginally below the desired level. The

width of the bands is around 0.08 in all cases. This is larger than the difference between the 97.5 and

2.5 percentiles of the bias corrected estimator (0.06). This is because we have constructed a band, as

opposed to individual intervals for each parameter. Columns 11-13 summarize the confidence bands

of Section 8.3, which account for the remaining bias by computing an upper bound. These sets are
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Table 14. Two-stage confidence bands through consistent estimation of Λ (7300 replications)

Ωβ Preliminary (Ωβ̂) Debiased (Ω̂β) CB width (basic) CB width (bound on bias)

p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5

β1 0.961 0.983 1.006 0.971 1.003 1.031 0.071 0.075 0.081 0.243 0.263 0.392

β2 -1.980 -1.945 -1.912 -2.038 -2.002 -1.969 0.076 0.080 0.083 0.248 0.266 0.396

β3 -0.469 -0.438 -0.409 -0.526 -0.495 -0.466 0.076 0.080 0.084 0.248 0.266 0.397

β4 0.159 0.189 0.220 0.216 0.246 0.277 0.076 0.080 0.083 0.247 0.266 0.396

β5 -0.971 -0.942 -0.907 -1.028 -0.999 -0.965 0.076 0.080 0.083 0.247 0.267 0.396

Cover 0.928 Cover 1

The accuracy of the coverage probabilities is ±1.96
√

0.95(0.05)/7300 = 0.005 with probability 95%.

conservative. This is because the upper bound on the bias is based on convex relaxation. Despite

their conservative nature, the bands are still sufficiently narrow so as to be informative, for example,

regarding the signs of the parameters.

The results for the method of Section 8.2 are depicted in Table 15. The bias correction increases

the magnitude of the preliminary estimator and is centred around the true values. The width of the

confidence bands under the assumption of normality of the error is around 0.1, which is slightly larger

than in Table 14, and the coverage is close to the desired 0.95. We also compute confidence bands

based on rΛ
+ using Scenario 4, which are wider but still sufficiently narrow as to be informative, for

example, with regards to the signs of the parameters. The conservative coverage stems from the use of

rΛ
+ = rΛ

0+

∣∣∣Z+Λ̂D
Z+Λ̂

∣∣∣
∞

, which is a conservative choice. Assumption 3.1 cannot be applied to replace

the second term with something close to 1 because Λ̂ might not converge to a nonrandom matrix.

The bands from Section 8.2 take around one second to compute, whereas those from Section

8.1 can take at least twenty times as long. In additional simulations we found instances in which the

coverage of the bands which ignore the bias of the debiased estimator was incorrect. This was in cases

where n is small and/or instruments are weak for which the rest of the paper proposes solutions.

We now consider a data generating process closer to the empirical application, in which we

have n ≈ 5000, K = L ≈ 1900 and around 1800 endogenous regressors. These dimensions are

too large to simulate a sufficient number of datasets in order to accurately compute the coverage

probability. Instead, we reduce n, K and L by a factor 0.5 yielding n = 2500, K = L = 950 and

we set Ic = {1, 52, ..., 950}. We use ζkl = 1 for (k, l) = (1, 51), (51, 2), ..., (899, 949), (900, 950) and

ζkl = 0.1 otherwise. Thus, there is one strong instrument for each endogenous regressor and the

remaining 949 are “weak”. This mirrors the empirical application, in which the instrument for any
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Table 15. Two-stage confidence bands through sample splitting (7300 replications)

Ωβ Preliminary (Ωβ̂) Debiased (Ω̂β) CB width (Normal) CB width (Scenario 4)

p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5

β1 0.955 0.980 1.001 0.962 1.003 1.043 0.092 0.105 0.120 0.341 0.407 0.506

β2 -1.974 -1.939 -1.902 -2.035 -1.999 -1.959 0.088 0.099 0.110 0.330 0.385 0.464

β3 -0.479 -0.437 -0.404 -0.539 -0.497 -0.464 0.089 0.099 0.111 0.336 0.386 0.467

β4 0.154 0.192 0.227 0.213 0.253 0.291 0.089 0.098 0.111 0.327 0.385 0.468

β5 -0.973 -0.940 -0.903 -1.034 -0.999 -0.960 0.089 0.100 0.111 0.333 0.386 0.465

Cover 0.952 Cover ≈ 1

Table 16. Two-stage confidence bands for a DGP similar to the application, 7300 replications

Ωβ Preliminary (Ωβ̂) Debiased (Ω̂β) CB width (Normal) CB width (Scenario 4)

p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5 p 2.5 p 50 p 97.5

β1 0.923 0.954 0.975 0.951 0.991 1.039 0.095 0.114 0.136 0.346 0.424 0.544

β2 -1.937 -1.889 -1.845 -2.043 -1.996 -1.948 0.108 0.125 0.143 0.381 0.467 0.563

β3 -0.432 -0.388 -0.342 -0.542 -0.493 -0.446 0.107 0.124 0.143 0.379 0.462 0.573

β4 0.103 0.142 0.192 0.202 0.247 0.299 0.107 0.125 0.145 0.387 0.462 0.579

β5 -0.934 -0.889 -0.847 -1.043 -0.993 -0.946 0.106 0.124 0.143 0.376 0.462 0.570

Cover 0.933 Cover ≈ 1

regressor which is a function of the expenditure share takes exactly the same form but replaces the

expenditure share with the average expenditure share in the sample. In the application the first stage

R2 for each reduced form equation exceeds 0.9. The data generating process we consider here yields

values of 0.7. To complete the data generating process we set zli = xl′i for l′ = l+ 1 and l ∈ [49], and

zli = eli for l ∈ [50, ..., L]. We adjust r using Scenario 5. We do not compute the confidence bands of

Section 8.1, as it is computationally infeasible for the dimensions considered here. We focus instead

on the feasible bands of Section 8.2. We use n+ = 2000 and n− = 500.

Table 16 presents the results. The bias corrected estimates of the coefficients become centered

on their true values. The difference between the 97.5 and 2.5 percentiles of the bias corrected estimator

is around 0.09 for each of the parameters. Under the assumption of normally distributed errors,

the width of the bands is around 0.12. This exceeds 0.09 since we have constructed bands for the

5 coefficients, as opposed to invidiual confidence intervals. The coverage is around 0.93, which is

marginally below the desired level. The bands based on rΛ
+ using Scenario 4 are wider, but still

sufficiently narrow so as to be informative, particularly regarding the signs of the parameters.
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9.2. Application to the Second Order Approximation of the EASI Model. We use the

Canadian demand data of Lewbel and Pendakur (2009) for n = 4, 847 rental-tenure single-member

households that had positive expenditures on rent recreation, and transportation. The categories of

goods considered are: (1) food consumed at home, (2) food consumed out of the home, (3) rent, (4)

clothing, (5) household operation, (6) household furnishing/equipment, (7) transportation operation,

(8) recreation, and (9) personal care. The individual characteristics comprise: (1) the individual’s age

minus 40, (2) the gender dummy equal to one for men, (3) a car-nonowner dummy equal to one if real

gasoline expenditures (at 1986 gasoline prices) are less than $50, (4) a social assistance dummy equal to

one if government transfers are greater than 10 percent of gross income, and (5) a time variable equal

to the calendar year minus 1986 (that is, equal to zero in 1986). In this application, the instruments

are strong and L = K so it makes sense to proceed in two-stages, using the confidence bands of Section

8. The exposition of the results focuses on Engel curves. We construct uniform confidence bands at

the 0.95 level for the Engel curves based on a grid of O = 25 points, and apply the sample splitting

method of Section 8.2 with n+ = 4000, n− = 847 and αβ(n+) = αΛ(n−) = α = 0.05/3. We use sample

splitting for computational reasons, since the the program to compute the bands based on consistent

estimation of Λ involves OK = 46, 975 conic constraints, and is not computationally tractable.

In the first step, we apply the SE-STIV estimator to sample +, adjusting r based on Scenario

5 using αβ(n+)/G, c = 0.99/r, and taking ρg,E = 1/n+ for each good g ∈ [G]. By appealing to the

union bound, we allow for unrestricted correlation between εgi and εhi for each pair of goods g and h.

We choose the sets P1, P2, ..., PG so as to exempt the constant and quadratic parts of the Engel curves

b0, b1, b2 and the linear price parameters A0 from the `1 penalty, since these form a parsimonious

baseline specification for the demand system (see Banks, Blundell, and Lewbel (1997)). We impose

all of the restrictions in Section 2.2.6 apart from monotonicity of cost, which we verify is satisfied

by the estimated parameters. For the negative semidefinite restriction, we construct a grid over the

characteristics zi using the minimum and maximum values observed in the sample. This leads to 64

semidefinite restrictions. For brevity, we do not present the full estimation results here, focussing

instead on the Engel curves which we discuss below. We note that of the 1771G = 15399 parameters

out of 1879G = 16911 on which we allow sparsity, only 50 are estimated as nonzero, 22 of which are

parameters which arise due to the second order approximation of the Exact Affine Stone Index.

In the second step, we compute Λ̂, choosing λ1 according to the method discussed in Section

9.1.3 and setting λ2 = λ1, which ensures λ2 < r′0−. Figure 1 depicts the preliminary estimator of the

Engel curves, its bias corrected counterpart and 95% confidence bands for food-in and food-out. The
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curves are close to linear and have the expected slopes: negative for food-in and positive for food-out.

The bias correction for food-in is smaller than for food-out and the band is also tighter, indicating

less uncertainty. The band is wider close to the end points of the support of the functions. This is

most likely because there is less data at the end points than in the centre, and is true for all of the

goods. Figures 2-5 depict the Engel curves for the other goods. The bias correction is large for rent,

transportation-operation, and personal care, for which the bands are also wider than the other goods.

The Engel curves are similar to those of Lewbel and Pandakur (2009) apart from clothing

and transportation-operation. The confidence bands are marginally wider. This is expected since we

present uniform bands rather than pointwise intervals and consider a coverage of 95% compared to

90% in Lewbel and Pandakur (2009). Our estimated Engel-curve for clothing follows a less pronounced

U-shape with minimum at expenditure $4,450 than the estimated Engel curve of Lewbel and Pandakur

(2009) with minimum at expenditure $8,100. Lewbel and Pandakur (2009) find a downwards sloping

Engel curve for transport operation, whereas we find evidence of an inverted U. Our Engel curve for

transportation operation suggests that those with low expenditure increase the expenditure share on

transportation as their expenditure rises. This may be due to substitution between modes of transport

which become more affordable with rising expenditure.
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SUPPLEMENTAL APPENDIX FOR “HIGH-DIMENSIONAL INSTRUMENTAL

VARIABLES AND CONFIDENCE SETS”

ERIC GAUTIER, CHRISTIERN ROSE, AND ALEXANDRE TSYBAKOV

A.1. Moderate Deviations for Self-normalized Sums. Throughout this section (xi)
n
i=1 are in-

dependent random variables such that, for all i, E[xi] = 0. The following result is due to Efron (1969).

Theorem A.1. If (xi)
n
i=1 are symmetric, then for all r > 0,

P

(
En[X]√
En[X2]

≥ r

)
≤ exp

(
−nr

2

2

)
.

This upper bound is refined in Pinelis (1994) for i.i.d. random variables.

Theorem A.2. If (xi)
n
i=1 are symmetric and identically distributed, then

∀r ∈ [0, 1), P

(
En[X]√
En[X2]

≥ r

)
≤ 2e3

9
Φ
(
−
√
nr
)
.

The following result is Theorem 2.3 in Jing, Shao and Wang (2003).

Theorem A.3. Assume that 0 < E[|X|2+δ] <∞ for some 0 < δ ≤ 1 and set

B2
n = nE[X2], Ln,δ = nE

[
|X|2+δ

]
, dn,δ = Bn/L

1/(2+δ)
n,δ .

Then

∀0 ≤ r ≤
dn,δ√
n
, P

(
En[X]√
En[X2]

≥ r

)
≤ Φ(−

√
nr)

(
1 +A0

(
1 +
√
nr

dn,δ

)2+δ
)
,

where A0 > 0 is an absolute constant.

Despite of its interest for large deviations behavior of self-normalized sums, the bound has

limited practical use for moderate deviations because A0 is not an explicit constant.

The following result is a corollary of Theorem 1 in Bertail, Gauthérat, and Harari-Kermadec (2008).

Theorem A.4. Assume that (xi)
n
i=1 are identically distributed and 0 < E[X4] <∞. Then

(A.1) ∀r ≥ 0, P

(
|En[X]|√
En[X2]

≥ r

)
≤ (2e+ 1) exp

(
− nr2

2 + γ4r2

)
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where γ4 = E[X4]
E[X2]2

, while

∀r ≥
√
n, P

(
|En[X]|√
En[X2]

≥ r

)
= 0.

Proof. Bertail, Gauthérat, and Harari-Kermadec (2008) obtain the upper bound for r ≥
√
n and

that for 0 ≤ r <
√
n

P

 ∣∣ 1
n

∑n
i=1 xi

∣∣√
1
n

∑n
i=1 x

2
i

≥ r

 ≤ inf
a>1

{
2e exp

(
− nr2

2(1 + a)

)
+ exp

(
− n

2γ4

(
1− 1

a

)2
)}

.

Because

1

1 + a
=

1

a

1

1 + 1
a

≥ 1

a

(
1− 1

a

)
we obtain

− r2

1 + a
≤ −r

2

a

(
1− 1

a

)
.

This yields (A.1) by choosing a to equate the two exponential terms. �

A.2. Some Facts From Convex Analysis. We will use the following property of convex functions

that can be found, for example, in Nesterov (2004). Let f be a convex function from RK to R. The

subdifferential of f at x is defined by

∂f(x) ,
{
g ∈ RK : ∀z ∈ RK , f(z) ≥ f(x) + g>(z − x).

}
Lemma A.1. Let f(x) = maxl=1,...,m fl(x) where the fonctions fl are convex and defined everywhere.

Then f is convex and its subdifferential is

(A.2) ∂f(x) = Conv {∂fl(x) for l such that fl(x) = f(x)}

where Conv denotes the convex hull.

A.3. Proofs. In this section, we prove the results of the main text.

Proof of the statement for Scenario 5. Let β ∈ Ident. Define the events

EU ,
{∣∣(En − E)[U(β)2]

∣∣ ≥ τE[U(β)2]
}

;

EZ ,
{∣∣∣DZ(En − E)

[
ZZ>

]
DZ

∣∣∣
∞
≥ τZ

}
;

E ′Z ,
{

min
l∈[L]

(
D̂−1

Z

)
ll

(DZ)ll ≤
√

1− τ ′Z or max
l∈[L]

(
D̂−1

Z

)
ll

(DZ)ll ≥
√

1 + τ ′Z

}
.
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Clearly, we have E ′Z ⊆ EZ . We obtain, by the Chebychev inequality and (ii)-(iii), P (EU ) ≤ m4/(τ
2n),

P (EZ) = P

(∣∣∣∣∣
n∑
i=1

(
DZziz

>
i DZ − E

[
DZZZ

>DZ

])∣∣∣∣∣
∞

≥ nτZ

)

≤ 1

n2τ2
Z

E

∣∣∣∣∣
n∑
i=1

(
DZziz

>
i DZ − E

[
DZZZ

>DZ

])∣∣∣∣∣
2

∞


≤ CN(L)

nτ2
Z

E
[∣∣∣DZZZ

>DZ − E
[
DZZZ

>DZ

]∣∣∣2] (by the Nemirovski inequality)

≤ CN(L2)MZ(L)

nτ2
Z

,

and similarly

P
(
E ′Z
)

= P

(
max
l∈[L]

∣∣∣∣∣
n∑
i=1

(
z2
li

E
[
Z2
l

] − 1

)∣∣∣∣∣ ≥ nτ ′Z
)

≤
CN(L)M ′Z(L)

n
(
τ ′Z
)2 .

Define

T ,

∣∣∣∣∣∣ 1√
n

n∑
i=1

D̂Zzi
ui(β)√
Q̂(β)

∣∣∣∣∣∣
∞

, T0 ,

∣∣∣∣∣ 1√
n

n∑
i=1

DZzi
ui(β)

σU(β)

∣∣∣∣∣
∞

, W0 ,

∣∣∣∣∣ 1√
n

n∑
i=1

DZziei

∣∣∣∣∣
∞

, N0 ,

∣∣∣∣∣ 1√
n

n∑
i=1

χi

∣∣∣∣∣
∞

,

where χi are independent Gaussian vectors of covariance E[DZziz
>
i DZ ]. Because

E

[
DZziz

>
i DZ

ui(β)2

σU(β)2)

]
= E

[
DZziz

>
i DZE

[
ui(β)2

σU(β)2)

∣∣∣∣∣Z
]]

= E[DZziz
>
i DZ ],

N0 is a Gaussian approximation of T0. Using (vi) and Proposition 2.1 in Chernozhukov, Chetverikov,

and Kato (2017), we obtain, for a constant C2 which can depend only on q2, for all t ∈ R,

max (|P (T0 ≤ t)− P (N0 ≤ t)| , |P (W0 ≤ t)− P (N0 ≤ t)|) ≤ ρ.(A.3)

Note that, by (i), we have E
[(

(DZ)ll ZlU(β)/σU(β)

)2]
= E

[
((DZ)ll Zlei)

2
]

= 1 for all l ∈ [L], so

condition (M.1) from Chernozhukov, Chetverikov, and Kato (2017) is satisfied. We denote by qW0 the

conditional quantile functions of W0 given Z. Lemma 3.1 in Chernozhukov, Chetverikov, and Kato

(2013) yields, for all t ∈ R,

|P (W0 ≤ t|Z)− P (N0 ≤ t)| ≤ ϕ(τZ) on EcZ ,
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where ϕ is the function x ∈ (0, 1)→ ϕ(x) = C1x
1/3 max (1, log(L/x))2/3 and C1 is a constant (we are

in a situation where c1 = C1 with their notations) and Lemma 3.2 yields, for all α ∈ (0, 1),

P (qW0(α) ≤ qN0(α+ ϕ(τZ))) ≥ 1− CN(L2)MZ(L)

nτ2
Z

,

P (qN0(α) ≤ qW0(α+ ϕ(τZ))) ≥ 1− CN(L2)MZ(L)

nτ2
Z

.

If P (T0 ≤ qW0(α))− α > 0, we have

|P (T0 ≤ qW0(α))− α| ≤ P (T0 ≤ qN0(α+ ϕ(τZ)))− α+
CN(L2)MZ(L)

nτ2
Z

,

else,

|P (T0 ≤ qW0(α))− α| ≤ α− P (T0 ≤ qN0(α− ϕ(τZ))) +
CN(L2)MZ(L)

nτ2
Z

,

hence, in both cases,

|P (T0 ≤ qW0(α))− α| ≤ P (qN0(α− ϕ(τZ)) ≤ T0 ≤ qN0(α+ ϕ(τZ))) + 2
CN(L2)MZ(L)

nτ2
Z

≤ P (qN0(α− ϕ(τZ)) ≤ N0 ≤ qN0(α+ ϕ(τZ))) + 2
CN(L2)MZ(L)

nτ2
Z

+ 2ρ

≤ 2ϕ(τZ)) + 2
CN(L2)MZ(L)

nτ2
Z

+ 2ρ,(A.4)

where the second display above uses the first upper bound from (A.32).

On E ′cZ , we have

|W −W0| ≤

(
1√

1− τ ′Z
− 1

)
W0,

hence, by the Markov inequality, law of iterated expectations, and second bound in (A.32),

P
(
P ( |W −W0| > ζ1|Z) > ζ2(ζ1, τ

′
Z)
)
<

1

ζ2(ζ1, τ ′Z)

P

N0 > ζ1

(
1√

1− τ ′Z
− 1

)−1
+ ρ+

CN(L)M ′Z(L)

n
(
τ ′Z
)2



P
(
P ( |W −W0| > ζ1|Z) > ζ2(ζ1, τ

′
Z)
)
< ζ2(ζ1, τ

′
Z),

(A.5)

where

ζ2(ζ1, τ
′
Z)2 ,P

N0 > ζ1

(
1√

1− τ ′Z
− 1

)−1
+ ρ+

CN(L)M ′Z(L)

n
(
τ ′Z
)2 ,
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C1 is universal and C2 is a constant which only depends on q2. On E ′cZ ∩ EcU , we have

|T − T0| ≤ max

(
1√

(1− τ ′Z)(1− τ)
− 1

)
T0,

hence, by the first bound in (A.32),

(A.6)

P (|T − T0| > ζ1) ≤ P

N0 > ζ1

(
1√

(1− τ ′Z)(1− τ)
− 1

)−1
+

CN(L)M ′Z(L)

n
(
τ ′Z
)2 +

m4

τ2n
+ ρ = ζ ′2(ζ1).

Using Lemma 3.3 in Chernozhukov, Chetverikov, and Kato (2013) and (A.5) for the first display,

(A.6) for the second display, and (A.4) for the third display, we get

if P (T ≤ qW (α))− α > 0, we have

|P (T ≤ qW (α))− α| ≤ P
(
T ≤ qW0(α+ ζ2(ζ1, τ

′
Z)) + ζ1

)
− α+ ζ2(ζ1, τ

′
Z)

≤ P
(
T0 ≤ qW0(α+ ζ2(ζ1, τ

′
Z))
)
− α− ζ2(ζ1, τ

′
Z) + 2ζ2(ζ1, τ

′
Z) + ζ ′2(ζ1)

≤ 2ϕ(τZ)) + 2
CN(L2)MZ(L)

nτ2
Z

+ 2ρ+ 2ζ2(ζ1, τ
′
Z) + ζ ′2(ζ1),

else,

|P (T ≤ qW (α))− α| ≤ α− P
(
T ≤ qW0(α− ζ2(ζ1, τ

′
Z))− ζ1

)
+ ζ2(ζ1, τ

′
Z)

≤ 2ϕ(τZ)) + 2
CN(L2)MZ(L)

nτ2
Z

+ 2ρ+ 2ζ2(ζ1, τ
′
Z) + ζ ′2(ζ1),

hence, in both cases,

|P (T ≤ qW (α))− α| ≤ 2ϕ(τZ)) + 2
CN(L2)MZ(L)

nτ2
Z

+ 2ρ+ 2ζ2(ζ1, τ
′
Z) + ζ ′2(ζ1).

The result on the deterministic upper bound r on r is obtained using Lemma 3.2 and Lemma 3.3 in

Chernozhukov, Chetverikov, and Kato (2013). �

Proof of Theorem 4.1. Take β ∈ Ident and set ∆ , D̂−1
X

(
β̂ − β

)
. Because

∣∣∣ 1
nD̂ZZ>(Y −Xβ)

∣∣∣
∞

=∣∣∣ 1
nD̂ZZ>U(β)

∣∣∣
∞

and Q̂(β) = En[U(β)2], on G, β ∈ Î
(
r,

√
Q̂(β)

)
.

On G, we have: ∣∣∣Ψ̂∆
∣∣∣
∞
≤
∣∣∣∣ 1nD̂ZZ>

(
Y −Xβ̂

)∣∣∣∣
∞

+

∣∣∣∣ 1nD̂ZZ>(Y −Xβ)

∣∣∣∣
∞

(A.7)

≤ r
(
σ̂ +

√
Q̂(β)

)
.(A.8)



A-6 GAUTIER, ROSE, AND TSYBAKOV

On the other hand,
(
β̂, σ̂

)
minimizes the criterion

∣∣∣D̂−1
X β

∣∣∣
1

+ cσ. Thus, on G, we have

(A.9)
∣∣∣D̂−1

X β̂P

∣∣∣
1

+ cσ̂ ≤ |D̂−1
X βP |1 + c

√
Q̂(β).

This implies, on G,∣∣∆J(β)c∩P
∣∣
1

=
∑

k∈J(β)c∩P

∣∣∣En[X2
k ]1/2β̂k

∣∣∣(A.10)

≤
∑

k∈J(β)∩P

(∣∣∣En[X2
k ]1/2βk

∣∣∣− ∣∣∣En[X2
k ]1/2β̂k

∣∣∣)+ c

(√
Q̂(β)− σ̂

)

≤
∣∣∆J(β)∩P

∣∣
1

+ c

(√
Q̂(β)−

√
Q̂
(
β̂
))

.

The last inequality holds because by construction

√
Q̂
(
β̂
)
≤ σ̂.

Because γ →
√
Q̂(γ) is convex and

w∗ , −
1
n

∑n
i=1 xi(yi − x>i β)√

1
n

∑n
i=1(yi − x>i β)2

1l

{
1

n

n∑
i=1

(yi − x>i β)2 6= 0

}
∈ ∂
√
Q̂(·)(β).

we have √
Q̂(β)−

√
Q̂
(
β̂
)
≤ w>∗

(
β − β̂

)
=
(
D̂Xw∗

)>
D̂−1

X

(
β − β̂

)
= −

(
D̂Xw∗

)>
∆.

Now, for all k ∈ I, we have
∣∣∣(D̂Xw∗

)
k

∣∣∣ ≤ r on G. This is because these regressors serve as their own

instrument and, on G, β ∈ Î
(
r,

√
Q̂(β)

)
. On the other hand, for all row of index k in the set Ic, the

Cauchy-Schwarz inequality yields∣∣∣(D̂Xw∗

)
k

∣∣∣ ≤ |En[XkU(β)]|√
En[X2

k ]En[U(β)2]
≤ 1.

Finally, we obtain √
Q̂(β)−

√
Q̂
(
β̂
)
≤ r|∆I |1 + |∆Ic |1.(A.11)

Combining (A.11) with (A.10), we find that ∆ ∈ ĈJ(β) on G. Using (A.7) and (A.11), we find∣∣∣Ψ̂∆
∣∣∣
∞
≤ r

(
σ̂ +

√
Q
(
β̂
)

+

√
Q̂(β)−

√
Q̂
(
β̂
))

≤ r (2σ + r|∆I |1 + |∆Ic |1) .(A.12)
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Using the definition of the sensitivities we obtain, on G,

∣∣∣Ψ̂∆
∣∣∣
∞
≤ r

2σ + r2

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂σ,J(β)

 ,

which implies

(A.13)
∣∣∣Ψ̂∆

∣∣∣
∞
≤ 2rσ

(
1− r2

κ̂σ,J(β)

)−1

+

.

(A.13) and the definition of the sensitivities yield the first upper bound.

To obtain the second bound we use that, by (A.9) and the definition of κ̂1,J(β)∩P,J(β),

cσ̂ ≤ |∆J(β)∩P |1 + c

√
Q̂(β)

≤

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂1,J(β)∩P,J(β)
+ c

√
Q̂(β)(A.14)

Using (A.8) and (A.14) yields the second upper bound. �

Proof of Theorem 4.2. Take β ∈ Ident and J ⊆ [K]. Acting as in (A.10) and assuming that we

are on G, we get∑
k∈Jc∩P

∣∣∣En[X2
k ]1/2β̂k

∣∣∣+
∑

k∈Jc∩P

∣∣∣En[X2
k ]1/2βk

∣∣∣ ≤ ∑
k∈J∩P

(∣∣∣En[X2
k ]1/2βk

∣∣∣− ∣∣∣En[X2
k ]1/2β̂k

∣∣∣)

+ 2
∑

k∈Jc∩P

∣∣∣En[X2
k ]1/2βk

∣∣∣+ c

(√
Q̂(β)−

√
Q̂
(
β̂
))

≤ |∆J∩P |1 + 2
∣∣∣D̂−1

X βJc∩P

∣∣∣
1

+ cr |∆I |1 + c |∆Ic |1 .

This yields

(A.15) |∆Jc∩P |1 ≤ |∆J∩P |1 + 2
∣∣∣D̂−1

X βJc∩P

∣∣∣
1

+ cr |∆I |1 + c |∆Ic |1 .

Let us show the first inequality and consider two cases.

Case 1: 2
∣∣∣(D̂−1

X β
)
Jc∩P

∣∣∣
1
≤ |∆J∩P |1 + cr |∆I |1 + c |∆Ic |1 + |∆P c |1, then ∆ ∈ Ĉγ,J . From this, using

the definition of the sensitivity γ̂q,T,J , we get the upper bound corresponding to the first term in the

minimum. Also, we have

σ̂ ≤ 1

c

(∣∣∣D̂−1
X βP

∣∣∣
1
−
∣∣∣D̂−1

X β̂P

∣∣∣
1

)
+

√
Q̂(β)

≤ 1

c
min

(
|∆P |1 , |∆J∩P |1 +

∣∣∣D̂−1
X βJc∩P

∣∣∣
1

)
+

√
Q̂(β)

≤ 1

c
min

(
|∆P |1 ,

1

2
(3 |∆J∩P |1 + cr |∆I |1 + c |∆Ic |1 + |∆P c |1)

)
+

√
Q̂(β)(A.16)
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≤

∣∣∣Ψ̂∆
∣∣∣
∞

cγ̂Q,J
+

√
Q̂(β),(A.17)

which, with (A.8), yields the upper bound corresponding to the second term in the minimum.

Case 2: 2
∣∣∣(D̂−1

X β
)
Jc∩P

∣∣∣
1
> |∆J∩P |1 + cr |∆I |1 + c |∆Ic |1 + |∆P c |1, then we have

|∆|1 = |∆Jc∩P |1 + |∆J∩P |1 + |∆P c |1 ≤ 6
∣∣∣(D̂−1

X β
)
Jc∩P

∣∣∣
1
.

In conclusion, |∆
J̃
|q is smaller than the maximum of the two bounds. �

Proof of Proposition 5.1. This is a simple consequence of the definition of the sensitivities, the

restricted sets C
Ĵ

and Cγ
Ĵ

, and the fact that minimizing on a larger set yields lower bounds on the

sensitivities. More specifically, we use that |∆J∩P |1 ≤ 2 min
(
s,
∣∣∣Ĵ∣∣∣) ∣∣∆Ĵ∩P

∣∣
∞. The last constraint

is not convex but the restricted set is a union of sets involving the linear constraint |∆J∩P |1 ≤

2 min
(
s,
∣∣∣Ĵ∣∣∣)∆j , hence the second minimum. One can assume everywhere that ∆j ≥ 0 because the

objective function in the sensitivities involves a `∞-norm so that changing ∆ in −∆ does not change

the sensitivities. �

Proof of Proposition 6.1. Define the events:

EX ,
{

min
k∈[K]

(
D̂−1

X

)
kk

(DX)kk ≤
√

1− τX or max
k∈[K]

(
D̂−1

X

)
kk

(DX)kk ≥
√

1 + τX

}
;

EZX> ,
{∣∣∣DZ(En − E)

[
ZX>

]
DX

∣∣∣
∞
≥ rΨ

}
.

The event E ′Z is such that E ′Z ⊆ EZ , where EZ has been introduced in the appendix for the formal

justification of the choice of r from Scenario 5. We use the one above for scenarii 1-4 and the

previous one for Scenario 5. Define GΨ , {r ≤ r} ∩ (E ′Z)c ∩ EcX ∩ EcZX> ∩ E
c
U for scenarii 1-4 and

GΨ , {r ≤ r}∩EcZ ∩EcX ∩EcZX> ∩E
c
U for Scenario 5. Recall that P(r ≤ r) ≥ 1−αC(n). The probability

of the events EU and E ′Z are analyzed in the proof of the statement for Scenario 5. Similarly, we have

P (EX) ≤ CN(K)MX(K)

nτ2
X

;

P (EZX>) = P

(∣∣∣∣∣
n∑
i=1

(
DZzix

>
i DX − E

[
DZZX

>DX

])∣∣∣∣∣
∞

≥ nrΨ

)

≤ 1

n2r2
Ψ

E

∣∣∣∣∣
n∑
i=1

(
DZzix

>
i DX − E

[
DZZX

>DX

])∣∣∣∣∣
2

∞


≤ CN(LK)M(L,K)

nr2
Ψ

.
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Clearly, on EcX , (6.3) holds. Assume now that we work on the event GΨ.

Let J ⊆ [K], l ∈ L, and ∆ , D−1
X D̂X∆. Due to (6.3), we have, for all l ∈ L, in particular `1-norms

of subvectors,
√

1− τX l
(
∆
)
≤ l(∆) ≤

√
1 + τX l

(
∆
)
. This, the fact that r ≤ r and manipulations on

the `1-norm of subvectors used previously, yield ∆ ∈ CJ if ∆ ∈ ĈJ and ∆ ∈ Cγ,J if ∆ ∈ Ĉγ,J . Now,

because GΨ ⊆ (E ′Z)c ∩ Ec
ZX>

, we obtain∣∣∣Ψ̂∆
∣∣∣
∞
≥ min

l∈[L]

(
D̂ZD−1

Z

)
ll

∣∣∣DZEn
[
ZX>

]
DXD−1

X D̂X∆
∣∣∣
∞

≥ 1√
1 + τZ

(∣∣∣DZE
[
ZX>

]
DX∆

∣∣∣
∞
−
∣∣∣DZ(En − E)

[
ZX>

]
DX∆

∣∣∣
∞

)
≥ 1√

1 + τZ

(∣∣Ψ∆
∣∣
∞ − rΨ

∣∣∆∣∣
1

)
.

Inequalities (6.4) and (6.5) are obtained from the definition of κ1,J and γ1,J and the fact that, on GΨ,

l(∆) ≤
√

1 + τX l
(
∆
)
. Finally, we check that P(G ∩ GΨ) ≥ 1− αD(n). �

Proof of Theorem 6.1. The first inequalities in (i) and (ii) follow from the second bounds in

theorems 4.1 and 4.2 and Proposition 6.1.

The second inequality in item (i) is obtained as follows.

Work on the event G ∩ GΨ. By (A.14) and (A.8), we have

∣∣∣Ψ̂∆
∣∣∣
∞
≤ r


∣∣∣Ψ̂∆

∣∣∣
∞

cκ̂1,J(β)∩P,J(β)
+ 2

√
Q̂(β)


≤ 2r

√
Q̂(β)

(
1− r

cκ̂1,J(β)∩P,J(β)

)−1

+

≤ 2r

√
Q̂(β)

(
1−

r
√

(1 + τZ)(1 + τX)

cκ1,J(β)∩P,J(β)

(
1− rΨ

κ1,J

)−1

+

)−1

+

≤ 2r
√

1 + τσU(β)

(
1−

r
√

(1 + τZ)(1 + τX)

cκ1,J(β)∩P,J(β)

(
1− rΨ

κ1,J

)−1

+

)−1

+

This, together with (A.14), yield the last inequality. The middle inequality

√
Q̂
(
β̂
)
≤ σ̂ comes from

the definition of the estimator. Finally, the first inequality uses (A.11).

Let us now prove the second inequality in item (ii). With the same arguments as for item (i) using

(A.17) instead of (A.14), in case 1, we have

σU(β)

(√
1− τ − 2r2

√
1 + τΘγ (J)

γσ,J

)
≤
√
Q̂
(
β̂
)
≤ σ̂ ≤ σU(β)

√
1 + τ

(
1 +

2rΘγ (J)

cγQ,J

)
.
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In case 2, using the second element in the minimum in (A.16), we get

σ̂ ≤ 3

c

∣∣∣(D̂−1
X β

)
Jc∩P

∣∣∣
1

+

√
Q̂(β)

and, using (A.11), √
Q̂ (β)− 2

c

∣∣∣(D̂−1
X β

)
Jc∩P

∣∣∣
1
≤
√
Q̂
(
β̂
)
.

Hence the result.

Part (iii) follow from (i) and (ii) with l(∆) = |e>k ∆| and the fact that the assumption on |βk| imply:

β̂k 6= 0 for k ∈ J(β) (resp., J∗). �

Proof of Theorem 6.3. Fix s and β in Bs and work on G ∩ GΨ. Using Theorem 6.1 (i), we obtain

ω̂k(s) ≤ ωk(s). The following two cases can occur.

First, if k ∈ J(β)c (so that βk = 0) then, using (5.1) for l defined, for all ∆, by l(∆) =
∣∣e>k ∆

∣∣ we

obtain
∣∣∣β̂k∣∣∣ ≤ ω̂k(s), which implies β̂ωk = 0.

Second, if k ∈ J(β), then using again (5.1) for the same functional, we get
∣∣∣∣∣∣β̂k∣∣∣− |βk|∣∣∣ ≤ ∣∣∣β̂k − βk∣∣∣ ≤

ω̂k(s)/
√

(1− τX)E[X2
k ] ≤ ωk(s)/

√
(1− τX)E[X2

k ]. Since |βk| > 2ωk(s)/
√

(1− τX)E[X2
k ] for k ∈ J(β),

we obtain
∣∣∣β̂k∣∣∣ > ωk(s)/

√
(1− τX)E[X2

k ] ≥ ω̂k(s)/
√
En[X2

k ], so that β̂ωk = β̂k. �

Proof of Theorem 7.1. Take β ∈ Ident and work on G ∩GΨ. We have, using the triangle inequality

in the second and fourth display, and the definition of G and the Cauchy-Schwartz inequality in the

third display, ∣∣∣∣ 1nD̂ZZ>(Y −Xβ)

∣∣∣∣
∞

=

∣∣∣∣ 1nD̂ZZ> (W(β) + V(β))

∣∣∣∣
∞

≤
∣∣∣∣ 1nD̂ZZ>W(β)

∣∣∣∣
∞

+

∣∣∣∣ 1nD̂ZZ>V(β)

∣∣∣∣
∞

≤ r
√

En[W (β)2] +
√
En[V (β)2]

≤ r
√
Q̂(β) + (r + 1)

√
En[V (β)2]

≤ r
√
Q̂(β) + (r + 1)ρE .

Hence, β ∈ ÎE
(
r,

√
Q̂(β)

)
and

(A.18)
∣∣∣Ψ̂∆

∣∣∣
∞
≤ r

(
σ̂ +

√
Q̂(β)

)
+ 2(r + 1)

√
1 + τE.
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Moreover, by the inverse triangle inequality, we have√
Q̂(β) ≥

√
En[W (β)2]−

√
En[V (β)2],

≥
√

1− τσW (β)−
√

1 + τE.

Hence, by convexity, we have√
Q̂(β)−

√
Q̂
(
β̂
)
≤ min

(
r +

(r + 1)
√

1 + τE(√
1− τσW (β)−

√
1 + τE

)
+

, 1

)
|∆I |1 + |∆Ic |1

≤ min

r + (r + 1)

(√
1− τ
1 + τ

σW (β)

E
− 1

)−1

+

, 1

 |∆I |1 + |∆Ic |1

≤ r(β) |∆I |1 + |∆Ic |1 .(A.19)

Start by considering the case of a sparse vector β. By definition of κ̂1,J(β)∩P,J(β) and (A.18), we have

∣∣∣Ψ̂∆
∣∣∣
∞
≤ r


∣∣∣Ψ̂∆

∣∣∣
∞

cκ̂1,J(β)∩P,J(β)
+ 2

√
Q̂(β)

+ 2(r + 1)
√

1 + τE

≤ 2r

(√
Q̂(β) + (r + 1)

√
1 + τE

)(
1− r

cκ̂1,J(β)∩P,J(β)

)−1

+

≤ 2r

(√
Q̂(β) + (r + 1)

√
1 + τE

)(
1−

r
√

(1 + τZ)(1 + τX)

cκ1,J(β)∩P,J(β)

(
1− rΨ

κ1,J

)−1

+

)−1

+

≤ 2r
√

1 + τσ(β)

(
1−

r
√

(1 + τZ)(1 + τX)

cκ1,J(β)∩P,J(β)

(
1− rΨ

κ1,J

)−1

+

)−1

+

(A.20)

The rest is similar to what we have done before. �

Proof of Theorem 7.2. Take β in Ident, set ∆g , D̂−1
X

(
β̂g − βg

)
, and work on G ∩ GΨ. Most

of the arguments are the same as those in the proof of Theorem 7.1 and we do not reproduce them.

Rather we stress the main differences. We have, for g ∈ [G],∣∣∣∣ 1nD̂ZZ>(Yg −Xβg)

∣∣∣∣
∞
≤ r
√
Q̂(βg) + (r + 1)ρg,E ,

hence, β ∈ ÎSE
(
r,

√
Q̂(β1), . . . ,

√
Q̂(βG)

)
and

∣∣∣Ψ̂∆g

∣∣∣
∞
≤ r

(
σ̂g +

√
Q̂(βg)

)
+ 2(r + 1)

√
1 + τEg,
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√
Q̂(βg)−

√
Q̂
(
β̂g

)
≤ min

r + (r + 1)

(√
1− τ
1 + τ

σWg(βg)

Eg
− 1

)−1

+

, 1

∣∣(∆g)I
∣∣
1

+
∣∣(∆g)Ic

∣∣
1

≤ r(β)
∣∣(∆g)I

∣∣
1

+
∣∣(∆g)Ic

∣∣
1
.(A.21)

Hence we obtain the first inequality of (i). The second is obtained by using the inverse triangle

inequality and the definition of κσ,J(β).

Also, by definition of the estimator and the above, we have, for J1, . . . , JG in [K],

|∆Jc∩P |1 ≤ |∆J∩P |1 + 2
∣∣∣D̂−1

X βJc∩P

∣∣∣
1

+ c
∑
g∈[G]

min

r + (r + 1)

(√
1− τ
1 + τ

σWg(βg)

Eg
− 1

)−1

+

, 1

∣∣(∆g)I
∣∣
1

+
∣∣(∆g)Ic

∣∣
1


≤ |∆J∩P |1 + 2

∣∣∣D̂−1
X βJc∩P

∣∣∣
1

+ c (r(β) |∆I|1 + |∆Ic |1)

and

G∑
g=1

∣∣∣Ψ̂∆g

∣∣∣
∞
≤ r

G∑
g=1

(
σ̂g +

√
Q̂(βg)

)
+ 2(r + 1)

√
1 + τ

G∑
g=1

Eg

≤ r

c

(∣∣∣D̂−1
X βP

∣∣∣
1
−
∣∣∣D̂−1

X β̂P

∣∣∣
1

)
+ 2r

G∑
g=1

√
Q̂(βg) + 2(r + 1)

√
1 + τ

G∑
g=1

Eg.

The second inequality from (ii) is obtained in a similar manner as in the proof of Theorem 8.1. The

last inequality follows from (A.21). �

Complements on the C-STIV. The classes P̃j are defined in a similar manner as in Assumption 6.1

for scenarii 1-4, replacing P
(∣∣DZZ>

∣∣
∞ > B(n,L)

)
≤ α∞(n) by P ({ρ̂I > ρI} ∪ {ρ̂Ic > ρIc}) ≤ α∞(n),

where ρI depends on n, r0, L, I and ρIc on n,L, Ic, and

ρ̂I = max
l∈[L], k∈I

(
D̂Z

)
ll

(
D̂X

)
kk

min

(
r0 max

i∈[n]
|xkizli| ,

√
En
[
(XkZl)

2
])

and (S5.ii) by, for M ′ZU (L) > 0, for all
(
β, β̃

)
,P such that

(
β, β̃

)
∈ Ident, where P = Pj ,

E

[∣∣∣∣∣
((

ZlU(β)− β̃l
)2
/σ2

ZlU(β)−β̃l
− 1

)L
l=1

∣∣∣∣∣
∞

]
≤ M ′ZU (L). For simplicity, we still refer to this as-

sumption as Assumption 6.1 and use αC(n) = α∞(n) + CN(L)
(
M ′ZU (L)/τ2 +M ′Z(L)/(τ ′Z)2

)
/n and

αD(n) = αB(n) + αC(n) +
(
CN(K)MX(K)/τ2

X + CN(LK)M(L,K)/r2
Ψ

)
/n.

The restricted sets, for J ⊆ [K] and J̃ ⊆ [L], are given in Table 17. Denote by m(τZ , τX) =
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min (1/(1 + τZ), 1− τX), M(τZ , τX) =

√
max (1/(1− τZ), 1 + τX), κ and γ the population sensitiv-

ities and their lower bounds where we replace, in the definitions of κ̂ and γ̂ and the lower bounds in

Proposition 5.1, Ψ̂, ĈJ , ĈγJ , by Ψ, CJ , and CγJ . Their lower bounds are computed on the sets of Table

17 and for the deterministic bounds we simply replace ρ̂I and ρ̂Ic by ρI and ρIc . We define similarly

θκ(s) and θγ(s). The sensitivities, their population counterparts, and lower bounds are now indexed

by two sets or two sparsity certificates. Below, we refer to Assumption 6.1 for conciseness, it is indeed

the suitable modification based on the elements that we have given.

Proposition A.1. Under Assumption 6.1, for all
(
β, β̃

)
,P such that

(
β, β̃

)
∈ Ident, on an event

GΨ of probability 1− αD(n), we have, for all c > 0,

F
(
β, β̃

)√
1− τ ≤ F̂

(
β, β̃

)
≤ F

(
β, β̃

)√
1 + τ (see Table 17);

∀
(
b, b̃
)
∈ RK+L, l ∈ L, m (τZ , τX) l

(
D−1
X b,DZ b̃

)
≤ l
(
D̂−1

X b, D̂Zb̃
)
≤M(τZ , τX)l

(
D−1
X b,DZ b̃

)
;

∀J ⊆ [K], ∀J̃ ⊆ [L], l ∈ L, κ̂
l,J,J̃
≥

κ
l,J,J̃√

1 + τZm (τZ , τX)

(
1− rΨ

κ
1,[K],∅,J,J̃

)
;

γ̂
l,J,J̃
≥

γ
l,J,J̃√

1 + τZm (τZ , τX)

(
1− rΨ

γ
1,[K],∅,J,J̃

)
.

The lower bounds in Proposition 5.1 involving the sparsity certificates hold if we remove the hats.

The main elements of the proofs are as follows. Take
(
β, β̃

)
∈ Ident. Set ∆ , D̂−1

X

(
β̂ − β

)
and ∆̃ , D̂Z

(̂̃
β − β̃

)
. Clearly, on G,

(
β, β̃

)
belongs to ÎC

(
r0, F̂

(
β, β̃

))
. We now work on that

event. Following the arguments in the proof of Theorem 4.1, we obtain

∣∣∣Ψ̂∆ + ∆̃
∣∣∣
∞
≤ r0

(
σ̂ + F̂

(
β, β̃

))
(A.22) ∣∣∆J(β)c∩P

∣∣
1

+
∣∣∣∆̃J(β̃)

c

∣∣∣
1
≤
∣∣∆J(β)∩P

∣∣
1

+
∣∣∣∆̃J(β̃)

∣∣∣
1

+ c

(
F̂
(
β, β̃

)
− F̂

(
β̂,
̂̃
β

))
.

Each function γ ∈ RK+L →
√
Ql(γ) is convex and

wl∗ , −

 wl

w̃l

 1l

{
En
[(
ZlU(β)− β̃l

)2
]
6= 0

}
∈ ∂
√
Ql

(
β, β̃

)
,
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Table 17. Table of correspondence for the results on the C-STIV

STIV C-STIV

σ, r, r

(
σ̂ + F̂

(
β̂,
̂̃
β

))
/2, r0∣∣∣D̂−1

X βJc∩P

∣∣∣
1

∣∣∣D̂−1
X βJc∩P

∣∣∣
1

+
∣∣∣D̂Zβ̃J̃c

∣∣∣
1√

1 + τX
∣∣D−1

X βJc∩P
∣∣
1

√
1 + τX

∣∣D−1
X βJc∩P

∣∣
1

+ 1√
1−τZ

∣∣∣DZ β̃J̃c

∣∣∣
1√

1− τX
∣∣∣D−1

X

(
β̂ − β

)
T

∣∣∣
q

√
1− τX

∣∣∣D−1
X

(
β̂ − β

)
T

∣∣∣
q

+ 1√
1+τZ

∣∣∣∣DZ

(̂̃
β − β̃

)
T̃

∣∣∣∣
q

ĈJ ĈJ,J̃ ,


(

∆, ∆̃
)

:
(
D̂X∆, D̂−1

Z ∆̃
)
∈ RD, ∆Jc∩J(β̂)c = 0, ∆̃

J̃c∩J
(̂̃
β

)c = 0, |∆Jc∩P |1

+
∣∣∣∆̃J̃c

∣∣∣
1
≤ |∆J∩P |1 +

∣∣∣∆̃J̃

∣∣∣
1

+ c
(
ρ̂I |∆I |1 + ρ̂Ic |∆Ic |1 + r0

∣∣∣∆̃∣∣∣
1

)


ĈγJ Ĉγ
J,J̃
,


(

∆, ∆̃
)

:
(
D̂X∆, D̂−1

Z ∆̃
)
∈ RD, |∆Jc∩P |1 +

∣∣∣∆̃J̃c

∣∣∣
1

≤ 2
(
|∆J∩P |1 +

∣∣∣∆̃J̃

∣∣∣
1

+ c
(
ρ̂I |∆I |1 + ρ̂Ic |∆Ic |1 + r0

∣∣∣∆̃∣∣∣
1

))
+ |∆Pc |1


CJ, CJ,J̃ ,


(

∆, ∆̃
)

:
(
DX∆,D−1

Z ∆̃
)
∈ RD,

(√
1−τX
1+τX

− cρI
)
|∆I |1 +

(√
1−τX
1+τX

− cρIc
)
|∆Ic |1

+(1− r0)
∣∣∣∆̃∣∣∣

1
≤ 2|∆J∩P |1 + |∆Pc |1 + 2

∣∣∣∆̃J̃

∣∣∣
1


CγJ Cγ

J,J̃
,


(

∆, ∆̃
)

:
(
DX∆,D−1

Z ∆̃
)
∈ RD,

(√
1−τX
1+τX

− 2cρI
)
|∆I |1 +

(√
1−τX
1+τX

− 2cρIc
)
|∆Ic |1

+(1− r0)
∣∣∣∆̃∣∣∣

1
≤ 3|∆J∩P |1 + 2|∆Pc |1 + 3

∣∣∣∆̃J̃

∣∣∣
1


κ̂q,T,J κ̂q,T,T̃ ,J,J̃ , min

(∆,∆̃)∈ĈJ,J̃ : |∆T |q+|∆̃T̃ |q=1

∣∣∣Ψ̂∆ + ∆̃
∣∣∣
∞

κ̂σ,J κ̂σ,J,J̃ , min
(∆,∆̃)∈Ĉ

J,J̃
: r−1

0 (ρ̂I |∆I |1+ρ̂Ic |∆Ic |1)+|∆̃|
1
=1

∣∣∣Ψ̂∆ + ∆̃
∣∣∣
∞

γ̂Q,J γ̂Q,J,J̃ , min
(∆,∆̃)∈Ĉγ

J,J̃

min
(
|∆P |1+|∆̃|

1
, 1
2

(
3|∆J∩P |1+3|∆̃J̃ |1+c

(
ρ̂I |∆I |1+ρ̂Ic |∆Ic |1+r0|∆̃|1

)
+|∆Pc |1

))
=1

∣∣∣Ψ̂∆ + ∆̃
∣∣∣
∞

B̂
(
Ĵ
)

B̂

(
Ĵ ,
̂̃
J

)
,



(
D̂X∆, D̂−1

Z ∆̃
)
∈ RD, w ≥ 0, −w ≤ ∆ ≤ w, w̃ ≥ 0, −w̃ ≤ ∆̃ ≤ w̃

wĴc∩J(β̂)c = 0, ŵ̃
J
c
∩J
(̂̃
β

)c = 0,

(1− cρ̂I)
(∑

j∈I wj
)

+ (1− cρ̂Ic)
(∑

j∈Ic wj
)

+ (1− cr0)
(∑

l∈P̃ w̃l
)

≤ 2
(∑

j∈Ĵ∩P wj +
∑
l∈̂̃J w̃l

)
+
∑
j∈Pc wj


B̂(k) B̂(k, l) ,


(
D̂X∆, D̂−1

Z ∆̃
)
∈ RD, w ≥ 0, −w ≤ ∆ ≤ w, w̃ ≥ 0, −w̃ ≤ ∆̃ ≤ w̃

(1− cρ̂I)
(∑

j∈I wj
)

+ (1− cρ̂Ic)
(∑

j∈Ic wj
)

+ (1− cr0)
(∑

l∈P̃ w̃l
)

≤ 2 (swk + s̃w̃l) +
∑
j∈Pc wj


θ̂κ
(
Ĵ
)
, θ̂κ (s) θ̂κ

(
Ĵ ,
̂̃
J

)
, θ̂κ (s, s̃)

Θκ(J) Θκ

(
J, J̃

)
, µ

(
1− rΨ

κ
1,[K],∅,J,J̃

− r0µ
cκ

1,J∩P,J̃,J,J̃

)−1

+

Θγ(J) Θγ

(
J, J̃

)
, µ

(
1− rΨ

γ
1,[K],∅,J,J̃

− r0µ

cγ
Q

J,J̃

)−1

+

σU(β) F
(
β, β̃

)
,

1√
1− τZ

max
l∈[L]

(DZ)ll σZlU(β)−β̃l

β̂ω β̂ωk , β̂k1l

{∣∣∣β̂k∣∣∣ > ω̂k(s,s̃)√
En[X2

k
]

}
,
̂̃
β
ω

l ,
̂̃
βl1l

{∣∣∣∣̂̃βl∣∣∣∣ > ω̂l (s, s̃)
√

En[Z2
l ]

}
ω̂k (s) ω̂k (s, s̃) , 2r0σθ̂κ(s,s̃)

κ̂∗
(ek0 )

(s,s̃)
, ̂̃ωl (s, s̃) , 2r0σθ̂κ(s,s̃)

κ̂
( 0
fl

)
(s,s̃)

θκ(s) θκ (s, s̃) , µ
(

1− rΨ
κ1,[K],∅(s,s̃)

− r0µ
κσ(s,s̃)

)−1

+

Θσ
κ(s) Θσ

κ (s, s̃) ,
(

1− rΨ
κ1,[K],∅(s,s̃)

+ r̃0(s+s̃)µ
cκ∞(s,s̃)

)(
1− rΨ

κ1,[K],∅(s,s̃)
− r̃0(s+s̃)µ

cκ∞(s,s̃)

)−1

+

ωk(s) ωk (s, s̃) ,
r0F(β,β̃)µ(Θσκ(s,s̃)+1)θκ(s,s̃)

κ∗
(ek0 )

(s,s̃)
, ω̃l (s, s̃) ,

r0F(β,β̃)µ(Θσκ(s,s̃)+1)θκ(s,s̃)

κ
( 0
fl

)
(s,s̃)

µ ,
√

1 + τZm (τZ , τX).
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where

wl ,
En
[
XZl

(
ZlU(β)− β̃l

)]
√

En
[
Z2
l

]
En
[(
ZlU(β)− β̃l

)2
] and w̃l ,


0

En[ZlU(β)−β̃l]√
En[Z2

l ]En
[
(ZlU(β)−β̃l)

2
]

0

 .

Hence, for l ∈ [L], we have, because we work on G, for k ∈ I,

(
D̂X

)
kk
|(wl)k| ≤

∣∣∣En [XkZl

(
ZlU(β)− β̃l

)]∣∣∣√
En
[(
XkZl

(
ZlU(β)− β̃l

))2
]
√√√√√√√

En
[
(XkZl)

2
(
ZlU(β)− β̃l

)2
]

En
[
X2
k

]
En
[
Z2
l

]
En
[(
ZlU(β)− β̃l

)2
]

≤ r0 max
i∈[n]

|xkizli|√
En
[
X2
k

]
En
[
Z2
l

] ,
but also, by the Cauchy-Schwarz inequality,

(
D̂X

)
kk
|(wl)k| ≤

√√√√ En
[
(XkZl)

2
]

En
[
X2
k

]
En
[
Z2
l

] ,
and, for all l′ in [L],

(
D̂Z

)−1

l′l′
|(w̃l)l′ | ≤ r0, also, by the Cauchy-Schwarz inequality, for all k ∈ Ic,(

D̂X

)
kk
|(wl)k| ≤ ρ̂Ic . Taking w∗ = (w>, w̃>)> as one of the wl∗ for which

√
Ql

(
β, β̃

)
= F̂

(
β, β̃

)
yields an element of ∂F̂

(
β, β̃

)
by Lemma A.1. By definition of ∂F̂

(
β, β̃

)
, we have

F̂
(
β, β̃

)
− F̂

(
β̂,
̂̃
β

)
≤ w>∗

 β − β̂

β̃ − ̂̃β


≤
∣∣∣D̂XwI

∣∣∣
∞
|∆I |1 +

∣∣∣D̂XwIc
∣∣∣
∞
|∆Ic |1 +

∣∣∣D̂−1
Z w̃I

∣∣∣
∞

∣∣∣∆̃∣∣∣
1

≤ ρ̂I |∆I |1 + ρ̂Ic |∆Ic |1 + r0

∣∣∣∆̃∣∣∣
1
.(A.23)

As a result, we have
(

∆, ∆̃
)
∈ Ĉ

J(β),J(β̃).

Using (A.22) and (A.23), we find∣∣∣Ψ̂∆ + ∆̃
∣∣∣
∞
≤ r0

(
2σ + ρ̂I |∆I |1 + ρ̂Ic |∆Ic |1 + r0

∣∣∣∆̃∣∣∣
1

)
.(A.24)

Using the definition of the sensitivities, we obtain

∣∣∣Ψ̂∆ + ∆̃
∣∣∣
∞
≤ r0

2σ + r2
0

∣∣∣Ψ̂∆
∣∣∣
∞

κ̂
σ,J(β),J(β̃)


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≤ 2r0σ

(
1− r2

0

κ̂
σ,J(β),J(β̃)

)−1

+

;

cσ̂ ≤ |∆J(β)∩P |1 +
∣∣∣∆̃J(β̃)

∣∣∣
1

+ cF̂
(
β, β̃

)
≤

∣∣∣Ψ̂∆ + ∆̃
∣∣∣
∞

κ̂
1,J(β)∩P,J(β̃),J(β),J(β̃)

+ cF̂
(
β, β̃

)
.

For a nonsparse vectors, J ⊆ [K], and J̃ ⊆ [L], we obtain

|∆Jc∩P |1 +
∣∣∣∆̃J̃c

∣∣∣
1
≤|∆J∩P |1 +

∣∣∣∆̃J̃

∣∣∣
1

+ c
(
ρ̂I |∆I |1 + ρ̂Ic |∆Ic |1 + r0

∣∣∣∆̃∣∣∣
1

)
+ 2

∣∣∣D̂−1
X βJc∩P

∣∣∣
1

+ 2
∣∣∣D̂Zβ̃J̃c

∣∣∣
1
.

Let us show the first inequality and consider two cases.

First, if 2
∣∣∣D̂−1

X βJc∩P

∣∣∣
1

+ 2
∣∣∣D̂Zβ̃J̃c

∣∣∣
1
≤ |∆J∩P |1 +

∣∣∣∆̃J̃

∣∣∣
1

+ c
(
ρ̂I |∆I |1 + ρ̂Ic |∆Ic |1 + r0

∣∣∣∆̃∣∣∣
1

)
+ |∆P c |1,

then ∆ belongs to Ĉγ
J,J̃

.

Also, we have

σ̂ ≤ 1

c

(∣∣∣D̂−1
X βP

∣∣∣
1
−
∣∣∣D̂−1

X β̂P

∣∣∣
1

+
∣∣∣D̂Zβ̃P̃

∣∣∣
1
−
∣∣∣D̂Zθ̂P̃

∣∣∣
1

)
+ F̂

(
β, β̃

)
≤

∣∣∣Ψ̂∆ + ∆̃
∣∣∣
∞

cγ̂
Q,J,J̃

+ F̂
(
β, β̃

)
.

Second, if 2
∣∣∣D̂−1

X βJc∩P

∣∣∣
1
+2
∣∣∣D̂Zβ̃J̃c

∣∣∣
1
> |∆J∩P |1+

∣∣∣∆̃J̃

∣∣∣
1
+c
(
ρ̂I |∆I |1 + ρ̂Ic |∆Ic |1 + r0

∣∣∣∆̃∣∣∣
1

)
+|∆P c |1,

then we have

|∆|1 +
∣∣∣∆̃∣∣∣

1
= |∆Jc∩P |1 + |∆J∩P |1 + |∆P c |1 +

∣∣∣∆̃J̃c

∣∣∣
1

+
∣∣∣∆̃J

∣∣∣
1
≤ 6

(∣∣∣(D̂−1
X β

)
Jc∩P

∣∣∣
1

+
∣∣∣(D̂Zβ̃

)
J̃c

∣∣∣
1

)
.

For the deterministic lower bounds on the sensitivities we use that, on GΨ, denoting by ∆ = D−1
X D̂X∆

and ∆̃ = DZD̂−1
X ∆, we have∣∣∣Ψ̂∆
∣∣∣
∞
≥ min

l∈[L]

(
D̂ZD−1

Z

)
ll

∣∣∣DZEn
[
ZX>

]
DX∆ + ∆̃

∣∣∣
∞

≥ 1√
1 + τZ

(∣∣∣DZE
[
ZX>

]
DX∆ + ∆̃

∣∣∣
∞
−
∣∣∣DZ(En − E)

[
ZX>

]
DX∆

∣∣∣
∞

)
≥ 1√

1 + τZ

(∣∣∣∣Ψ∆ +
˜̃
∆

∣∣∣∣
∞
− rZ

∣∣∆∣∣
1

)
.

The rest is easy. �
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Remark A.1. When we only use the instruments which are known to be exogenous to obtain the

C-STIV, it simplifies to: for c > 0,
(
β̂, σ̂

)
is any solution of

min
β∈ÎC(r0,σ),σ≥0

∣∣∣D̂−1
X βP

∣∣∣
1

+ cσ,

where

ÎC(r0, σ) ,

{
β ∈ R :

∣∣∣∣D̂Z

(
1

n
Z>U(β)

)
P̃ c

∣∣∣∣
∞
≤ r0σ, F̂ (β) ≤ σ

}
;

∀β ∈ RK , F̂ (β) , max
l∈P̃ c

√
Ql (β).

The restricted set becomes, for J ⊆ [K],

ĈJ =
{

D̂X∆ ∈ RD : ∆
Jc∩J(β̂)

c = 0, |∆Jc∩P |1 ≤ |∆J∩P |1 + c (ρ̂I |∆I |1 + ρ̂Ic |∆Ic |1)
}

where ρ̂I = max
l∈P̃ c, k∈I

(
D̂Z

)
ll

(
D̂X

)
kk

min

(
r0 max

i∈[n]
|xkizli| ,

√
En
[
(XkZl)

2
])

ρ̂Ic = max
l∈P̃ c, k∈Ic

(
D̂Z

)
ll

(
D̂X

)
kk

√
En
[
(XkZl)

2
]
.

Proof of Theorem 7.3. We work on the event on the event G1 ∩ G2 in case (1) or G1 ∩ G2 ∩ GΨ in

cases (2) or (3). First, we show that
(
β̃, F

(
β, β̃

))
∈ ÎNV by the following computations∣∣∣∣D̂Z

(
1

n
Z>
(
Y −Xβ̂

)
− β̃

)
P̃

∣∣∣∣
∞
≤

∣∣∣∣D̂Z

(
1

n
Z>U(β)− β̃

)∣∣∣∣
∞

+
∣∣∣Ψ̂D̂−1

X

(
β̂ − β

)
P̃

∣∣∣
∞

≤ r2F̂2

(
β, β̃

)
+ b̂.

The second constraint is satisfied because, by the triangle inequality and convexity, F̂2

(
β̂, β̃

)
≤

F̂2

(
β, β̃

)
+ b̂σ. Now, because

(
β̃, F̂2

(
β, β̃

))
∈ ÎNV and

(̂̃
β, ̂̃σ) minimizes (7.8), we have

(A.25)
∣∣∣∆̃J(β̃)

c

∣∣∣
1
≤
∣∣∣∆̃J(β̃)

∣∣∣
1

+ c̃
(
F̂2

(
β, β̃

)
− ̂̃σ) .

Using that F̂2

(
β̂, β̃

)
≤ ̂̃σ + b̂σ (by definition of the estimator) and the computations from the proofs

of the results of Section 7.3, we obtain

(A.26) F̂2

(
β, β̃

)
− ̂̃σ ≤ r2

∣∣∣∆̃∣∣∣
1

+ 2b̂σ.

This and (A.25) yield ∣∣∣∆̃J(β̃)
c

∣∣∣
1
≤
∣∣∣∆̃J(β̃)

∣∣∣
1

+ c̃r2

∣∣∣∆̃∣∣∣
1

+ 2c̃b̂σ
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and, equivalently,

(A.27)
∣∣∣∆̃J(β̃)

c

∣∣∣
1
≤ 1 + c̃r2

1− c̃r2

∣∣∣∆̃J(β̃)

∣∣∣
1

+
2c̃

1− c̃r2
b̂σ.

Next, using the second constraint in the definition of

(̂̃
β, ̂̃σ), we find∣∣∣∣D̂Z

(̂̃
β − β̃

)∣∣∣∣
∞
≤
∣∣∣∣D̂Z

(
1

n
Z
>
(
Y −Xβ̂

)
− ̂̃β)

P̃

∣∣∣∣
∞

+

∣∣∣∣D̂Z

(
1

n
Z>U(β)− β̃

)
P̃

∣∣∣∣
∞

+

∣∣∣∣D̂Z

(
1

n
Z>X

(
β̂ − β

))
P̃

∣∣∣∣
∞

≤ r2

(̂̃σ + F̂2

(
β, β̃

))
+ 2b̂.

This and (A.26) yield

(A.28)
∣∣∣∆̃∣∣∣
∞
≤ r2

(
2̂̃σ + r2

∣∣∣∆̃∣∣∣
1

+ 2b̂σ
)

+ 2b̂.

On the other hand, (A.27) implies∣∣∣∆̃∣∣∣
1
≤ 2

1− c̃r2

∣∣∣∆̃J(β̃)

∣∣∣
1

+
2c̃b̂σ

1− c̃r2

≤
2
∣∣∣J (β̃)∣∣∣
1− c̃r2

∣∣∣∆̃∣∣∣
∞

+
2c̃b̂σ

1− c̃r2
.(A.29)

Inequalities (7.9) and (7.10) follow by simple manipulations of (A.28) and (A.29).

As before, we obtain

(A.30) ̂̃σ ≤
∣∣∣∆̃J(β̃)

∣∣∣
1

c̃
+
√

1 + τF̂2

(
β, β̃

)
≤

∣∣∣J (β̃)∣∣∣ ∣∣∣∆̃∣∣∣
∞

c̃
+
√

1 + τF̂2

(
β, β̃

)
,

which, together with (A.28) and (A.29), yield∣∣∣∣D̂Z

(̂̃
β − β̃

)∣∣∣∣
∞
≤ 2

(
1− 2r2

∣∣∣J (β̃)∣∣∣ ( 1

1− c̃r2
+

1

c̃

))−1

+

(
r2

√
1 + τF

(
β, β̃

)
+ b̂+ r2

(
1 +

c̃r2

1− c̃r2

)
b̂σ
)
.

The rest is easy. �

Proof of Theorem 8.1. Take (β,Λ) ∈ Bs,s′,sr . Set ∆′ ,
(

Λ̂− Λ
)

D̂−1
Z , and ∆

′
, ∆′D̂ZD−1

Z .

Clearly, on G′0, Λ belongs to Â
(
r′0, F̂ (Λ)

)
. We now work on the event G′0 ∩ GΨ ∩ EcZ′ ∩ EcT .

We start by proving the inequalities from item (i). The arguments in the proof of Theorem 4.1 yield∣∣∣∆′Ψ̂>∣∣∣
∞
≤ r′0

(
ν̂ + F̂ (Λ)

)
(A.31) ∣∣∣∆′J(Λ)c

∣∣∣
1
≤
∣∣∣∆′J(Λ)

∣∣∣
1

+
λ

ρ̂

(
F̂ (Λ)− F̂

(
Λ̂
))
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and, by those of the proof results of Section 7.3, F̂ (Λ)− F̂
(

Λ̂
)
≤ ρ̂ |∆′|1.

As a result, we have ∆′ ∈ C ′J(Λ) ⊆ Ĉ ′J(Λ) and, using the definition of κ̂′1,J(Λ),J(Λ) and of the objective

function in (8.2) in the first display and (A.31) in the third display,

ν̂ ≤
ρ̂
∣∣∣∆′Ψ̂>∣∣∣

∞
λκ̂′1,J(Λ),J(Λ)

+ F̂ (Λ) ;

ν̂ + F̂ (Λ) ≤ 2F̂ (Λ)

(
1− r′0ρ̂

λκ̂′1,J(Λ),J(Λ)

)−1

+

;

∣∣∣∆′Ψ̂>∣∣∣
∞
≤ 2r′0F̂ (Λ)

(
1− r′0ρ̂

λκ̂′1,J(Λ),J(Λ)

)−1

+

.

To conclude, we use the fact that we work on G′0 ∩ GΨ ∩ EcZ′ ∩ EcT .

Let us now show the results of item (ii). Take J ⊆ [O]× [L]. We have

|∆′Jc |1 ≤ |∆′J |1 + 2
∣∣∣ΛJcD̂−1

Z

∣∣∣
1

+ λ
∣∣∆′∣∣

1
.

Let us now distinguish between two cases.

Case 1: 2
∣∣∣ΛJcD̂−1

Z

∣∣∣
1
≤ |∆′J |1. In that case we have ∆ ∈ C ′γ,J . From this, for each o ∈ [O], we have

√
1− τZ

∣∣∣∣(Λ̂− Λ
)
{o}×[L]

D−1
Z

∣∣∣∣
1

≤ 2
r′0F (Λ)

√
1 + τT

γ′1,{o}×[L],J

√
1− τX

Θ′γ(J)

≤ 2
r′0F (Λ)

√
1 + τT

mino∈[O] γ
′
1,{o}×[L],J

√
1− τX

Θ′γ(J).

Case 2: 2
∣∣∣ΛJcD̂−1

Z

∣∣∣
1
> |∆′J |1. In that case, we have

|∆′|1 = |∆′Jc |1 + |∆′J |1 ≤ 2
3 + λ

1− λ

∣∣∣ΛJcD̂−1
Z

∣∣∣
1
,

hence

|∆′|1 ≤ 2
3 + λ

1− λ

√
1 + τZ
1− τZ

∣∣ΛJcD−1
Z

∣∣
1
.

This allows to conclude. �

Proof of Theorem 8.2. We make the proof in the case G = 1. Extension to G > 1 is easy.

Take (β,Λ) ∈ Bs,s′,sr . Set ∆ , D̂−1
X

(
β̂ − β

)
, ∆ , D−1

X

(
β̂ − β

)
, ∆′ ,

(
Λ̂− Λ

)
D̂−1

Z , ∆
′
, ∆′D̂ZD−1

Z ,

and EΛZ ,
{∣∣DΛZΛ(En − E)

[
ZZ>

]
Λ>DΛZ

∣∣
∞ ≥ τZ

}
. Due to Assumption 8.1, we have

P (EΛZ) = P

(∣∣∣∣∣
n∑
i=1

(
DΛZΛziz

>
i Λ>DΛZ −DΛZE

[
ΛZZ>Λ>

]
DΛZ

)∣∣∣∣∣
∞

≥ nτΛZ

)
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≤ CN(OL)MΛZ(O)

nτ2
ΛZ

.

We use the decomposition

√
n
(

Ω̂β − Ωβ
)

= R+
1√
n

Λ̂Z>U,

where

R ,
√
n

(
Ω− 1

n
Λ̂Z>X

)
D̂XD̂−1

X DX∆.

We have

|R|∞ ≤
√
n

∣∣∣∣(Ω− 1

n
Λ̂Z>X

)
D̂X

∣∣∣∣
∞

∣∣∣D̂−1
X DX∆

∣∣∣
1

≤
√
nr′0ν̂F̂ (Λ)

∣∣∣D̂−1
X DX∆

∣∣∣
1

(by definition of the estimator).

So, on the event of Theorem 8.1 intersected with EcX ∩ G, we have

|R|∞ ≤
√
nr′0vβ(n)vν(n)

√
1 + τX .

Define

TΛ =

∣∣∣∣∣∣∣∣
1√
n

n∑
i=1

D̂
Λ̂Z

Λ̂zi
ui(β)√
Q̂
(
β̂
)
∣∣∣∣∣∣∣∣
∞

, TΛ2 =

∣∣∣∣∣∣∣∣
1√
n

n∑
i=1

DΛZΛ̂zi
ui(β)√
Q̂
(
β̂
)
∣∣∣∣∣∣∣∣
∞

, TΛ1 =

∣∣∣∣∣ 1√
n

n∑
i=1

DΛZΛ̂zi
ui(β)

σU(β)

∣∣∣∣∣
∞

,

TΛ0 =

∣∣∣∣∣ 1√
n

n∑
i=1

DΛZΛzi
ui(β)

σU(β)

∣∣∣∣∣
∞

, NΛ0 =

∣∣∣∣∣ 1√
n

n∑
i=1

χi

∣∣∣∣∣
∞

;

WΛ =

∣∣∣∣∣ 1√
n

n∑
i=1

D̂
Λ̂Z

Λ̂ziei

∣∣∣∣∣
∞

, WΛ1 =

∣∣∣∣∣ 1√
n

n∑
i=1

DΛZΛ̂ziei

∣∣∣∣∣
∞

, WΛ0 =

∣∣∣∣∣ 1√
n

n∑
i=1

DΛZΛziei

∣∣∣∣∣
∞

;

where χi are independent Gaussian vectors of covariance E[DΛZΛziz
>
i Λ>DΛZ ]. NΛ0 is a Gaussian

approximation of TΛ0.

By (DGP.1), (DGP.4), and Proposition 3.2 in Chernozhukov, Chetverikov, and Kato (2017), we get

max (|P (TΛ0 ≤ t)− P (NΛ0 ≤ t)| , |P (WΛ0 ≤ t)− P (NΛ0 ≤ t)|) ≤ ρ.(A.32)

where the constant C2 in the definition of ρ from Scenario 5 can also depend on sr. We denote by qNΛ0

the quantile function of NΛ0 and by qWΛ0
the conditional quantile function of WΛ0 given Z. Lemma

3.1 in Chernozhukov, Chetverikov, and Kato (2013) yields, for all t ∈ R,

|P (WΛ0 ≤ t|Z)− P (NΛ0 ≤ t)| ≤ ϕΛ(τZ) on EcΛZ .
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The same analysis as for Scenario 5 yields

|P (TΛ0 ≤ qWΛ0
(α))− α| ≤ 2ϕΛ(τZ)) + 2

CN(OL)MΛZ(O)

nτ2
ΛZ

+ 2ρ.(A.33)

We now have to prove that, for some sequences ζ1, ζ2(ζ1, τ
′
Z), and ζ ′2(ζ1) converging to zero,

P
(
P ( |WΛ −WΛ0| > ζ1|Z) > ζ2(ζ1, τ

′
Z)
)
< ζ2(ζ1, τ

′
Z)

P (|TΛ − TΛ0| > ζ1) ≤ ζ ′2(ζ1).

Let us consider the second bound. The first bound can be treated in the same way and the arguments

in the analysis of the multiplier bootstrap for Scenario 5.

By (DGP.3), on an event of probability at least 1−αΛ(n)−CN(O)MΛ,2(O)/(n (τΛZ)2), for all positive

τΛZ , we have, for all o ∈ [O],∣∣∣∣∣
√
En
[
(Λ̂o·Z)2

]
−
√
E [(Λo·Z)2]

∣∣∣∣∣ ≤
∣∣∣∣∣
√
En
[
(Λ̂o·Z)2

]
−
√

En [(Λo·Z)2]

∣∣∣∣∣+
∣∣∣√En [(Λo·Z)2]−

√
E [(Λo·Z)2]

∣∣∣
≤

√
En
[((

Λ̂o· − Λo·

)
Z
)2
]

+
(√

1 + τΛZ − 1
)
, vD,1(n),

≤ vΛ,2(n) +
(√

1 + τΛZ − 1
)
, vD,1(n),(A.34)

hence ∣∣∣D̂Λ̂Z
−DΛZ

∣∣∣
∞
≤ vD,1(n) max

o∈[O]

(DΛZ)oo

(DΛZ)−1
oo − vD,1(n)

, vD,2(n)

and

|TΛ − TΛ2| ≤ TΛ2vD,2(n).

On the same event, because |TΛ1 − TΛ0| ≤ |DΛZ |∞
∣∣∣∆′∣∣∣

∞,∞
T0, we get

|TΛ1 − TΛ0| ≤ T0 |DΛZ |∞ vΛ(n).

On an event of probability at least 1− αβ(n), we have

∣∣∣∣√Q̂(β̂)− σU(β)

∣∣∣∣ ≤ vσ(n), thus∣∣∣∣∣∣∣∣
1√
Q̂
(
β̂
) − 1

σU(β)

∣∣∣∣∣∣∣∣ ≤
vσ(n)

σU(β)(σU(β) − vσ(n))
,

hence |TΛ2 − TΛ1| ≤ TΛ1vσ(n)/(σU(β) − vσ(n)).

Thus, on an event of probability at least 1− αβ(n)− αΛ(n)− CN(O)MΛ,2(O)/(n (τ ′ΛZ)2), we have

|TΛ − TΛ0| ≤TΛ1

((
1 +

vσ(n)

σU(β) − vσ(n)

)
vD,2(n) +

vσ(n)

σU(β) − vσ(n)

)
+ T0 |DΛZ |∞ vΛ(n)
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≤TΛ0

((
1 +

vσ(n)

σU(β) − vσ(n)

)
vD,2(n) +

vσ(n)

σU(β) − vσ(n)

)
+ T0 |DΛZ |∞ vΛ(n)

(
1 +

(
1 +

vσ(n)

σU(β) − vσ(n)

)
vD,2(n) +

vσ(n)

σU(β) − vσ(n)

)
.

The remaining argument uses the pigeonhole principle and a union bound.

Let us now explain how the model with approximation errors can be dealt with.

We base our analysis on the decomposition

√
n
(

Ω̂β − Ωβ − V (β)
)

= R+
1√
n

Λ̂Z>V(β)−
√
nV (β) +

1√
n

Λ̂Z>W(β),

where R and the last stochastic term are as before. We have, on the event of Theorem 8.1 intersected

with an event of probability at least 1− CN(O)MΛ,2(O)/(nτ2
Λ)− CN(OL)MΛZ(O)/(nτ2

ΛZ)∣∣∣∣ 1√
n

Λ̂Z>V(β)

∣∣∣∣
∞
≤
∣∣∣Λ̂Z>

∣∣∣
2,∞

ρE

≤
∣∣∣Λ̂Z>

∣∣∣
2,∞

vv(n)√
n

≤ vv(n)

(
1√
n

∣∣∣ΛZ>
∣∣∣
2,∞

+ vΛ,2(n)

)
≤ vv(n)

((√
1 + τΛZ − 1

)
+
√

1 + τΛ

∣∣∣(σΛo·Z)o∈[O]

∣∣∣
∞

+ vΛ,2(n)
)

and |
√
nV (β)|∞ ≤ vv(n). �

Proof of Theorem 8.3. We make the proof in the case G = 1. Extension to G > 1 is easy.

Denote by ∆+ , D−1
X

(
β̂+ − β

)
and work on the event G+ ∩ GΨ+ ∩ EcX− ∩ EcZ′− ∩ EcZX>− where each

are defined like before. We add the indices + and − to the events to make precise the sample we are

referring to. The event EcX− ∩ EcZ′− ∩ EcZX>− has probability at least

1− CN(K)MX(K)

n−τ2
X−

−
CN(L)M ′Z(L)

n−(τ ′Z−)2
− CN(KL)M(L,K)

n−r2
Ψ−

.

We have

√
n+

(
Ω̂β − Ωβ

)
= R+

1
√
n+

Λ̂Z>+U+,

where

R ,
√
n+

((
Ω− 1

n−
Λ̂Z>−X−

)
+

(
1

n−
Λ̂Z>−X− −

1

n+
Λ̂Z>+X+

))
DX∆+.

We have

|R|∞ ≤
√
n+

(∣∣∣∣(Ω− 1

n−
Λ̂Z>−X−

)
D̂X−

∣∣∣∣
∞

∣∣∣D̂−1
X−

DX

∣∣∣
∞

+

∣∣∣∣( 1

n−
Λ̂Z>−X− −

1

n+
Λ̂Z>+X+

)
DX

∣∣∣∣
∞

) ∣∣∆+

∣∣
1
.
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Denoting by R̃ the quantity in the middle bracket above, we obtain |R|∞ ≤
√
n+vβ(n+)R̃ and

R̃ ≤
∣∣∣∣(Ω− 1

n−
Λ̂Z>−X−

)
D̂X−

∣∣∣∣
∞

∣∣∣D̂−1
X−

DX

∣∣∣
∞

+
∣∣∣Λ̂D̂−1

Z−

∣∣∣
∞,∞

∣∣∣D̂Z−D−1
Z

∣∣∣
∞

(rΨ− + rΨ+)

≤
√

1 + τX−

∣∣∣∣(Ω− 1

n−
Λ̂Z>−X−

)
D̂X−

∣∣∣∣
∞

+
∣∣∣Λ̂D̂−1

Z−

∣∣∣
∞,∞

rΨ− + rΨ+√
(1 + τX−)(1− τ ′Z−)

 ,

and, for Λ∗ ∈ Sλ1,λ2 , using the definition of Λ̂ in the third display and denoting by

M(λ1) ,
√

1 + τX−max

1,
rΨ− + rΨ+

λ1

√
(1 + τX−)(1− τ ′Z−)

 ,

R̃ ≤M(λ1)

(∣∣∣∣(Ω− 1

n−
Λ̂Z>−X−

)
D̂X−

∣∣∣∣
∞

+ λ1

∣∣∣Λ̂D̂−1
Z−

∣∣∣
∞,∞

)
(A.35)

≤M(λ1)

(∣∣∣∣(Ω− 1

n−
Λ̂Z>−X−

)
D̂X−

∣∣∣∣
∞

+ λ1

∣∣∣Λ̂D̂−1
Z−

∣∣∣
∞,∞

+
λ2√
n+

∣∣∣Λ̂Z>+

∣∣∣
2,∞

)
≤M(λ1)

(∣∣∣∣(Ω− 1

n−
Λ∗Z

>
−X−

)
D̂X−

∣∣∣∣
∞

+ λ1

∣∣∣Λ∗D̂−1
Z−

∣∣∣
∞,∞

+
λ2√
n+

∣∣∣Λ∗Z>+∣∣∣
2,∞

)
≤M(λ1)

(∣∣∣∣(Ω− 1

n−
Λ∗Z

>
−X−

)
D̂X−

∣∣∣∣
∞

+ λ1

∣∣∣Λ∗D̂−1
Z−

∣∣∣
∞,∞

+
λ2√
n+

∣∣∣Λ∗Z>+∣∣∣
2,∞

)

≤M(λ1)


∣∣∣(Ω− 1

n−
Λ∗Z

>
−X−

)
DX

∣∣∣
∞√

1− τX−
+ λ1

√
1 + τZ−

∣∣Λ∗D−1
Z

∣∣
∞,∞ +

λ2√
n+

∣∣∣Λ∗Z>+∣∣∣
2,∞

 .

Let ε > 0 and n0 such that, for all n+ ≥ n0, (σ − v2(n+))/σ ≥ 1 − ε. If ui(β) is i.i.d. normally

distributed and independent of zi we proceed as follows. For n+ ≥ n0, we have

P

(
1
√
n+

∣∣∣D̂Λ̂Z+
Λ̂Z>+U+(β)

∣∣∣
∞
>
qW+(1− α)
√
n+

√
Q̂
(
β̂+

))

≤ P

(∣∣∣∣∣D̂Λ̂Z+
Λ̂Z>+E
√
n+

∣∣∣∣∣
∞

>
qW+(1− α)
√
n+

(
1− vσ(n+)

σ

))
+ αβ(n+)

≤ E

[
P

(∣∣∣∣∣D̂Λ̂Z+
Λ̂Z>+E
√
n+

∣∣∣∣∣
∞

>
qW+(1− α)
√
n+

(1− ε)

)∣∣∣∣∣F∞
]

+ αβ(n+)

= 1− α− αβ(n+).

Otherwise, we obtain under the appropriate scenario, for n+ ≥ n0,

P

(
1

n+

∣∣∣D̂Λ̂Z+
Λ̂Z>+U+(β)

∣∣∣
∞
> rΛ

+

√
Q̂
(
β̂+

))
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≤ P
(

1

n+

∣∣∣D̂Λ̂Z+
Λ̂Z>+U+

∣∣∣
∞
> rΛ

+

(
1− vσ(n+)

σ

))
+ αβ(n+)

≤ E
[
P
(

1

n+

∣∣∣D̂Λ̂Z+
Λ̂Z>+U+

∣∣∣
∞
> rΛ

+ (1− ε)
)∣∣∣∣F∞]+ αβ(n+)

= 1− α− αβ(n+)− αB(n+),

where αB(n+) is nonzero only for Scenario 4.

Let us now explain how the model with approximation errors can be dealt with. We base our

analysis on the decomposition

√
n+

(
Ω̂β − Ωβ − V (β)

)
= R+

1
√
n+

Λ̂Z>+V+(β)−√n+V (β) +
1
√
n+

Λ̂Z>+W+(β),

where R and the last stochastic term are as before. We have |
√
nV (β)|∞ ≤ vv(n) and∣∣∣∣ 1√

n
Λ̂Z>+V(β)

∣∣∣∣
∞
≤ vv(n)

1
√
n+

∣∣∣Λ̂Z>+

∣∣∣
2,∞

√
n+

n
.

By (8.4), we have∣∣∣∣ 1√
n

Λ̂Z>+V(β)

∣∣∣∣
∞
≤ vv(n)

λ2

√
n+

n

(∣∣∣∣(Ω− 1

n−
Λ∗Z

>
−X−

)
D̂X−

∣∣∣∣
∞

+ λ1

∣∣∣Λ∗D̂−1
Z−

∣∣∣
∞,∞

+
λ2√
n+

∣∣∣Λ∗Z>+∣∣∣
2,∞

)
,

hence the modification of the result without approximation errors follows. �

A.4. Lower Bounds on κ̂q,J When Z = X. The following propositions establish lower bounds on

κ̂q,J when there are no endogenous regressors, P = [K], R = RK , and c ∈ (0, r−1). Recall that, in

that case, ĈJ is a cone and takes the form (4.2). For all J ⊆ [K], we define the following restricted

eigenvalue (RE) constants

κ̂RE,J , min
∆∈RK\{0}: ∆∈ĈJ

|∆>Ψ̂∆|
|∆J |22

, κ̂′RE,J , min
∆∈RK\{0}: ∆∈ĈJ

|J ||∆>Ψ̂∆|
|∆J |21

.

Proposition A.2. For all J ⊆ [K], we have

κ̂1,J ≥
1− cr

2
κ̂1,J,J ≥

(1− cr)2

4|J |
κ̂′RE,J ≥

(1− cr)2

4|J |
κ̂RE,J .

Proof. For ∆ such that |∆Jc |1 ≤ 1+cr
1−cr |∆J |1 we have |∆|1 ≤ 2

1−cr |∆J |1. Thus, one obtains

|∆>Ψ̂∆|
|∆J |21

≤
|∆|1

∣∣∣Ψ̂∆
∣∣∣
∞

|∆J |21
≤ 2

1− cr

∣∣∣Ψ̂∆
∣∣∣
∞

|∆J |1
≤ 4

(1− cr)2

∣∣∣Ψ̂∆
∣∣∣
∞

|∆|1
.

Taking the infimum over ∆’s proves the first two inequalities of the proposition. The second inequality

uses the fact that from Hölder’s inequality |∆J |21 ≤ |J ||∆J |22. �
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We now obtain bounds for sensitivities κ̂q,J with 1 < q ≤ 2. For all s ≤ K, we consider a

uniform version of the restricted eigenvalue constant: κ̂RE(s) , min|J |≤s κ̂RE,J .

Proposition A.3. For all s ≤ K/2 and 1 < q ≤ 2, we have

∀ J : |J | ≤ s, κ̂q,J ≥ C(q)s−1/qκ̂RE(2s),

where C(q) = 2−1/q−1/2(1− cr)
(

1 + 1+cr
1−cr (q − 1)−1/q

)−1
.

Proof. For ∆ ∈ RK and J ⊆ [K], let J1 = J1(∆, J) be the subset of indices in [K] corresponding

to the s largest in absolute value components of ∆ outside of J . Define J+ = J ∪ J1. If |J | ≤ s

we have |J+| ≤ 2s. It is easy to see that the kth largest absolute value of elements of ∆Jc satisfies

|∆Jc |(k) ≤ |∆Jc |1/k. Thus,

|∆Jc+
|qq =

∑
j∈Jc+

|∆j |p =
∑
k≥s+1

|∆Jc |q(k) ≤ |∆Jc |q1
∑
k≥s+1

1

kq
≤ |∆Jc |q1

(q − 1)sq−1
.

For ∆ ∈ ĈJ , this implies

|∆Jc+
|q ≤

|∆Jc |1
(q − 1)1/qs1−1/q

≤ c0|∆J |1
(q − 1)1/qs1−1/q

≤ c0|∆J |q
(q − 1)1/q

,

where c0 = 1+cr
1−cr . Therefore, using that |∆J |q ≤ |∆J+ |q, we get, for ∆ ∈ ĈJ ,

(A.36) |∆|q ≤ |∆J+ |q + |∆Jc+
|q ≤ (1 + c0(q − 1)−1/q)|∆J+ |q ≤ (1 + c0(q − 1)−1/q)(2s)1/q−1/2|∆J+ |2,

where the last inequality follows from the bound

|∆J+ |q ≤ |J+|1/q−1/2|∆J+ |2 ≤ (2s)1/q−1/2|∆J+ |2.

Using (A.36) and |∆|1 ≤ 2
1−cr |∆J |1 ≤

2
√
|J |

1−cr |∆J |2 ≤ 2
√
s

1−cr |∆J |2 ≤ 2
√
s

1−cr |∆J+ |2 for ∆ ∈ ĈJ , we get

|∆>Ψ̂∆|
|∆J+ |22

≤
|∆|1

∣∣∣Ψ̂∆
∣∣∣
∞

|∆J+ |22

≤
2
√
s
∣∣∣Ψ̂∆

∣∣∣
∞

(1− cr)|∆J+ |2

≤
s1/q

∣∣∣Ψ̂∆
∣∣∣
∞

C(q)|∆|q
.

Since |J+| ≤ 2s, this proves the proposition. �
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A.5. Relation Between the Sensitivities in the General Case. The following result allows to

relate the sensitivities for various losses. It is obtained by manipulations of the definition of the

sensitivities and requires no assumption. It allows to relate the sensitivities for various losses.

Proposition A.4. Let P, J be two subsets of [K] and c > 0.

(i) Let J ⊆ Ĵ ⊆ [K]. Then, for all l ∈ L, we have κ̂l,J ≥ κ̂l,Ĵ .

(ii) For all T ⊆ [K] and q ∈ [1,∞], we have κ̂q,T,J ≥ κ̂q,J .

(iii) For all q ∈ [1,∞] and T ⊆ [K],

cκ(|J ∩ P |)−1/qκ̂∞,J ≤ κ̂q,J ≤ κ̂∞,J ,(A.37)

|J̃ |−1/qκ̂∞,T,J ≤ κ̂q,T,J ≤ κ̂∞,T,J ,(A.38)

where, for s ∈ [p], cκ(s) , min
(
(1− cr)−1

+ (2s+ |P c|+ c(1− r)|Ic|), (1− c)−1
+ (2s+ |P c|)

)
.

(iv) In addition to (A.37), we have, for any partition
⋃M
m=1 Jm = [K],

κ̂1,J ≥ max

((
2

κ̂1,J∩P,J
+

1

κ̂1,P c,J
+

cr

κ̂σ,J

)−1

, (1− cr)+

(
2

κ̂1,J∩P,J
+

1

κ̂1,P c,J
+
c(1− r)
κ̂1,Ic,J

)−1

,

(A.39)

(1− c)+

(
2

κ̂1,J∩P,J
+

1

κ̂1,P c,J

)−1

,

(
M∑
m=1

1

κ̂1,Jm,J

)−1
 .

(v) We have

κ̂σ,J ≥ max

(
(1− cr)+

(
2

κ̂1,J∩P,J
+

1

κ̂1,P c,J
+

1− r
rκ̂1,Ic,J

)−1

,

(
1

κ̂1,I,J
+

1

r κ̂1,Ic,J

)−1

, rκ̂1,J

)
.(A.40)

(vi) For all T ⊆ [K], we have

κ̂∞,T,J = min
k∈T

κ̂∗ek,J = min
k∈T

min
∆∈ĈJ : ∆k=1, |∆|∞≤1

∣∣∣Ψ̂∆
∣∣∣
∞
.

The above statements hold if we replace the sensitivities based on ĈJ by those based on Ĉγ,J , cκ(s),

(A.39), and (A.40) by, respectively,

cγ(s) , min

(
3s+ 2|P c|+ 2c(1− r)|Ic|

(1− 2cr)+
,
3s+ 2|P c|
(1− 2c)+

)
;

γ̂1,J ≥ max

((
3

γ̂1,J∩P,J
+

2

γ̂1,P c,J
+

2cr

γ̂σ,J

)−1

, (1− 2cr)+

(
3

γ̂1,J∩P,J
+

2

γ̂1,P c,J
+

2c(1− r)
γ̂1,Ic,J

)−1

,

(1− 2c)+

(
3

γ̂1,J∩P,J
+

2

γ̂1,P c,J

)−1

,

(
M∑
m=1

1

γ̂1,Jm,J

)−1
 ;
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γ̂σ,J ≥ max

(
(1− 2cr)+

(
3

γ̂1,J∩P,J
+

2

γ̂1,P c,J
+

1− r
r

1

γ̂1,Ic,J

)−1

,

(
1

γ̂1,I,J
+

1

r γ̂1,Ic,J

)−1

, rγ̂1,J

)
.

The bound in (A.37) applies to the case where q = 1 but sharper and simple bounds can be

obtained by using (A.39). For example, using the two middle terms in the maximum and (A.38) yields

κ̂1,J ≥ max

(
(1− cr)+

(
2 |J ∩ P |
κ̂∞,J∩P,J

+
|P c|

κ̂∞,P c,J
+
c(1− r) |Ic|
κ̂∞,Ic,J

)−1

, (1− c)+

(
2 |J ∩ P |
κ̂∞,J∩P,J

+
|P c|

κ̂∞,P c,J

)−1
)
.

Proof of Proposition A.4. We prove the bounds for the sensitivities based on ĈJ , those for the

sensitivities based on Ĉγ,J are obtained similarly. Parts (i) and (ii) are straightforward. The upper

bound in (A.37) follows from the fact that |∆|q ≥ |∆|∞. We obtain the lower bound as follows.

Because |∆|q ≤ |∆|1/q1 |∆|
1−1/q
∞ , we get that, for ∆ 6= 0,

(A.41)

∣∣∣Ψ̂∆
∣∣∣
∞

|∆|q
≥

∣∣∣Ψ̂∆
∣∣∣
∞

|∆|∞

(
|∆|∞
|∆|1

)1/q

.

Furthermore, for ∆ ∈ ĈJ , by definition of the set, we have

(A.42) |∆Jc∩P |1 ≤ |∆J∩P |1 + cr|∆|1 + c(1− r)|∆Ic |1

which, by adding |∆(J∩P )∪P c |1 on both sides, is equivalent to

|∆|1 ≤
1

(1− cr)+
(2|∆J∩P |1 + |∆P c |1 + c(1− r)|∆Ic |1) .(A.43)

From (A.43) and the fact that ∆
Jc∩J(β̂)

c = 0, we deduce

|∆|1 ≤

∣∣∣∆(J∪P c∪Ic)∩(J∪J(β̂))

∣∣∣
∞

(1− cr)+

(
2|J ∩ P |+

∣∣∣P c ∩ (J ∪ J (β̂))∣∣∣+ c(1− r)
∣∣∣Ic ∩ (J ∪ J (β̂))∣∣∣) .

We obtain the first lower bound using the fact that |∆J∪P c∪Ic |∞ ≤ |∆|∞ and (A.41).

Let us obtain an alternative lower bound for the case where c ∈ (0, 1). The condition that ∆ ∈ ĈJ
can also be written as

|∆Jc∩P |1 ≤ |∆J∩P |1 + c(r − 1)|∆I |1 + c|∆|1

which implies

|∆Jc∩P |1 ≤ |∆J∩P |1 + c|∆|1

and, by adding |∆(J∩P )∪P c |1 on both sides, if c ∈ (0, 1), this is equivalent to

(A.44) |∆|1 ≤
1

1− c
(2|∆J∩P |1 + |∆P c |1) .
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This yields

(A.45) |∆|1 ≤
2|J ∩ P |+

∣∣∣P c ∩ (J ∪ J (β̂))∣∣∣
(1− c)+

∣∣∣∆(J∪P c)∩(J∪J(β̂))

∣∣∣
∞
.

Inequality (A.38) can be proved in a similar manner. The lower bounds follows from the fact that∣∣∣Ψ̂∆
∣∣∣
∞

|∆
J̃
|q
≥

∣∣∣Ψ̂∆
∣∣∣
∞

|∆
J̃
|∞

( |∆
J̃
|∞

|∆
J̃
|1

)1/q

and |∆
J̃
|1 ≤ |J̃ ||∆J̃

|∞. While the upper bound holds because
∣∣∆

J̃

∣∣
q
≥
∣∣∆

J̃

∣∣
∞.

To prove (A.39) it suffices to note that, by definition of the set ĈJ ,

|∆|1 ≤
(

2

κ̂1,J∩P,J
+

1

κ̂1,P c,J
+

cr

κ̂σ,J

) ∣∣∣Ψ̂∆
∣∣∣
∞
,(A.46)

by (A.43),

|∆|1 ≤
1

(1− cr)+

(
2

κ̂1,J∩P,J
+

1

κ̂1,P c,J
+
c(1− r)
κ̂1,Ic,J

) ∣∣∣Ψ̂∆
∣∣∣
∞
,

and, by (A.44),

|∆|1 ≤
1

(1− c)+

(
2

κ̂1,J∩P,J
+

1

κ̂1,P c,J

) ∣∣∣Ψ̂∆
∣∣∣
∞
.

The last upper bound follows from the fact that

|∆|1 =

M∑
m=1

|∆Jm |1 ≤

(
M∑
m=1

1

κ̂1,Jm,J

)∣∣∣Ψ̂∆
∣∣∣
∞
.

The bound (v) is obtained by rewriting ∆ ∈ ĈJ as

(A.47) (1− cr)|∆I |1 + (1− c)|∆Ic |1 ≤ 2|∆J∩P |1 + |∆P c |1,

which yields

|∆I |1 +
1

r
|∆Ic |1 ≤

1

(1− cr)+

(
2|∆J∩P |1 + |∆P c |1 +

1− r
r
|∆Ic |1

)
(A.48)

≤

∣∣∣Ψ̂∆
∣∣∣
∞

(1− cr)+

(
2

κ̂1,J∩P,J
+

1

κ̂1,P c,J
+

1− r
rκ̂1,Ic,J

)
.

The second upper bound follows from noticing that, if κ̂σ,J > 0, we have

1

κ̂σ,J
= sup

∆∈ĈJ : |Ψ̂∆|∞=1

(
|∆I |1 + r−1 |∆Ic |1

)
≤ sup

∆∈ĈJ : |Ψ̂∆|∞=1

|∆I |1 +
1

r
sup

∆∈ĈJ : |Ψ̂∆|∞=1

|∆Ic |1 .
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The third upper uses that |∆I |1 + r−1 |∆Ic |1 ≤ r−1 |∆|1.

If we replace ĈJ by Ĉγ,J , the second and third inequalities hold for the corresponding sensitivities in

the same way. Else, we use that the set Ĉγ,J can be written as

(1− 2cr)|∆I |1 + (1− 2c)|∆Ic |1 ≤ 3|∆J∩P |1 + 2|∆P c |1.

Let us now prove (vi). Because for all k in J̃ , |∆
J̃
|∞ ≥ |∆k|, one obtains that for all k in J̃ ,

κ̂∞,T,J = min
∆∈ĈJ

∣∣∣Ψ̂∆
∣∣∣
∞

|∆
J̃
|∞
≤ min

∆∈ĈJ

∣∣∣Ψ̂∆
∣∣∣
∞

|∆k|
= κ̂∗ek,J .

Thus

κ̂∞,T,J ≤ min
k∈J̃

κ̂∗ek,J .

But one also has

(A.49) κ̂∞,T,J = min
k∈J̃

min
∆∈ĈJ : |∆k|=|∆J̃

|∞=1

∣∣∣Ψ̂∆
∣∣∣
∞
≥ min

k∈J̃
min

∆∈ĈJ : |∆k|=1

∣∣∣Ψ̂∆
∣∣∣
∞
.

�

The next proposition gives a sufficient condition to obtain a lower bound on the `∞ sensitivity

which, by Proposition A.4, is a key element to bound from below all the sensitivities.

Proposition A.5. If there exist random variables η1 and η2 such that, on an event E, η1 > 0,

η2 ∈ (0, 1), and

(A.50) ∀k ∈ [K], ∃l(k) ∈ [L] :

∣∣∣∣(Ψ̂
)
l(k)k

∣∣∣∣ ≥ η1, max
k′ 6=k

∣∣∣∣(Ψ̂
)
l(k)k′

∣∣∣∣ ≤ 1− η2

cκ(|J ∩ P |)

∣∣∣∣(Ψ̂
)
l(k)k

∣∣∣∣ ,
then, on E, κ̂∞,J ≥ η1η2. The same holds for the sensitivity based on Ĉγ,J replacing cκ by cγ.

Assumption (A.50) is similar to the coherence condition in Donoho, Elad, and Temlyakov (2006)

for symmetric matrices, but it is more general because it deals with rectangular matrices. It means that

there exists one sufficiently “good” instrument. Indeed, if the regressors and instruments are centered,

|(Ψ̂)l(k)k| measures the empirical correlation between the l(k)th instrument for the kth regressor. It

should be sufficiently large relative maxk′ 6=k

∣∣∣∣(Ψ̂
)
l(k)k′

∣∣∣∣.
Proof of Proposition A.5. Take k ∈ [K] and l ∈ [L], we have∣∣∣(Ψ̂∆

)
l
−
(

Ψ̂
)
lk

∆k

∣∣∣ ≤ |∆|1 max
k′ 6=k

∣∣∣(Ψ̂
)
lk′

∣∣∣ ,
which yields ∣∣∣(Ψ̂

)
lk

∣∣∣ |∆k| ≤ |∆|1 max
k′ 6=k

∣∣∣(Ψ̂
)
lk′

∣∣∣+
∣∣∣(Ψ̂∆

)
l

∣∣∣ .
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The two inequalities of the assumption yield∣∣∣∣(Ψ̂
)
l(k)k

∣∣∣∣ |∆k| ≤ |∆|1
1− η2

cκ(|J ∩ P |)

∣∣∣∣(Ψ̂
)
l(k)k

∣∣∣∣+
1

η1

∣∣∣∣(Ψ̂∆
)
l(k)

∣∣∣∣ ∣∣∣∣(Ψ̂
)
l(k)k

∣∣∣∣ .
This inequality, together with the fact that

∣∣∣∣(Ψ̂∆
)
l(k)

∣∣∣∣ ≤ ∣∣∣Ψ̂∆
∣∣∣
∞

and the upper bounds from the

proof of the upper bound (A.37) of Proposition A.4, yield

|∆k| ≤ (1− η2)|∆|∞ +

∣∣∣Ψ̂∆
∣∣∣
∞

η1

and thus

η1η2|∆|∞ ≤
∣∣∣Ψ̂∆

∣∣∣
∞
.

One concludes using the definition of the `∞-sensitivity. �

A.6. Sharp Computations of the Sensitivities when |J ∪P c∪ Ic| is small and RD is convex.

Let us consider, for example, the sensitivity κ̂∗ek,J . It can be computed exactly as follows.

Algorithm A.1. When c ∈ (0, 1] solve

min
(εj)j∈J∪Pc∈{−1,1}|J∪Pc|

min
(∆,v)∈Uk,J∪Pc

v

where Uk,J∪P c is the set of (∆, v) with D̂X∆ ∈ RD and v ∈ R satisfying:

v ≥ 0, −v1 ≤ Ψ̂∆ ≤ v1, ∆k = 1, ∆
Jc∩J(β̂)

c = 0,

(1− cr)|∆I |1 + (1− c)|∆Ic |1 ≤ 2
∑

j∈J∩P εj∆j +
∑

j∈P c εj∆j .

When c ∈ (1, r−1) solve

min
(εj)j∈J∪Pc∪Ic∈{−1,1}|J∪Pc∪Ic

min
(∆,v)∈Uk,J∪Pc∪Ic

v

where Uk,J∪P c∪Ic is the set of (∆, v) with D̂X∆ ∈ RD and v ∈ R satisfying:

v ≥ 0, −v1 ≤ Ψ̂∆ ≤ v1, ∆k = 1, ∆
Jc∩J(β̂)

c = 0,

(1− cr)|∆I |1 ≤ 2
∑

j∈J∩P⊥

εj∆j + (1 + c)
∑

j∈J∩P 6⊥

εj∆j +
∑

j∈P c∩I
εj∆j + c

∑
j∈P c∩Ic

εj∆j + (c− 1)
∑

j∈Jc∩P 6⊥

εj∆j .

For the constants κ̂1,J and κ̂σ,J one can compute sharp lower bounds as follows.

Using (A.43), we obtain

|∆|1 ≤
1

(1− cr)+

(
2|∆J∩P⊥ |1 + (2 + c(1− r))|∆J∩P 6⊥ |1 + |∆P c∩I |1

+(1 + c(1− r))|∆P c∩Ic |1 + c(1− r)|∆Jc∩P 6⊥ |1
)
,
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hence,

κ̂1,J ≥ (1− cr)+ min
∆∈ĈJ

2|∆J∩P⊥ |1+(2+c(1−r))|∆J∩P 6⊥ |1+|∆Pc∩I |1
+(1+c(1−r))|∆Pc∩Ic |1+c(1−r)|∆Jc∩P6⊥ |1=1

∣∣∣Ψ̂∆
∣∣∣
∞
, κ̂1,J

and one can compute κ̂1,J as follows.

Algorithm A.2. When c ∈ (0, r−1), solve

min
(εj)J∪Pc∪Ic∈{−1,1}|J∪Pc∪Ic|

min
(∆,v)∈U1,J∪Pc∪Ic∈{−1,1}|J∪Pc∪Ic|

v

where U1,J∪P c∪Ic is the set of (∆, v) with D̂X∆ ∈ RD and v ∈ R satisfying:

v ≥ 0, −v1 ≤ Ψ̂∆ ≤ v1, ∆
Jc∩J(β̂)

c = 0,

2
∑

j∈J∩P⊥

εj∆j + (2 + c(1− r))
∑

j∈J∩P 6⊥

εj∆j +
∑

j∈P c∩I
εj∆j + (1 + c(1− r))

∑
j∈P c∩Ic

εj∆j

+c(1− r)
∑

j∈Jc∩P 6⊥

εj∆j = 1− cr,

(1− cr)|∆I |1 ≤ 2
∑

j∈J∩P⊥

εj∆j + (1 + c)
∑

j∈J∩P 6⊥

εj∆j +
∑

j∈P c∩I
εj∆j + c

∑
j∈P c∩Ic

εj∆j

+(c− 1)
∑

j∈Jc∩P 6⊥

εj∆j .

When we use the restricted set based on Ĉγ,J we have

γ̂
1,J
, (1− 2cr)+ min

∆∈Ĉγ,J
3|∆J∩P⊥ |1+(3+2c(1−r))|∆J∩P6⊥ |1+2|∆Pc∩I |1
+(2+2c(1−r))|∆Pc∩Ic |1+c(1−r)|∆Jc∩P 6⊥ |1=1

∣∣∣Ψ̂∆
∣∣∣
∞
.

Using (A.48), we obtain

|∆I |1+
1

r
|∆Ic |1 ≤

1

(1− cr)+

(
2|∆J∩P⊥ |1 +

1 + r

r
|∆J∩P 6⊥ |1 + |∆P c∩I |1 +

1

r
|∆P c∩Ic |1 +

1− r
r
|∆Jc∩P6⊥ |1

)
,

hence,

(A.51) κ̂σ,J ≥ (1− cr)+ min
∆∈ĈJ

2|∆J∩P⊥ |1+ 1+r
r
|∆J∩P 6⊥ |1+|∆Pc∩I |1+ 1

r
|∆Pc∩Ic |1+ 1−r

r
|∆Jc∩P6⊥ |1=1

∣∣∣Ψ̂∆
∣∣∣
∞
, κ̂σ,J

and one can compute κ̂σ,J as follows.
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Algorithm A.3. When c ∈ (0, r−1), solve

min
(εj)J∪Pc∪Ic∈{−1,1}|J∪Pc∪Ic|

min
(∆,v)∈Uσ,J∪Pc∪Ic∈{−1,1}|J∪Pc∪Ic|

v

where Uσ,J∪P c∪Ic is the set of (∆, v) with D̂X∆ ∈ RD and v ∈ R satisfying:

v ≥ 0, −v1 ≤ Ψ̂∆ ≤ v1, ∆
Jc∩J(β̂)

c = 0,

2
∑

j∈J∩P⊥

εj∆j +

(
1 +

1

r

) ∑
j∈J∩P6⊥

εj∆j +
∑

j∈P c∩I
εj∆j +

1

r

∑
j∈P c∩Ic

εj∆j +

(
1

r
− 1

) ∑
j∈Jc∩P6⊥

εj∆j = 1− cr,

(1− cr)|∆I |1 ≤ 2
∑

j∈J∩P⊥

εj∆j + (1 + c)
∑

j∈J∩P6⊥

εj∆j +
∑

j∈P c∩I
εj∆j + c

∑
j∈P c∩Ic

εj∆j + (c− 1)
∑

j∈Jc∩P 6⊥

εj∆j .

When we use the restricted set based on Ĉγ,J we have

γ̂σ
J
, (1− 2cr)+ min

∆∈Ĉγ,J : 3|∆J∩P⊥ |1+(2+ 1
r )|∆J∩P6⊥ |1+2|∆Pc∩I |1+(1+ 1

r )|∆Pc∩Ic |1+( 1
r
−1)|∆Jc∩P 6⊥ |1=1

∣∣∣Ψ̂∆
∣∣∣
∞
.

A.7. Bounds on the Population Sensitivities in Benchmark Cases. We now present lower

bounds on the population sensitivities based on CJ , when P = [K] and R = RK , in benchmark cases.

Example O1. Besides possibly a constant, regressors and instruments are mean zero and of variance

1, regressors are uncorrelated, for the regressors of index in N ⊆ Ic there could be no instrument

while for those of index in N c ∩ Ic there are lk instruments with correlation ρjk for j = 1, . . . , lk with

them and 0 with the other regressors. Assuming that ρk , maxj=1,...,lk |ρjk| > 0 for k ∈ Ic
⋂
N c and

ρk , 1 for k ∈ I, if J ∩N = ∅, we have

κ1,J,J ≥

(∑
k∈J

1

ρk

)−1

; κ∗ek,J ≥ ρk ∀k ∈ N c;

κ∗ek,J ≥

((√
1− τX
1 + τX

− c
)−1(

2−
√

1− τX
1 + τX

+ c

)∑
k∈J

1

ρk

)−1

∀k ∈ N ;

κ1,J ≥ max

((√
1− τX
1 + τX

− c
)(

2
∑
k∈J

1

ρk

)−1

,

(√
1− τX
1 + τX

− cr − c(1− r)1l{Ic ∩N 6= ∅}
)(

2
∑
k∈J

1

ρk
+ c(1− r)

∑
k∈Ic∩Nc

1

ρk

))
;

κσ,J ≥ max

r(√1− τX
1 + τX

− c
)(

2
∑
k∈J

1

ρk

)−1(√
1− τX
1 + τX

− cr
)(

2
∑
k∈J

1

ρk
+

1− r
r

∑
k∈Ic

1

ρk

)−1

1l{N = ∅}

 .
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In this example, only the instruments with maximum correlation with the endogenous regressors play

a role in the lower bounds. It is sometimes possible to consider situations where L < K when the

regressors for which there are no instruments have a coefficient which is zero.

Proof. Note that

(A.52) |Ψ∆|∞ = max
k∈Nc

ρk |∆k| .

Because J ∩N = ∅, |∆J |1 ≤
(∑

k∈J ρ
−1
k

)
|Ψ∆|∞, which yields the lower bound on κ1,J,J .

By (A.52), we have, if k ∈ N c, ρk |∆k| ≤ |Ψ∆|∞. Using that, if c ∈ (0,
√

(1− τX)/(1 + τX)), on GΨ,

(A.53)

(√
1− τX
1 + τX

− c
)
|∆|1 ≤ 2|∆J |1,

hence,

|∆Jc |1 ≤
(√

1− τX
1 + τX

− c
)−1(

2−
√

1− τX
1 + τX

+ c

)
|∆J |1 ,

and that, because N ⊆ Jc, we have, for k ∈ N , |∆k| ≤ |∆Jc |1 yields the lower bounds for the

sensitivities κ∗ek,J .

We now prove the lower bound on κ1,J and work on GΨ. When c ∈ (0, 1], using (A.53), we get(√
1− τX
1 + τX

− c
)
|∆|1 = 2

∑
k∈J

1

ρk
|ρk∆k| = |Ψ∆|∞2

∑
k∈J

1

ρk
,

while, when c > 1, we get(√
1− τX
1 + τX

− cr
)
|∆|1 ≤

(
|Ψ∆|∞

(
2
∑
k∈J

1

ρk
+ c(1− r)

∑
k∈Ic∩Nc

1

ρk

)
+ c(1− r)|∆Ic∩N |1

)
,

which yields the result. Now, by simple manipulations, if ∆ ∈ CJ , then we have(√
1− τX
1 + τX

− cr
)(
|∆I |1 +

1

r
|∆Ic |1

)
≤ 2|∆J |1 +

1− r
r

√
1− τX
1 + τX

|∆Ic |1,

≤ 2
∑
k∈J

1

ρk
+

1− r
r

√
1− τX
1 + τX

∑
k∈Ic

1

ρk
,

supplementing this with the previous lower bound using (A.40) yields the bound for κσ,J . �

Example O2. Let σ > 0 and (Hk)
K−1
k=0 be the first Hermite polynomials. Assume (z̃i, vi)

n
i=1 are i.i.d.

of distribution N (0, I2), x̃i = ζz̃i + σvi, xi =
(
Hk

(
x̃i/
√
ζ2 + σ2

))K−1

k=0
, and zi = (Hk (z̃i))

K−1
k=0 . This

is a particular case of Example O1 with ρk =
(
ζ/
√
ζ2 + σ2

)k−1
and N = ∅.
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Proof. Hermite polynomials are orthonormal in L2(µ) , {f :
∫
R f

2(x)e−
x2

2 dx < ∞} equipped

with (f, g)L2(µ) , (
∫
R f(x)g(x)e−

x2

2 dx)/
√

2π defined for f, g ∈ L2(µ), hence DZ = DX = IK . Basic

properties of these polynomials yield that

Ψlk = E
[
Hl−1(z̃i)Hk−1(x̃i/

√
ζ2 + σ2)

]
= E

[
Hl−1(z̃i)E

[
Hk−1(x̃i/

√
ζ2 + σ2)|z̃i

]]
= E

Hl−1(z̃i)

(
ζ√

ζ2 + σ2

)k−1

Hk−1(z̃i)


=

(
ζ√

ζ2 + σ2

)k−1

1l{l = k}.

�

Example O3. Let Ic = {1}, x1i be endogenous, J = {1, 2}. Assume that we do not use excluded

variables to instrument x1i, L = K − 1, ρ ∈ RL, Ψ = (ρ IL). We have, among others,

κ1,J ≥ max
S⊆[L]

(
1

2

(√
1− τX
1 + τX

− c
)
− 1 + |ρ1|
|ρS |1

)(
(1 + |ρ1|)|S|
|ρS |1

+ 1

)−1

.

Proof. We have |Ψ∆|∞ = max (|ρ1∆1 + ∆2|, . . . , |ρL∆1 + ∆L+1|), hence, for all l ∈ [L], |ρl||∆1| ≤

|Ψ∆|∞ + |∆l+1|, which by summing up these inequalities yield

|ρS |1|∆1| ≤ |S| |Ψ∆|∞ +
∑
l∈S
|∆l+1|

≤ |S| |Ψ∆|∞ + |∆|1.

Now, because J = {1, 2}, we have, using ∆ ∈ CJ and the triangle inequality,

1

2

(√
1− τX
1 + τX

− c
)
|∆|1 ≤ |∆1|+ |∆2|

≤ (1 + |ρ1|)|∆1|+ |ρ1∆1 + ∆2|

≤ 1 + |ρ1|
|ρS |1

|ρS |1 |∆1|+ |Ψ∆|∞

≤ 1 + |ρ1|
|ρS |1

(|S||Ψ∆|∞ + |∆|1) + |Ψ∆|∞,

hence the result follows from(
1

2

(√
1− τX
1 + τX

− c
)
− 1 + |ρ1|
|ρS |1

)
|∆|1 ≤

(
(1 + |ρ1|)|S|
|ρS |1

+ 1

)
|Ψ∆|∞ .

�
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A.8. The STIV Estimator with Linear Projection Instrument. The 2SLS is a leading method

when the structural equation is low-dimensional. Proceeding in two stages is problematic when L is

of the order of n, when, in case (1.2) is maintained, the linear projection of the endogenous regressor

on the instruments is not sparse or approximately sparse (in the presence of many weak instruments)

or z → E[xi|zi = z] is not smooth. This is even more problematic when there are many endogenous

variables and/or L is larger than n. In these cases, the first stage might not even be consistent and

relying on the plug-in principle for inference is not possible.

In this section, we analyze the case where L > K, K and L can be much larger n, and the linear

projections and (1.1) are sparse. We illustrate the method in a simulation study in Section 9 where

we find that: even for very sparse models, the baseline one-stage method with all the instruments has

smaller confidence sets than the two-stage method akin to 2SLS.

For simplicity, we take P = [K] and R = RK and assume that there is only one endogenous

regressor (x1i)
n
i=1 in (1.1). We write reduced form (or first stage) equation as

(A.54) x1i =

L∑
l=1

zliζl + vi, i ∈ [n],

where
∑L

l=1 zliζl is the linear projection instrument, ζl are unknown coefficients and E[zlivi] = 0.

The first stage consists in estimating the unknown coefficients ζl. If L ≥ K > n and if the

reduced form model (A.54) is sparse or approximately sparse, it is natural to use a high-dimensional

procedure, such as the Lasso, the Dantzig selector or the Square-root Lasso to find estimators ζ̂l of the

coefficients. Denote by (ζ̂, σ̂1) the STIV estimator with parameter c = c1 ∈ (0, r−1) for the reduced

form equation model. Our analysis is now carried out on the event

(A.55) G ,

max

max
l∈[L]

|En[ZlV ]|√
En[Z2

l ]En[V 2]
, max
k∈[K]

∣∣∣En[Z̃kU(β)]
∣∣∣√

En[Z̃2
k ]En[U(β)2]

 ≤ r


where Z̃k are the exogenous regressors in the structural equation, the linear projection instrument

V stands for a generic variable corresponding to the vi’s from the reduced form equation, and r is

adjusted so that P(G) ≥ 1−α. Since there is no access to the theoretical linear projection instrument,

we adjust r as usual, excluding the linear projection instrument from the maximum, and setting

α = 0.5(L+K − 1)/(L+K). This is the usual union bound scaling (see, e.g., Scenarii 1-4).

We can construct the confidence sets for the parameters ζ and β under all three cases discussed

in Section 6.5. We present the case where we have a sparsity certificate s1 for ζ. We obtain, analogously

to Theorem 5.1, that for all c1 ∈ (0, r−1) and using the notation κ̂1
1(s1) and θ̂κ(s1) to make precise
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that these quantities are related to the estimation of the high-dimensional reduced form equation∣∣∣D̂−1
Z

(
ζ̂ − ζ

)∣∣∣
1
≤ 2σ̂1rθ̂κ(s1)

κ̂1
1(s1)

, C1(s1);(A.56) √√√√ 1

n

n∑
i=1

(
z>i

(
ζ̂ − ζ

))2
≤ 2σ̂1rθ̂κ(s1)√

κ̂1
1(s1)

, C2(s1).(A.57)

The second stage makes use of the estimated instrument (z>i ζ̂)ni=1 to obtain confidence sets for

the vector of coefficients in the structural equation. We use a modified STIV estimator which differs

from the original one in that we replace Î by the enlarged set

(A.58) Î2(r, σ) ,

{
(β, σ) : β ∈ RK , σ > 0,

∣∣∣∣ 1nD̂2
Z

(
Z2
)>

(Y −Xβ)

∣∣∣∣
∞
≤ σr, Q̂(β) ≤ σ2

}
,

where D̂2
Z is a K×K diagonal matrix such that

(
D̂2

Z

)
11

=

(
C1(s1) + C2(s1) + En

[(
ζ̂>Z

)2
]1/2

)−1

,(
D̂2

Z

)
kk

= (D̂X)kk for k = 2, . . . ,K, and Z2 is the stacked matrix of the estimated linear projection

instrument
(
z>i ζ̂

)n
i=1

and the exogenous regressors. We enlarge the IV-constraint set to account for

the estimation error in the linear projection instrument. We now define a new Ψ̂, which differs from

the original one in that we replace Z by Z2 and D̂Z by D̂2
Z. We assign the upper index (2) to the

sensitivities corresponding to this new matrix Ψ̂, for example, κ̂2
1,J(β),J(β).

Theorem A.5. For all β ∈ Bs, on G, for all solution (β̂, σ̂) of the minimization problem (3.7) where

we replace Î by Î2 and c by c2, for all c2 in (0, r−1), q ∈ [1,∞], and T ⊆ [K], we have

(A.59)
∣∣∣D̂−1

X

(
β̂ − β

)
T

∣∣∣
q
≤ 2σ̂rθ̂2(s2)

κ̂2
q,T (s)

.

Proof of Theorem A.5. Take β ∈ Bs, we have on G, where G is defined in Section 3.5 adding the

extra instrument ζ>zi for i ∈ [n].

1

n
|ζ̂>Z>U| ≤ |D̂−1

Z (ζ̂ − ζ)|1
√
Q̂(β)r +

1

n
|(ζTZ)>U|

≤
(
C1(r, s1) + En[(ζ>Z)2]1/2

)√
Q̂(β)r

≤
(
C1(r, s1) + C2(r, s1) + En[(ζ̂>Z)2]1/2

)√
Q̂(β)r.

The rest of the proof is the same as for Theorem 4.1. Equation (A.59) is a consequence of Theorem

5.1 calculating the value of cb(s) when Ic = {1}. �
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Inequality (A.59) yields uniform joint confidence sets for all k ∈ [K], c2 in (0, r−1):

(A.60)
∣∣∣β̂k − βk∣∣∣ ≤ 2σ̂rθ2(s2)

En[X2
k ]1/2κ̂

(2)∗
k

with finite sample validity under Scenarii 1-3. One can also obtain adaptive confidence sets under a

beta-min assumption, using the plug-in strategy where we replace J(β) by an estimate Ĵ , as well as

rates of convergence and model selection results similar to those of Section 6.2.

We illustrate numerically this method. We take n = 8000, K = 70, L = 100 and Ic = {1}.

We take ζ3 = −0.5, ζ4 = 1, ζ98 = −1, ζ99 = 1, ζ100 = 0.5. All other entries of ζ are equal to

zero and the remaining part of the data generating process is that of Section 9. Tables 18 and 19

present the simulation results for the one-stage and the two-stage STIV estimator with estimated

linear projection instrument. Lower bounds on the sensitivities based on the sparsity certificate for

s = 5 yield: C1(5) = 1.125, C2(5) = 0.308, and C∞(5) = 2σ̂1rθ1(5)/κ̂1
∞(5) = 0.112. We present in

Table 19 the results based on the the first stage. We set α = 0.05(L + K − 1)/(L + K) = 0.0471.

The value r for the two-stage approach is computed with this α by excluding the linear projection

instrument from the maximum in (A.55).

Table 18. Sparse reduced form, sparsity certificate, one stage

βl,10 βl,9 βl,8 βl,7 βl,6 βl,5 βl,4 β̂ Selection βu,4 βu,5 βu,6 βu,7 βu,8 βu,9 βu,10

β1 0.83 0.83 0.84 0.84 0.84 0.85 0.86 0.97 ≥ 10 1.08 1.08 1.09 1.09 1.1 1.1 1.1

β2 -2.12 -2.11 -2.11 -2.11 -2.1 -2.09 -2.09 -1.97 ≥ 10 -1.85 -1.84 -1.83 -1.83 -1.82 -1.82 -1.82

β3 -0.61 -0.6 -0.6 -0.6 -0.59 -0.58 -0.58 -0.46 ≥ 10 -0.33 -0.33 -0.32 -0.32 -0.31 -0.31 -0.3

β4 -0.02 -0.01 -0.01 0 0 0.01 0.02 0.19 ≤ 6 0.35 0.36 0.37 0.38 0.38 0.39 0.39

β5 -1.19 -1.19 -1.18 -1.18 -1.17 -1.16 -1.14 -0.93 ≥ 10 -0.72 -0.71 -0.69 -0.68 -0.68 -0.67 -0.67

β6 -0.14 -0.14 -0.14 -0.13 -0.13 -0.12 -0.11 0 0 0.11 0.12 0.13 0.13 0.14 0.14 0.14

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

β70 -0.14 -0.14 -0.14 -0.13 -0.13 -0.12 -0.12 0 0 0.12 0.12 0.13 0.13 0.14 0.14 0.14

Here: r = 0.0388, c = 0.298 and σ̂ = 1.014.

The two-stage method gives wider confidence sets than the one-stage method. For brevity, we

do not display the sensitivities. Noteworthy, the two-stage method yields smaller sensitivities for all

regressors. Since the constants C1(s), C2(s) can be too large, we construct the confidence sets for the

overly optimistic case where C1 = C2 = 0. These sets are obviously not valid because they ignore the

estimation error from the first stage. We find that they are larger than those of the one-stage method.
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Table 19. Sparse reduced form, sparsity certificate, two stage

first stage:

ζ̂1 ζ̂2 ζ̂3 ζ̂4 ζ̂5 ζ̂97 ζ̂98 ζ̂99 ζ̂100 σ̂1 c1

0 0 -0.48 0.97 0 0 -0.98 1.00 0.47 1.02 0.188

Second stage based on C1(5) and C2(5), with c = 0.479 and σ̂ = 1.042:

βl,10 βl,9 βl,8 βl,7 βl,6 βl,5 βl,4 β̂ Selection βu,4 βu,5 βu,6 βu,7 βu,8 βu,9 βu,10

β1 0.56 0.57 0.58 0.59 0.6 0.61 0.63 0.91 ≥ 10 1.2 1.21 1.22 1.23 1.24 1.25 1.26

β2 -2.2 -2.19 -2.18 -2.17 -2.16 -2.15 -2.13 -1.96 ≥ 10 -1.8 -1.78 -1.77 -1.76 -1.75 -1.74 -1.73

β3 -0.68 -0.67 -0.66 -0.66 -0.64 -0.63 -0.62 -0.45 ≥ 10 -0.29 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22

β4 -0.22 -0.21 -0.2 -0.19 -0.18 -0.16 -0.14 0.15 ≤ 5 0.45 0.47 0.49 0.5 0.51 0.52 0.53

β5 -1.41 -1.39 -1.38 -1.36 -1.34 -1.32 -1.29 -0.87 ≥ 10 -0.46 -0.43 -0.41 -0.39 -0.37 -0.35 -0.34

β6 -0.22 -0.21 -0.2 -0.19 -0.18 -0.17 -0.16 0 0 0.16 0.17 0.18 0.19 0.2 0.21 0.22

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

β70 -0.22 -0.21 -0.2 -0.2 -0.19 -0.18 -0.16 0 0 0.16 0.18 0.19 0.2 0.2 0.21 0.22

Second stage based on the too optimistic choice C1 = 0 and C2 = 0 with c = 0.376 and σ̂ = 1.001:

βl,10 βl,9 βl,8 βl,7 βl,6 βl,5 βl,4 β̂ Selection βu,4 βu,5 βu,6 βu,7 βu,8 βu,9 βu,10

β1 0.79 0.79 0.79 0.8 0.81 0.81 0.82 1 ≥ 10 1.17 1.18 1.18 1.19 1.2 1.2 1.2

β2 -2.18 -2.18 -2.17 -2.17 -2.16 -2.15 -2.14 -2.01 ≥ 10 -1.87 -1.86 -1.85 -1.84 -1.84 -1.83 -1.83

β3 -0.68 -0.67 -0.67 -0.66 -0.65 -0.64 -0.63 -0.5 ≥ 10 -0.36 -0.35 -0.34 -0.33 -0.32 -0.32 -0.31

β4 -0.03 -0.03 -0.02 -0.01 0 0.01 0.02 0.24 ≤ 5 0.45 0.46 0.47 0.48 0.49 0.5 0.5

β5 -1.35 -1.35 -1.34 -1.33 -1.31 -1.3 -1.28 -0.99 ≥ 10 -0.71 -0.69 -0.67 -0.66 -0.65 -0.64 -0.64

β6 -0.16 -0.16 -0.15 -0.14 -0.13 -0.13 -0.12 0.01 0 0.14 0.15 0.16 0.17 0.18 0.18 0.19

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

β70 -0.17 -0.17 -0.16 -0.16 -0.15 -0.14 -0.13 0 0 0.13 0.14 0.15 0.16 0.17 0.17 0.17

Everywhere: r = 0.041.
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