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Uniqueness results for the Minkowski problem
extended to hedgehogs

by

Yves Martinez-Maure

Abstract.- The classical Minkowski problem has a natural extension to hedgehogs, that is

to Minkowski differences of closed convex hypersurfaces. This extended Minkowski problem

is much more difficult since it essentially boils down to the question of solutions of certain

Monge-Ampère equations of mixed type on the unit sphere Sn of Rn+1. In this paper, we

mainly consider the uniqueness question and give first results.

0. Introduction

The classical Minkowski problem is that of the existence, uniqueness and reg-
ularity of closed convex hypersurfaces of the Euclidean linear space Rn+1 whose
Gauss curvature (in the sense of Gauss’ definition) is prescribed as a function
of the outer normals. In the last century, this fundamental problem played an
important role in the development of the theory of elliptic Monge-Ampère equa-
tions. Indeed, for C2

+-hypersurfaces (C
2-hypersurfaces with positive Gauss curva-

ture), this Minkowski problem is equivalent to the question of solutions of certain
Monge-Ampère equations of elliptic type on the unit sphere Sn of Rn+1.

Using approximation by convex polyhedra, Minkowski proved the existence
of a weak solution [17]: If K is a continuous positive function on Sn satisfying
the following integral condition

∫

Sn

u

K(u)
dσ(u) = 0,

where σ is the spherical Lebesgue measure on Sn, then K is the Gauss curvature
of a unique (up to translation) closed convex hypersurface H. The uniqueness
comes from the equality condition in a Minkowski’s inequality (e.g. [21, p. 397]).
The strong solution is due to Pogorelov [20] and Cheng and Yau [4] who proved
independently that: if K is of class Cm, (m ≥ 3), then the support function of H
is of class Cm+1,α for every α ∈ ]0, 1[.

This classical Minkowski problem has a natural extension to hedgehogs, that is
to Minkowski differences H = K−L of closed convex hypersurfaces K,L ∈ Rn+1,
at least if we restrict ourselves to hypersurfaces whose support functions are C2.

0Keywords. Minkowski problem, Monge-Ampère equations, convex surfaces, hedgehogs
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Indeed, the inverse of the Gauss curvature of such a hedgehog is well-defined and
continuous all over Sn (see Section 1), so that the following existence question
arises naturally:

(Q1) Existence of a C2-solution: What necessary and sufficient conditions
must a real continuous function R ∈ C (Sn;R) satisfy to be the curvature function
(that is, the inverse 1

K
of the Gauss curvature K) of some hedgehog H = K −L ?

Now let us expound the uniqueness question. As we shall see later, for any
h ∈ C2 (S2;R), −h and h are the respective support functions of two hedgehogs
H−h and Hh of R

3 that have the same curvature function and are such that

H−h = s (Hh) ,

where s is the symmetry with respect to the origin of R3. Here, we have to recall
that noncongruent hedgehogs of R3 may have the same curvature function [16]:
for instance, the two smooth (but not analytic) functions f , g defined on S2 by

f (u) :=






exp(−1/z2) if z �= 0

0 if z = 0
and g (u) :=






sign (z) f (u) if z �= 0

0 if z = 0,

where u = (x, y, z) ∈ S2, are the support functions of two noncongruent hedgehogs
Hf and Hg of R

3 having the same curvature function R := 1/K ∈ C (S2;R),
(cf. Figure 1).

Figure 1. Noncongruent hedgehogs with the same curvature function

Consequently, we state the uniqueness question as follows:
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(Q2) Uniqueness of a C2-solution: If R ∈ C (Sn;R) is the curvature function
of some hedgehog H, what necessary and sufficient additional conditions must
it satisfy in order that H be the unique hedgehog of which R is the curvature
function (up to an isometry of the space) ?

In particular, it would be very interesting to know whether there exists any
pair of noncongruent analytic hedgehogs of R3 with the same curvature function
(by ‘analytic hedgehogs’ we mean ‘hedgehogs with an analytic support function’).
We shall see in Section 1 that this latest question presents similiraties to the open
question of knowing whether there exists any pair of noncongruent isometric an-
alytic closed surfaces in R3.

For n = 1, the problem is linear and so can be solved without difficulty [15].
But for n = 2, the problem is already very difficult : if R ∈ C (S2;R) changes
sign on S2, the question of existence, uniqueness and regularity of a hedgehog of
which R is the curvature function boils down to the study of a Monge-Ampère
equation of mixed type, a class of equations for which there is no global result
but only local ones by Lin [8] and Zuily [23]. In the present paper, we are mainly
interested in the uniqueness question. Question (Q2) is too difficult to be solved
at the present time and our main purpose will be simply to provide conditions
under which two hedgehogs of R3 must have distinct curvature functions.

As we shall recall in Section 2, any hedgehog can be uniquely split into the
sum of its centered and projective parts. Let H3 denote the R-linear space of
C2-hedgehogs defined up to a translation in R3 (by ‘C2-hedgehogs’ we mean
‘hedgehogs with a C2 support function’). One of our main results is the following.

Theorem. Let H and H′ be two C2-hedgehogs that are linearly independent
in H3 and the centered parts of which are nontrivial (i.e., distinct from a point)
and proportional to a same convex surface of class C2

+. Then H and H′ have
distinct curvature functions.

An immediate consequence will be that:

Corollary. Two C2-hedgehogs of nonzero constant width that are linearly
independent in H3 have distinct curvature function.

In Section 1, we shall begin by recalling some basic definitions and facts
and by presenting what is already known on the Minkowski problem extended
to hedgehogs. Later, we shall see different ways of constructing pairs of non-
congruent hedgehogs having the same curvature function.

Section 2 will be devoted to the statement of the main results and Section 3
to the proofs and further remarks.
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1. Basic facts and observations on the extended Minkowski problem

As is well-known, every convex body K ⊂ Rn+1 is determined by its support
function hK : S

n −→R, where hK (u) is defined by hK (u) = sup {〈x, u〉 |x ∈ K },
(u ∈ Sn), that is, as the signed distance from the origin to the support hyper-
plane with normal u. In particular, every closed convex hypersurface of class C2

+

(i.e., C2-hypersurface with positive Gauss curvature) is determined by its support
function h (which must be of class C2 on Sn [21, p. 111]) as the envelope Hh

of the family of hyperplanes with equation 〈x, u〉 = h(u). This envelope Hh is
described analytically by the following system of equations

{
〈x, u〉 = h(u)
〈x, . 〉 = dhu(.)

,

of which the second is obtained from the first by performing a partial differen-
tiation with respect to u. From the first equation , the orthogonal projection of
x onto the line spanned by u is h (u) u and from the second one, the orthogo-
nal projection of x onto u⊥ is the gradient of h at u (cf. Figure 2). Therefore,
for each u ∈ Sn, xh (u) = h(u)u+ (∇h) (u) is the unique solution of this system.

Figure 2. Hedgehogs as envelopes parametrized by their Gauss map

Now, for any C2-function h on Sn, the envelope Hh is in fact well-defined
(even if h is not the support function of a convex hypersurface). Its natural
parametrization xh : S

n → Hh, u �→ h(u)u + (∇h) (u) can always be interpreted
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as the inverse of its Gauss map, in the sense that: at each regular point xh (u) of
Hh, u is normal to Hh. We say that Hh is the hedgehog with support function h
(cf. Figure 3). Note that xh depends linearly on h.

Figure 3. A hedgehog with a C2-support function

Hedgehogs with a C2-support function can be regarded as the Minkowski
differences of convex hypersurfaces (or convex bodies) of class C2

+. Indeed [7],
given any h ∈ C2 (Sn;R), for all large enough real constant r, h + r and r are
support functions of convex hypersurfaces of class C2

+ such that h = (h+ r)− r.

Figure 4. Hedgehogs as differences of convex bodies of class C2
+
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In fact, we can introduce a more general notion of hedgehogs regarding hedge-
hogs of Rn+1 as Minkowski differences of arbitrary convex bodies of Rn+1 [15].
For instance, Figure 5 represents a polygonal hedgehog obtained by subtracting
two squares in R2. For n ≤ 2, the idea of considering each formal difference of
convex bodies of Rn+1 as a (possibly singular and self-intersecting) hypersurface
of Rn+1 goes back to a paper by H. Geppert [5] who introduced hedgehogs under
the German names stützbare Bereiche (n = 1) and stützbare Flächen (n = 2).

In the present paper, we shall only consider hedgehogs with a C2-support
function and we will refer to them as ‘C2-hedgehogs’.

Figure 5. Hedgehogs as differences of arbitrary convex bodies

Gauss curvature of C2-hedgehogs

Let Hn+1 denote the R-linear space of C
2-hedgehogs defined up to a translation

in the Euclidean linear space Rn+1 and identified with their support functions.
Analytically speaking, saying that a hedgehog Hh ⊂ R

n+1 is defined up to a
translation simply means that the first spherical harmonics of its support function
is not specified.

As we saw before, elements of Hn+1 may be singular hypersurfaces. Since the
parametrization xh can be regarded as the inverse of the Gauss map, the Gauss
curvature Kh of Hh is given by 1 over the determinant of the tangent map of
xh: ∀u ∈ S

n, Kh(u) = 1/ det [Tuxh]. Therefore, singularities are the very points
at which the Gauss curvature is infinite. For every u ∈ Sn, the tangent map of
xh at the point u is Tuxh = h(u) IdTuSn +Hh(u), where Hh(u) is the symmetric
endomorphism associated with the hessian of h at u. Consequently, if λ is an
eigenvalue of the hessian of h at u then λ + h (u) is (up to the sign) one of the
principal radii of curvature of Hh at xh (u) and the so-called ‘curvature function’
Rh := 1/Kh can be given by

Rh (u) = det [Hij (u) + h (u) δij] , (1)

where δij are the Kronecker symbols and (Hij (u)) the Hessian of h at u with
respect to an orthonormal frame on Sn.
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Case where n = 2. From (1), the curvature function Rh := 1/Kh ofHh ⊂ R
3

is given by Rh = (λ1 + h) (λ2 + h) = h2 + h∆2h + ∆22h, where ∆2 denotes the
spherical Laplacian and ∆22 the Monge-Ampère operator (respectively the sum
and the product of the eigenvalues λ1, λ2 of the Hessian of h). So, the equation
we shall be dealing with will be the following

h2 + h∆2h+∆22h = 1/K.

Note that the so-called ‘mixed curvature function’ of hedgehogs of R3, that is,

R :H23 → C (S2;R)
(f, g) �→ R(f,g) :=

1
2
(Rf+g −Rf −Rg)

is bilinear and symmetric:

(i) ∀ (f, g, h) ∈ H33, ∀λ ∈ R, R(f+λg,h) = R(f,h) + λR(g,h);

(ii)∀ (f, g) ∈ H23, R(g,f) = R(f,g).

For any h ∈ H3, we have in particular R−h = Rh. Note that R(1,f) =
1
2
(∆2h+ 2h)

is (up to the sign) half the sum of the principal radii of curvature of Hh ⊂ R
3.

The Minkowski problem for hedgehogs

The point is that the curvature function Rh := 1/Kh of any C2-hedgehog
Hh of R

n+1 is well-defined and continuous all over Sn, including at the singular
points of xh, so that the Minkowski problem arises naturally for hedgehogs. In
this paper, we are thus interested in studying the existence and/or uniqueness of
C2-solutions to the Monge-Ampère equation

Rh = R, (2)

where R is a given real continuous function on Sn.
As in the classical Minkowski problem, the following integral condition is

necessary for the existence of such a solution:

∫

Sn

R (u)udσ(u) = 0. (3)

It simply expresses that any C2-hedgehog Hh of R
n+1 is a closed hypersurface.

But it is no longer sufficient: for instance, the constant function equal to −1
on S2 satisfies integral condition (3) but it cannot be the curvature function of
a hedgehog since there is no compact surface with negative Gauss curvature in R3.
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Examples where equation (2) is of mixed type and has no C2-solution

under condition (3)

This extended Minkowski problem leads to the following examples of Monge
Ampère equations of mixed type for which there is no solution. For every v ∈ S2,
the smooth function Fv (u) = 1 − 2 〈u, v〉

2 satisfies integral condition (3) but is
not a curvature function on S2 [13]. In other words, for every fixed v ∈ S2, the
Monge Ampère equation h2 + h∆2h+∆22h = Fv has no C

2-solution on S2. The
proof makes use of orthogonal projection techniques adapted to hedgehogs.

Nonuniqueness in the extended Minkowski problem

As recalled in the introduction, two noncongruent hedgehogs of R3 may have
the same curvature function. By bilinearity and symmetry in the arguments of
the mixed curvature function R : H23 → C (S2;R), ifHf andHg are two hedgehogs
of R3 having the same curvature function then, for all (λ, µ) ∈ R2, the hedgehogs
Hλf+µg andHµf+λg also have the same curvature function. For instance, from the
pair {Hf , Hg} of noncongruent hedgehogs represented in Figure 1, we deduce the
pair {Hf+2g, H2f+g} of noncongruent hedgehogs (which have the same curvature
function) represented in Figure 6.

Figure 6. Noncongruent hedgehogs with the same curvature function

A natural but probably difficult question is knowing whether there exists any
pair of noncongruent analytic hedgehogs of R3 with the same curvature function.
Let us recall the similar open question of knowing whether there exists any pair
of noncongruent isometric analytic closed surfaces in R3. Smooth closed surfaces
can be isometric without being congruent : the usual way of constructing such
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surfaces is by gluing together smaller congruent pieces. As recalled in [3, p. 131]
or [22, p. 366], we can for instance construct a pair {S, S ′} of noncongruent
isometric closed surfaces of revolution as indicated in Figure 7.

Figure 7. Noncongruent isometric surfaces of revolution [3, p. 131]

Figure 8. Generatrices of revolution hedgehogs with the same curvature

Obviously, we can place the origin at such a point of the axis of revolution
that S admits a parametrization of the form

x : S2 → S ⊂ R3

u �→ ρ (u) u,

where ρ is a smooth positive function. Then the hedgehog with support function
h = 1/ρ can be regarded as the dual surface of S [9]. This hedgehog Hh is a
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surface of revolution whose generating curve (a plane hedgehog which has a fish
form) is represented in Figure 8. Replacing the fish’s tail by its image under
the symmetry with respect to the double point (which by duality corresponds
to the plane P ) and rotating the plane hedgehog that we get around its axis of
symmetry, we generate an other hedgehog which has the same curvature function
as Hh without being congruent to it.

2. Statement of results

Recall that H3 denotes the R-linear space of C
2-hedgehogs defined up to a

translation in R3. The following result will be obtained as a consequence of the
classical Minkowski’s uniqueness theorem.

Theorem 1. Let Hf and Hg be C2-hedgehogs that are linearly independent in H3.
If the plane spanned by Hf and Hg in H3 contains some hypersurface of class C2

+,
then Hf and Hg have distinct curvature functions.

The second result makes use of the decomposition of hedgehogs into their
centered and projective parts.

Decomposition of a hedgehog into its centered and projective parts

Recall that a hedgehog Hh of R
n+1 is said to be centered (resp. projective) if

its support function h is symmetric (resp. antisymmetric), that is, if we have:

∀u∈ Sn, h (−u) = h (u) (resp. h (−u) = −h (u)) .

For instance, the hedgehog Hf (resp. Hg) of R
3 that is represented in Figure 1.a

(resp. Figure 1.b) is centered (resp. projective). Geometrically speaking, saying
that Hh is centered (resp. projective) means that Hh is centrally symmetric with
respect to the origin (resp. that any pair of antipodal points on the unit sphere
S
n correspond to a same point on the hypersurface Hh = xh (S

n)).
Now, the support function h of Hh ⊂ R

n+1 can be uniquely split into the sum
of its symmetric and antisymmetric parts f and g:

∀u∈ Sn, h (u) = f (u) + g (u) where






f (u) = 1
2
(h (u) + h (−u))

g (u) = 1
2
(h (u)− h (−u))

.

Consequently, any hedgehog Hh of R
n+1 has a unique representation of the form

Hf+Hg, whereHf andHg are respectively a centered and a projective hedgehog.
We say that Hf and Hg are respectively the centered and the projective part
of Hh.
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Theorem 2. Let Hh1 and Hh2 be C2-hedgehogs that are linearly independent
in H3 and the centered parts of which are nontrivial (i.e., distinct from a point)
and proportional to a same convex surface of class C2

+. Then Hh1 and Hh2 have
distinct curvature functions.

A hedgehog Hh of R
n+1 is said to be of constant width if its centered part has

a constant support function. In other words, a hedgehogHh of R
n+1 is of constant

width if the signed distance between the two cooriented support hyperplanes that
are orthogonal to u ∈ Sn does not depend on u, that is, if:

∃r ∈ R, ∀u ∈ Sn, h(u) + h(−u) = 2r.

A straightforward consequence of Theorem 3 is the following corollary.

Corollary 3. Let Hf and Hg be C2-hedgehogs that are linearly independent
in H3. If Hf and Hg are of nonzero constant width, then their support functions
Rf and Rg are distinct.

A hedgehog Hh of R
n+1 is said to be analytic if its support function h is Cω

on Sn.

Theorem 4. Let Hf and Hg be analytic (resp. projective C2) hedgehogs of R3

that are linearly independent in H3. If the mixed curvature function of Hf and Hg

does not change sign on S2, then Hf and Hg have distinct curvature functions.

3. Proof of the results

Proof of Theorem 1. By assumption, there exists (λ, µ) ∈ R
2 such that the

hedgehog Hλf+µg is of class C
2
+. Even if it means replacing (λ, µ) by (λ+ δ, µ)

for any sufficiently small δ > 0, we can assume that |λ| �= |µ|.
Let assume that Rf = Rg. We then have:

Rλf+µg = λ2Rf + µ2Rg + 2λµR(f,g)

= µ2Rf + λ2Rg + 2µλR(f,g)

= Rµf+λg.

As the hedgehog Hλf+µg is of class C
2
+, the equality Rλf+µg = Rµf+λg implies

the existence of an ε ∈ {−1, 1} such that λf + µg = ε (µf + λg) by Minkowski’s
uniqueness theorem. We thus have (λ− εµ) f = ε (λ− εµ) g and hence f = εg
since λ− εµ �= 0. �
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Lemma 5. Let Hf and Hg be two C2-hedgehogs of R3. If u ∈ S2 is such that
Rg (u) > 0, then

R(f,g) (u)
2 ≥ Rf (u)Rg (u) .

Proof of Lemma. Define Q : R → R by Q (t) = Rf+tg (u). By bilinearity and
symmetry of the mixed curvature function, we have:

∀t ∈ R, Q (t) = Rf (u) + 2tR(f,g) (u) + t2Rg (u) .

Let us consider the ‘reduced’ discriminant ∆ = R(f,g) (u)
2 − Rf (u)Rg (u) of

the quadratic trinomial Q(t). From the assumption Rg (u) > 0, it follows that
Q(t) > 0 for any large enough t. On the other hand, there exists some λ ∈ R such
that R(1,f+λg) (u) = R(1,f) (u) + λR(1,g) (u) = 0 and hence Q (λ) = Rf+λg (u) ≤ 0.
Therefore ∆ ≥ 0, which achieves the proof. �

Surprisingly, there exist nontrivial (i.e., distinct from a point) hedgehogs of R3

whose curvature function is nonpositive all over S2 [12, 19], which disproves a
conjectured characterization of the 2-sphere [1, 6]. However, the support function
of such a hedgehog cannot be analytic or antisymmetric on S2 (in the analytic
case the first proof is due to A.D. Alexandrov [2]):

Lemma 6 ([10, Theorem 3]). Let Hh be an analytic (resp. a projective C2)
hedgehog in R3. If the curvature function Rh of Hh is nonpositive all over S2,
then Hh is reduced to a single point.

Lemma 7. Let Hg be a convex hedgehog of class C2
+ in R

3. Given a projective
hedgehog Hf in R3, the mixed curvature function R(f,g) is equal to zero on S2

only if Hf is reduced to a single point, that is, only if f is the restriction to S2

of a linear form on R3.

Proof of Lemma. Since Hg is of class C
2
+, we have

Rf (u)Rg (u) ≤ R(f,g) (u)
2

by Lemma 5. From R(f,g) (u) = 0, we then deduce that Rf ≤ 0 which implies the
result by Lemma 6. �

Proof of Theorem 2. By assumption, h1 and h2 are of the form





h1 = f1 + λ1k

h2 = f2 + λ2k
,
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where λ1, λ2 are nonzero real numbers, f1, f2 support functions of projective
hedgehogs and k the support function of a centered convex surface of class C2

+.
Assume that Rh1 = Rh2 . By bilinearity and symmetry of the mixed curvature
function, this gives

Rf1 + λ21Rk + 2λ1R(f1,k) = Rf2 + λ22Rk + 2λ2R(f2,k).

Splitting into symmetric and antisymmetric parts, we get





Rf1 + λ21Rk = Rf2 + λ22Rk

λ1R(f1,k) = λ2R(f2,k)

.

By linearity of the mixed curvature function in the first argument, the second
equation is equivalent to R(λ1f1−λ2f2,k) = 0. From Lemma 7, this implies that
Hλ1f1−λ2f2 is a point and hence that Hλ1f1 = Hλ2f2 in H3. Now, by multiplying
each member of the first equation of the previous system by λ21, we get

λ21Rf1 + λ41Rk = λ21Rf2 + λ21λ
2
2Rk,

and hence

Rλ1f1 −Rλ1f2 = λ21
(
λ21 − λ22

)
Rk

by bilinearity of the mixed curvature function. Therefore,

Rλ2f2 −Rλ1f2 = λ21
(
λ21 − λ22

)
Rk,

that is,

(
λ22 − λ21

) (
Rf2 − λ21Rk

)
= 0.

As Hf2 is projective (resp. Hk is convex of class C
2
+), we have [10]:

∫

S2

Rf2dσ ≤ 0 and

∫

S2

Rkdσ > 0.

Therefore, Rf2 �= λ21Rk. From the previous equation, we thus get λ
2
2 = λ21, that is:

∃ε ∈ {−1, 1} , λ2 = ελ1.

Now, λ1Hf1 = Hλ1f1 = Hλ2f2 = λ2Hf2 and λ1, λ2 are nonzero. Therefore, we
have Hf1 = εHf2 in H3, that is, Hf2 = εHf1 and hence

Hh2 = Hf2+λ2k = Hf2 + λ2Hk = ε (Hf1 + λ1Hk) = εHh1 in H3,

which contradicts the fact that Hh1 and Hh2 are linearly independent in H3. �
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Lemma 8. Let Hf and Hg be two C2-hedgehogs of R3. If their curvature func-
tions Rf and Rg are identically equal on S2, then Rf−g (u) ≤ 0 or Rf+g (u) ≤ 0
for all u ∈ S2.

Proof of Lemma. Assume that Rf−g (u) > 0 (resp. Rf+g (u) > 0). By Lemma 5,
we then have

R(f−g,f+g) (u)
2 ≥ Rf−g (u)Rf+g (u) .

Now the assumption Rf = Rg implies

R(f−g,f+g) = Rf −Rg = 0 and hence Rf−g (u)Rf+g (u) ≤ 0.

Therefore Rf−g (u) ≤ 0 (resp. Rf+g (u) ≤ 0). �

Proof of Theorem 4. Let us prove the contrapositive. Assume that Rf and Rg are
identically equal on S2. Since Hf and Hg are analytic (resp. projective and C2)
hedgehogs of R3 that are linearly independent in H3, it follows from Lemma 6
that there must exist (u, v) ∈ S2 × S2 such that Rf−g (u) > 0 and Rf+g (v) > 0.
By Lemma 8, we then deduce that Rf+g (u) ≤ 0 and Rf−g (v) ≤ 0. Now we have
R(f,g) =

1
4
(Rf+g −Rf−g), so that






Rf−g (u) > 0

Rf+g (u) ≤ 0
and






Rf+g (v) > 0

Rf−g (v) ≤ 0

implies R(f,g) (u) < 0 and R(f,g) (v) > 0. �
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