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Abstract.
Metallic nanospheres (Au, Ag, Cu) deposited on PV-active semiconductor surface

can act as light converters, collecting energy of incident photons in plasmon oscillations.
This energy can be next transferred to semiconductor substrate via a near-field channel,
in a more efficient manner in comparison to the direct photo-effect. We explain this
enhancement by inclusion of indirect inter-band transitions in semiconductor layer
due to the near-field coupling with plasmon radiation in nanoscale of the metallic
components, where the momentum is not conserved as the system is not translationally
invariant. The model of the nano-sphere plasmons is developed (RPA, analytical
version, adjusted to description of large metallic clusters, with radius of 10 − 60 nm)
including surface and volume modes. Damping of plasmons is analyzed via Lorentz
friction, and irradiation losses in far- and near-field regimes. Resulting resonance
shifts are verified experimentally for Au and Ag colloidal water solutions with respect
to particle size. Probability of the electron interband transition (within the Fermi
golden rule) in substrate semiconductor induced by coupling to plasmons in near-field
regime turns out to be significantly larger than for coupling of electrons to planar-
wave photons. This is of practical importance for enhancement of thin-film solar cell
efficiency, both for semiconductor type (like III-V semiconductor based cells) and for
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conjugate-polymer-based or dye organic plastic cells, intensively developed at present.
We have described also a non-dissipative collective mode of surface plasmons in a chain
of near-field-coupled metallic nanospheres, for particular size, separation parameters
and wave-lengths. This would find an application in sub-diffraction electro-photonic
circuit arrangement and for possible energy transport in solar cells, in particular in
organic materials with low mobility of carriers.

PACS numbers: 73.21.-b, 36.40.Gk, 73.20.Mf, 78.67.Bf

Submitted to: J. Phys. D: Appl. Phys.
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1. Introduction

Rapid progress in plasmonics [1] (taking advantage of peculiar properties of plasmon-

polaritons [2] in nano-structured metallic interfaces) and plasmonic applications in

photonics and microelectronics [3] have focused attention on metallic modified systems

in nano-scale and on collective excitations of metallic plasma in a confined geometry. Of

particular interest are the recently reported experimental data on giant enhancement of

photoluminescence and absorption of light by semiconductor surfaces (of photo-diodes)

covered with metallic (gold, silver, or copper) nanospheres, with sphere radii of the order

of several to several tens of nanometres [4, 5, 6, 7, 8, 9]. These phenomena are recognized

as promising for the enhancement of the efficiency of solar cells by the application of

special metallic nanoparticle coverings of photo-active layers [4, 5]. Metallic nanospheres

(or nanoparticles of other shape) can act as light converters, collecting energy of incident

photons in surface plasmon oscillations. This energy can be next transferred to the

semiconductor substrate in a more efficient manner in comparison to the direct photo-

effect.

Experimental observations [4, 5, 6, 7, 8, 9] suggest, that the short range coupling

between plasmons in nanospheres and electrons in the semiconductor substrate allows

for significant growth of selective light energy transformation into a photo-current in the

diode system. This phenomenon is not described in detail as of yet and moreover, some

competitive mechanisms apparently contribute. Nevertheless, one can argue generally,

that due to the nano-scale size of the metallic components, the momentum is not

conserved, which leads to the allowance of all indirect optical interband transitions in

the semiconductor layer, resulting in enhancement of the photo-current in comparison

to the ordinary photo-effect, when only direct interband transitions are admitted.

The surface plasmons were originally considered by Mie [10] in 1908, who formulated

a classical description of oscillations of electrical charge on the surface of the metallic

sphere. The classical Mie frequencies are not dependent on the sphere radius, in contrast

to the experimental observations for both small metallic clusters and larger spheres.

Plasmon excitations in small metallic clusters (up to 2 nm) were widely analyzed

[11, 12, 13, 14] within mostly numerical calculations ’ab initio’, including the shell-

model and the Kohn-Sham ’local density approximation’ (LDA), limited, however, by

numerical barriers to a few hundreds of electrons only. The emerging of the Mie response

from the more general behaviour was presented [11, 12, 13]. Numerical analyses revealed

the red-shift of Mie resonance mainly due to so-called spill-out of the electron cloud

beyond the jellium rim. This effect is, however, not important for particles with radii

larger than 2 nm, and for nanospheres, of size of 10 − 60 nm, the other effects are

responsible for size-dependent shifts of resonances, pronounced in large particles and

opposite to the red shift for small and ultra-small clusters.

The main factor for plasmon oscillations in large nanospheres was identified

[15, 16, 17] as radiation phenomena, which for radius larger than 10 nm dominate

plasmon damping as growing with the radius a as a3. The pronounced cross-over in the
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vicinity of 10 nm (for Au, Ag and Cu) has been predicted [16]—for smaller nanospheres,

the scattering damping (including boundaries and so-called Landau damping [18]) is

important, while for larger spheres, the radiation losses are overwhelming. It is thus

clear that rather large nanoparticles would play a role in all the phenomena linked with

possible energy and information transport employing plasmon radiation, which well

corresponds to experimental observations [4, 5, 6, 7, 8, 9].

In the present paper we develop the RPA (random phase approximation) semi-

classical theory of plasmons, formulated [15] for large metallic nanospheres in analogy

to RPA theory of plasmons in bulk metal [19, 20] (Pines-Bohm theory). The advantage

of this description [15, 16] consists in full-analytic formulation allowing for application

to more complicated physical situations, as e.g., plasmons interaction with surrounding

medium, in order to describe plasmonic enhancement of photo-voltaic effect in the case

of metallic particles deposited on the photo-active layer of the semiconductor, or for

description of transport of plasmon-polaritons, with wide potential applications for sub-

diffraction nano-photonics [21]. It is indicated that the properties of plasmon oscillations

in large nanospheres (i.e., with radii in the range of 10− 60 nm) are governed by strong

radiation-induced energy losses, not analysed previously for such sized metallic particles,

despite wide plasmon descriptions e.g., within fully classical Mie-type approach to large

metallic particles [22, 23, 24] and microscopic Kohn-Sham-type analyses of small and

ultra-small metallic clusters [11, 12, 18]. For large nanospheres we have described a

sharp crossover of radius dependence of resonant energy red-shift at ca 10 nm (for Ag

and Au), corresponding to competition of opposite resonance shifts due to scattering and

irradiation losses, which has been confirmed by experimental observations in the case

of dielectric surroundings of particles (in water colloidal solutions) [16]. The coupling

of surface plasmons in the near-field zone with another systems, like a semiconductor

substrate or other metallic nanosphere in the chain, is the main topic of the present

consideration. An assessment of the energy transfer via this channel, as made in the

present paper within the Fermi golden rule scheme, reveals a high efficiency of plasmon-

mediated energy transport and explains the experimentally observed PV efficiency

growth of solar cell setups with metallic surface nano-modifications. It seems to be

of a particular significance for thin film semiconductor solar cell technology including

conjugated polymer semiconductor photo-active matrices with a possible commercial

usage, provided an increase of their efficiency by relatively not-costly modifications,

e.g., by sparse coverings of photo-active surface with noble metal nanoparticles, which

is feasible in various techniques.

The paper is organized as follows. In the next section a short review of the model

is given including results of analyses both for volume and surface plasmon excitations

in spherical geometry. Damping phenomena with particular role of radiation losses

for large nanospheres is described in the following section, in terms of the Lorentz

friction. The separate discussion is addressed to giant enhancement of photo-voltaic

effect by plasmon mediation, basing on the hypothesis that this growth corresponds to

contribution of all indirect inter-band transitions in the substrate semiconductor, allowed



Mechanism of plasmon-mediated enhancement of PV efficiency 5

in the nanostructure with near-field coupling (which is not a translation invariant system

and thus without the momentum conservation condition imposed). The comparison

with experimental data related to radiation of plasmons in metallic nanospheres is also

given. In the last section, the undamped mode of collective surface plasmon excitation

along the metallic nanosphere chain is demonstrated, in a correspondence with previous

numerical simulations of long range plasmon-polariton modes [25].

2. Surface and volume plasmons in large metallic nanospheres

2.1. RPA equation for collective electron oscillations in confined geometry

We consider a metallic sphere with radius a in a vacuum, ε = 1, µ = 1. We

assume that the interaction between electrons and ions is described by a local and

weak pseudopotential (this condition corresponds to the so-called ’simple metal’ case)

[19], as e.g. for noble metals; of a particular significance are gold, silver and also copper

nanoparticles due to the strong visible-light plasmon resonances in these materials. The

Hamiltonian for this system has the form:

Ĥ = −
N∑

ν=1

h̄2∇2
ν

2M
+ 1

2

∑
ν 6=ν′

u(Rν − Rν′) −
Ne∑
j=1

h̄2∇2
j

2m
+ 1

2

∑
j 6=j′

e2

|rj−rj′ |

+
∑
ν,j

w(Rν − rj),
(1)

where Rν , rj and M , m are the positions and masses of the ions and electrons,

respectively; N is the number of ions in the sphere, Ne = ZN is the number of

collective electrons, u(Rν−Rν′) is the interaction of ions (ion is treated as a nucleus with

electron core of closed shells) and w(Rν −rj) is the local pseudopotential of electron-ion

interaction. Assuming the jellium model [11, 22, 26] one can write for the background

ion charge uniformly distributed over the sphere: ne(r) = neΘ(a−r), where ne = Ne/V

and ne|e| is the averaged positive charge density, V = 4πa3

3
is the sphere volume and Θ

is the Heaviside step-function.

A local electron density can be written as follows [19, 20]:

ρ(r, t) =< Ψe(t)|
∑

j

δ(r − rj)|Ψe(t) >, (2)

with the Fourier picture:

ρ̃(k, t) =
∫

ρ(r, t)e−ik·rd3r =< Ψe(t)|ρ̂(k)|Ψe(t) >, (3)

where the ’operator’ ρ̂(k) =
∑
j

e−ik·rj .

Using the above notation one can rewrite the electron part of the Hamiltonian (1),

Ĥe, in the following form [15]:

Ĥe =
Ne∑
j=1

[
− h̄2∇2

j

2m

]
− e2

(2π)3

∫
d3kñe(k)2π

k2

(
ρ̂+(k) + ρ̂(k)

)

+ e2

(2π)3

∫
d3k 2π

k2

[
ρ̂+(k)ρ̂(k) − Ne

]
,

(4)

where: ñe(k) =
∫

d3rne(r)e−ik·r, 4π
k2 =

∫
d3r 1

r
e−ik·r.
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The motion equation has the form:

d2ρ̂(k)

dt2
=

1

(ih̄)2

[[
ρ̂(k), Ĥe

]
, Ĥe

]
. (5)

Within the RPA and for Thomas-Fermi averaged kinetic energy formula [19], Eq. (5)

attains the form [15]:

∂2δρ̃(r,t)
∂t2

=
[

2
3

εF

m
∇2δρ̃(r, t) − ω2

pδρ̃(r, t)
]
Θ(a − r)

− 2
3m

∇
{[

3
5
εF ne + εF δρ̃(r, t)

]
r
r
δ(a − r)

}

−
[

2
3

εF

m
r
r
∇δρ̃(r, t) +

ω2
p

4π
r
r
∇
∫

d3r1
1

|r−r1|δρ̃(r1, t)
]
δ(a − r).

(6)

In the above formula ωp is the bulk plasmon frequency, ω2
p = 4πnee2

m
(it was taken into

account that ∇Θ(a − r) = −r
r
δ(a − r)). The solution of Eq. (6) can be decomposed

into two parts related to the distinct domains:

δρ̃(r, t) =

{
δρ̃1(r, t), for r < a,

δρ̃2(r, t), for r ≥ a, (r → a+),
(7)

corresponding to the volume and surface excitations, respectively. These two parts of

local electron density fluctuations satisfy the equations (according to Eq. (6)):

∂2δρ̃1(r, t)

∂t2
=

2

3

εF

m
∇2δρ̃1(r, t) − ω2

pδρ̃1(r, t), (8)

and (here ε = 0+)

∂2δρ̃2(r,t)
∂t2

= − 2
3m

∇
{[

3
5
εF ne + εF δρ̃2(r, t)

]
r
r
δ(a + ε − r)

}

−
[

2
3

εF

m
r
r
∇δρ̃2(r, t) +

ω2
p

4π
r
r
∇
∫

d3r1
1

|r−r1| (δρ̃1(r1, t)Θ(a − r1)

+δρ̃2(r1, t)Θ(r1 − a))] δ(a + ε − r).

(9)

2.2. Solutions of plasmon RPA equations

Eqs (8) and (9) can be solved upon imposed boundary and symmetry conditions. Let

us represent both parts of the electron fluctuation in the following manner:

δρ̃1(r, t) = ne [f1(r) + F (r, t)] , for r < a,

δρ̃2(r, t) = nef2(r) + σ(Ω, t)δ(r + ε − a), ε = 0+, for r ≥ a, (r → a+),
(10)

and now let us choose the convenient initial conditions, F (r, t)|t=0 = 0, σ(Ω, t)|t=0 = 0,

(Ω is the spherical angle), moreover (1 + f1(r))|r=a = f2(r)|r=a (continuity condition),

F (r, t)|r→a = 0,
∫

ρ(r, t)d3r = Ne (neutrality condition).

We arrive [15, 16] thus with the explicit form of the solutions of Eqs (8, 9):

f1(r) = −kT a+1
2

e−kT (a−r) 1−e−2kT r

kT r
, for r < a,

f2(r) =
[
kT a − kT a+1

2

(
1 − e−2kT a

)]
e−kT (r−a)

kT r
, for r ≥ a,

(11)

where kT =
√

6πnee2

εF
=
√

3ω2
p

v2
F

(Thomas-Fermi inverse radius). For the time-dependent

parts of the electron fluctuations we find [15, 17]:

F (r, t) =
∞∑

l=1

l∑

m=−l

∞∑

n=1

Almnjl(knlr)Ylm(Ω)sin(ωnlt), (12)
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and

σ(Ω, t) =
∞∑
l=1

l∑
m=−l

Blm

a2 Ylm(Ω)sin(ω0lt)

+
∞∑
l=1

l∑
m=−l

∞∑
n=1

Almn
(l+1)ω2

p

lω2
p−(2l+1)ω2

nl
Ylm(Ω)ne

a∫
0

dr1
rl+2
1

al+2 jl(knlr1)sin(ωnlt),
(13)

where jl(ξ) =
√

π
2ξ

Il+1/2(ξ) is the spherical Bessel function, Ylm(Ω) is the spherical

function, ωnl = ωp

√
1 +

x2
nl

k2
T

a2 are the frequencies of electron volume self-oscillations

(volume plasmon frequencies), xnl are the nodes of the Bessel function jl(ξ), knl = xnl/a,

ω0l = ωp

√
l

2l+1
are the frequencies of electron surface self-oscillations (surface plasmon

frequencies).

From the above equations it follows thus that the local electron density (within

RPA attitude) has the form:

ρ(r, t) = ρ0(r) + ρneq(r, t), (14)

where the RPA equilibrium electron distribution is (correcting the uniform distribution

ne):

ρ0(r) =

{
ne [1 + f1(r)] , for r < a,

nef2(r), for r ≥ a, r → a+
(15)

and the nonequilibrium, of plasmon oscillation type, is:

ρneq(r, t) =

{
neF (r, t), for r < a,

σ(Ω, t)δ(a + ε − r), ε = 0+, for r ≥ a, r → a + .
(16)

The function F (r, t) displays volume plasmon oscillations, while σ(Ω, t) describes the

surface plasmon oscillations. Let us emphasize that in the formula for σ(Ω, t), Eq. (13),

the first term corresponds to surface self-oscillations, while the second term describes

the surface oscillations induced by the volume plasmons. The frequencies of the surface

self-oscillations are

ω0l = ωp

√
l

2l + 1
, (17)

which, for l = 1, agrees with the dipole type surface oscillations described originally by

Mie [10], ω01 = ωp/
√

3 (for simplicity, denoted hereafter as ω1 = ω01).

3. Damping of plasmons in large nanospheres

One can take advantage of the oscillator form of RPA semiclassical equations for both

volume and surface modes of plasmons in finite geometry, and can phenomenologically

include damping of plasmons in analogy to oscillator damping. Let us also assume that

both volume and surface plasmon oscillations are damped with the time ratio τ0 which

can be phenomenologically accounted for via the additional term, − 2
τ0

∂δρ(r,t)
∂t

, to the

right-hand-side of above equations. They attain the form:

∂2δρ1(r, t)

∂t2
+

2

τ0

∂δρ1(r, t)

∂t
=

2

3

εF

m
∇2δρ1(r, t) − ω2

pδρ1(r, t), (18)
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and
∂2δρ2(r,t)

∂t2
+ 2

τ0

∂δρ2(r,t)
∂t

= − 2
3m

∇
{[

3
5
εF ne + εF δρ2(r, t)

]
r
r
δ(a + ε − r)

}

−
[

2
3

εF

m
r
r
∇δρ2(r, t) +

ω2
p

4π
r
r
∇
∫

d3r1
1

|r−r1| (δρ1(r1, t)Θ(a − r1)

+1
ε
δρ2(r1, t)Θ(r1 − a)

)
+ ene

m
r
r
· E(t)

]
δ(a + ε − r).

(19)

For the homogeneous forcing field E(t), only dipole surface mode can be excited and

the electron dynamics resolves to the equation for a single dipole type mode, described

by the function Q1m(t). The function Q1m(t) satisfies the equation:

∂2Q1m(t)
∂t2

+ 2
τ0

∂Q1m(t)
∂t

+ ω2
1Q1m(t)

=
√

4π
3

ene

m

[
Ez(t)δm0 +

√
2 (Ex(t)δm1 + Ey(t)δm−1)

]
,

(20)

where ω1 = ω01 = ωp√
3ε

(it is a dipole-type surface plasmon Mie frequency [10]). Only

this function contributes to the dynamical response to the homogeneous electric field.

Thus for the homogeneous forcing field, electron density fluctuations:

δρ(r, t) =





0, for r < a,
1∑

m=−1
Q1m(t)Y1m(Ω) for r ≥ a, r → a + .

(21)

In general, F (r, t) (volume plasmons) and σ(Ω, t) (surface plasmons) contribute to

plasmon oscillations. Nevertheless, in the case of homogeneous perturbation, only the

surface l = 1 mode is excited (it is a case of plasmon exciting by the visible light, when

for nanospheres with radius of 10 − 100 nm, the dipole approximation holds).

For plasmon oscillations given by Eq. (21) one can calculate the corresponding

dipole,

D(t) = e
∫

d3rrδρ(r, t) =
4π

3
eq(t)a3, (22)

where Q11(t) =
√

8π
3

qx(t), Q1−1(t) =
√

8π
3
qy(t), Q10(t) =

√
4π
3

qx(t) and q(t) satisfies the

equation (cf. Eq. (20)),
[

∂2

∂t2
+

2

τ0

∂

∂t
+ ω2

1

]
q(t) =

ene

m
E(t). (23)

There are various mechanisms of plasmon damping, which could be effectively

accounted for via phenomenological oscillator type damping term. All types of

scattering phenomena, including electron-electron and electron-phonon interactions, as

well contribution of boundary scattering effect [21] cause significant attenuation of

plasmons in particular in small metal clusters. All these contributions to damping

time ratio scale as 1
a

and are of lowering significance with the radius growth. In the

following subsection we argue that damping of plasmons caused by radiation losses scales

conversely, as a3, and for large nanospheres this channel dominates plasmon attenuation.
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3.1. Lorentz friction for plasmons

The nanosphere surface plasmons can be induced by a homogeneous electric field [16],

while the volume mode excitation needs field inhomogeneity on the radius scale (and

therefore the visible light cannot excite volume modes in the nanospheres with radii of

10 − 60 nm). Plasmon oscillations are themselves a source of the e-m radiation. This

radiation takes away the energy of plasmons resulting in their damping, which can be

described as the Lorentz friction [27]. This damping was not included in τ0 in Eq. (23).

Various processes contribute to the attenuation of plasmon oscillations in the case

of metallic nanospheres. The most important (and thoroughly analyzed in the case

of small and ultra-small metallic cluster, for which they play much more pronounced

role in comparison to large nanospheres) are scattering of electrons on other electrons,

on defects, on phonons and on nanoparticle boundary—all they lead to damping rate

expressed by the simplified formula [21]:

1

τ0

' vF

2λB

+
cvF

2a
, (24)

where, C is the constant of unity order, a is the nanosphere radius, vF is the Fermi

velocity in metal, λB is the electron free path in bulk (including scattering of electrons

on other electrons, on impurities and on phonons, and its inverse ratio to Fermi velocity

determines the time scale of decay of any electron-built states, also of plasmons [21]); for

Ag, vF = 1.4× 106 m/s and λB ' 57 nm (at room temperature); the latter term in the

formula (24) accounts for scattering of electrons on the boundary of the nanoparticle,

while the former one corresponds to scattering processes similar as in bulk. The other

effects, as the so-called Landau damping (especially important in small clusters [18, 28]),

corresponding to decay of plasmon for high energy particle-hole pair, are of lowering

significance for nanosphere radii larger than 2− 3 nm [18] and completely negligible for

radii larger than 10 nm. Note that the similarly lowering role with the radius growth

plays also electron liquid spill-out effect [11, 12], though it was of primary importance

for small clusters [11, 14].

The e-m wave emission which causes electron friction can be described as the

additional electric field [27],

EL =
2

3ε3/2v3

∂3D(t)

∂t3
, (25)

where v = c√
ε

is the light velocity in the dielectric medium, and D(t) is the dipole of

the nanosphere. According to Eq. (22) we arrive at the following:

EL =
2e

3εv2

4π

3
a3 ∂3q(t)

∂t3
. (26)

Substituting this into Eq. (23), we get
[

∂2

∂t2
+

2

τ0

∂

∂t
+ ω2

1

]
q(t) =

ene

m
E(t) +

2

3ω1

(
ω1a

v

)3 ∂3q(t)

∂t3
. (27)
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If one rewrites the above equation (for E=0) in the form
[

∂2

∂t2
+ ω2

1

]
q(t) =

∂

∂t

[
− 2

τ0
+

2

3ω1

(
ω1a

v

)3 ∂2q(t)

∂t2

]
, (28)

thus, one notes that the zeroth order approximation (neglecting attenuation)

corresponds to the equation:
[

∂2

∂t2
+ ω2

1

]
q(t) = 0. (29)

In order to solve Eq. (28) in the next step of perturbation iteration, one can substitute,

in the right-hand-side of this equation, ∂2q(t)

∂t2
by −ω2

1q(t) (acc. to Eq. (29)).

Therefore, if one assumes the above estimation, ∂3q(t)
∂t3

' −ω2
1

∂q(t)
∂t

, one can include

the Lorentz friction in a renormalised damping term:
[

∂2

∂t2
+

2

τ

∂

∂t
+ ω2

1

]
q(t) =

ene

m
E(t), (30)

where

1

τ
=

1

τ0
+

ω1

3

(
ω1a

v

)3

' vF

2λB
+

CvF

2a
+

ω1

3

(
ω1a

v

)3

, (31)

where we used for 1
τ0

' vF

2λB
+ CvF

2a
, (λB is the free path in bulk, vF is the Fermi

velocity, and C ' 1 is a constant) [21], which corresponds to inclusion of plasmon

damping due to electron scattering on other electrons and on the nanoparticle boundary.

Renormalised damping causes a change in the shift of self-frequencies of free surface

plasmons, ω′
1 =

√
ω2

1 − 1
τ2 .

The resulting cross-over is depicted in Fig. 1. Using Eq. (31) one can determine

the radius a0 corresponding to a minimal damping,

a0 =

√
3

ωp

(
vF c3

√
ε/2

)1/4
. (32)

Note, that the Lorentz friction, being of the third order with respect to time-

retardation shift [27], includes the retardation effects via plasmon damping induced

by irradiation [29]. The other channel of plasmon damping corresponds to nonlocal

effects including scattering on the nanoparticle surface [30]. We have demonstrated

that the retardation and the nonlocal effects lead to opposite, red and blue shifts of

the resonance frequency [29]. This strong cross-over of plasmon damping is the most

significant property of plasmon radiation from nanospheres, which decides on particular

applications related with plasmon radiative transport of energy and information.

Note also, that one can verify [16] the above calculated Lorentz friction contribution

to plasmon damping by estimation of the energy transfer in the far-field region (which

can be expressed by the Poynting vector) and via comparison with the energy loss of

plasmon oscillation. We have arrived [15, 16] at the same formula for damping time

rate as given by Eq. (30). The radius dependent shift of the resonance resulting due

to strong irradiation-induced plasmon damping was verified also experimentally [16] by

measurement of light extinction in colloidal solutions of nanoparticles with different size
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Figure 1. (Colour online) Upper: the damping rate with respect to the sphere radius
a in the region of cross-over for Ag nanospheres (in water colloidal solution): dotted
line—contribution of scattering ∼ vF

λB
+ vF

a , dashed line—contribution of radiation in
far-field ∼ a3, solid line—the sum of both contributions (dashed horizontal line—level
1013 1/s); bottom: the damping rate with respect to the sphere radius in the region of
cross-over for Au nanospheres (in water colloidal solution): dotted line—contribution
of scattering, dashed line—contribution of radiation in far-field, solid line—sum of both
contributions

(it is done [16] for Au, 10 − 80 nm, and Ag, 10 − 60 nm). These measurements clearly

support the a3 plasmon damping behaviour, as described above for the far-field zone

radiation losses in a dielectric surroundings.

In large nanospheres the overwhelming role for decay of plasmons play radiation

losses, which scale as a3 with nanosphere radius (in the range 10 − 60 nm for a) and

give rise to a pronounced cross-over of plasmon damping versus nanosphere size at ca

10 nm of radius (for Au and Ag)—cf. Fig. 1. It is, however, an important question

of ultimate damping behaviour with further radius growth. As it follows from our

analysis, the cubic-type enhancement of attenuation rate with radius growth quickly

saturates at ca 50 − 60 nm, due to nonlinear (in sense of the time derivative order)

contribution of the Lorentz friction [27]. Linearisation of the Lorentz friction resulted
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in the cubic radius dependence of attenuation rate and it was justified only for not

high damping [16]. When, however, this attenuation attains the large value, the third

order derivative correction quenches the further growth and damping saturates, for

limiting large nanospheres (at radius of order of 50 − 80 nm, as we have verified

also experimentally for Au and Ag colloidal water solutions [16]). Thus for plasmon

applications to irradiation energy transport the nanosphere size window 10 − 60 nm

seems to be most convenient.

If, however, in the vicinity of the nanosphere the another system is located,

the situation would change. For the case when the nanosphere is deposited on the

semiconductor surface, the near-field coupling of plasmons with semiconductor band

electrons must be included.

3.2. Damping of plasmons due to near-field coupling with semiconductor band electrons

Assuming stationary conditions (i.e., constant-in-time amplitude of the surface plasmon

oscillations, which corresponds to a balance of the incoming energy of incident photons

with the energy outgoing to the semiconductor substrate) the relevant damping is

governed by the near-field dipole interaction (for R � λ) expressed by the scalar

potential [27] with an amplitude D0(ω),

ϕ(R, t) =
1

ε0R2
n · D0(ω)sin(ωt). (33)

The matrix element of near-field dipole interaction for the transition of a semiconductor

electron from the state in the valence to the conduction band, assumed as Ψi(f)(r, t) =

(2π)−3/2exp
[
ik · r − iEi(f)(k)t/h̄

]
(i–initial, f–final, respectively) can be calculated by

application of the Fermi golden rule, which leads to a probability of transition per time

unit [15],

δw =
e2(D0(ω))2µ

√
m∗

pm
∗
n

3(4π3)2h̄5ε2
(h̄ω − Eg), (34)

where D0(ω) is the surface plasmon dipole oscillation amplitude, adjusted to the balance

of energy income and outcome (via the shift of the resonance for stationary driven and

damped oscillations).

Taking into account that the number of incident photons in the volume V of

a semiconductor equals
εE2

0V

8πh̄ω
and that the volume rate of metallic components is

C0 = Nm
4πa3

3V
(Nm—the number of nanospheres), the probability that an energy of

a single incident photon is transferred to the semiconductor via surface plasmons on

metallic nano-admixtures can be expressed as (with δw given by Eq. (34)):

qm = βNmδw

(
εE2

0V

8πh̄ω

)−1

=
βC0e

2ωf 2(ω)a3

8π6h̄4ε
µ
√

m∗
pm

∗
n(h̄ω − Eg), (35)

where f(ω) =
ω2

1√
(ω2

1−ω2)2+4ω2/τ2
is the amplitude of forced surface plasmon oscillations,

β is an additional phenomenological factor accounting for proximity near-field contact

reduction (via comparison with the experimental data, β ∼ 10−2) [15].
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In order to assess efficiency of the near-field coupling channel one can estimate

the ratio of the probability of energy absorption in the semiconductor via mediation

of surface plasmons (per single photon incident on the metallic nanospheres) to the

energy attenuation in the semiconductor directly from a planar wave illumination (also

per single photon). In the latter case the energy attenuation in the semiconductor

per single incident photon is given by the formula for ordinary photo-effect [31],

q = 2
√

2
3π6

e2µ5/2

m∗2
p ωεh̄3 (h̄ω − Eg)

3/2. The ratio qm

q
turns out to be of order of 104 β40

H[nm]

(at a typical surface density of nanoparticles, ns ∼ 108/cm2) which (including the

phenomenological factor β, and H—the semiconductor photo-active layer depth) is

sufficient to explain the scale of the experimentally observed strong enhancement of

absorption and emission rates.

The estimation of electron inter-band transition probability for the case of coupling

of band electrons with near-field dipole radiation of plasmons in the nanosphere, as

presented above, is idealized to an atomic limit. The strong enhancement of this

transition probability is linked with allowance of momentum-non-conserved transitions.

For an atomic limit the square of matrix element of perturbation between band states

(as needed for a golden rule formula), | < k1|ŵ|k2 > |2 ∼ 1
q2 , where q = k2 − k2 is

the momentum transfer. It indicates that large q do not give a significant contribution,

though quenching of momentum-indirect transitions is not so restrictive as in the case

of perturbation by a planar wave, resulting in δ(q) factor (in the ordinary photo-effect).

For finite size nanospheres (with radius a) one can expect that the estimated above

enhancement of interband transition probability of electrons in substrate semiconductor

caused by near-field radiation of plasmons, and generated by momentum indirect

transitions, would be of lower significance. The size dependent factor
(

sin(qa)
qa

)2
,

multiplies the squared perturbation matrix element in this case, which finally results

in the renormalisation of transition probability by the factor 1
(a[nm])2

. For a ∼ 10 − 60

nm, this gives reducing of the transition probability by two–three orders, which we

have already included by the effective phenmomenological factor β (fitted form the

experiment, β ' 28 × 10−3
(

50
a[nm]

)2
). The enhancement of the near-field induced

interband transition, in the case of large nanospheres, is, however, still significant as

the reducing role of size-related quenching of transitions is partly compensated by ∼ a3

growth of the dipole amplitude of plasmon oscillations.

High efficiency (even if decreased by β) of the near-field energy transfer from

surface plasmons to the semiconductor substrate is caused mainly by a contribution

of all interband transitions, not restricted here to the direct (vertical) ones as for

ordinary photo-effect, due to the absence of the momentum conservation constraints

for nanosystems. The strengthening of the probability transition due to all indirect

interband paths of excitations in the semiconductor is probably responsible for the

observed experimentally strong enhancement of light absorption and emission in diode

systems mediated by surface plasmons in nanoparticle surface coverings [4, 5, 6, 7, 8, 9].
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In the balanced state of the system, when the incoming energy of light is

transferred to the semiconductor via near-field coupling, we deal with the stationary

solution of driven and damped oscillator. The driving force is the electric field of

the incident planar wave, and the damping force is the near-field energy transfer

described by the 1
τ

(assuming that this dissipation channel is dominating). The

resulting red-shifted resonance with simultaneously reduced amplitude allows for the

accommodation to the balance of energy transfer to the semiconductor with incident

photon energy. The amplitude of resonant plasmon oscillations D0(ω) is thus shaped

by f(ω) = 1√
(ω2

1−ω2)2+4ω2/τ2
. The extremum of red-shifted resonance is attained at

ωm = ω1

√
1 − 2(ω1τ)−2 with corresponding amplitude ∼ τ/

(
2
√

ω2
1 − τ−2

)
. This shift

is proportional to 1/(ω1τ
2) and scales with nanosphere radius a similarly (diminishes

with decreasing a) as in the experimental observations [7] (note again that for scattering-

induced 1/τ0 the dependence on a is opposite [grows with decreasing a]).

In order to compare with the experiment let us estimate the photo-current in the

case of a metallic modified surface in relation to the ordinary photo-effect. The photo-

current is given by I ′ = |e|N(q + qm)A, where N is the number of incident photons

and q and qm are the probabilities of single photon attenuation in the ordinary photo-

effect [31] and in that one enhanced due to the presence of metallic nanospheres, i.e., of

q = 2
√

2
3π6

e2µ5/2

m∗2
p ωεh̄3 (h̄ω − Eg)

3/2 and qm given by Eq. (35); A =
τn
f

tn
+

τp
f

tp
is the amplification

factor (τ
n(p)
f is the annihilation time of both sign carriers, tn(p) is the drive time for

carriers [the time of traversing the distance between electrodes]). From the above

formulae, it follows that (here I = I ′(qm = 0), i.e., the photo-current without metallic

modifications)

I ′

I
= 1 + 7.95 · 105c0

m∗
p

m∗
n


 2a

100[1nm]

√
h̄ω1[eV ]

x

(m∗
p

m
+

m∗
n

m

)


3

φ(x), (36)

where c0 = 4πa3

3
β ns

H
, with ns as the surface density of metallic nanospheres, H as

the semiconductor layer depth, φ(x) = x2

(x2−1)2+4x2/x2
1

1√
x−xg

, x = ω/ω1, x1 = τω1,

xg = Eg/(h̄ω1), h̄ω1 = 2.72 eV, mn(p) as the effective mass of conduction band and

valence band carriers (for Si, m∗
n = 0.19(0.98) m and m∗

p = 0.16(0.52) m, for light

(heavy) carriers, band gap Eg = 1.14 eV, ε = 12), m as the bare electron mass.

The results are summarized in Tab. 1 and in Fig. 2, for various radii of the

nanospheres, and reproduce well the experimental behaviour [7]. By xm we denote

the frequencies corresponding to the maximum value of the photo-current (i.e., to the

maximum of I ′/I).

Both channels of photon absorption resulting in photo-current in the semiconductor

sample are included, the direct ordinary photo-effect absorption with probability of

transitions given by q and the plasmon mediated absorption with probability qm,

respectively. Note also that some additional effects like reflection of the incident

photons or destructive interference on metallic net would contribute and it was

phenomenologically accounted for in the plasmon mediated channel by the experiment
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fitted factor β. These corrections are, however, rather not strong for the considered

low densities of metallic coverings of order of 108/cm2, and nanosphere sizes well lower

than the resonant wave-length, though for larger concentrations and larger nanosphere

sizes, would play a stronger reducing role [32, 33]. The resonance threshold was

accounted for by the damped resonance envelope function φ(x) in Eq. (36) including

also semiconductor band-gap limit.

Tab. 1. Comparison with the experimental data [7] for Au/Si

a [nm] ns

[108/cm2]

xm ωm = xmh̄ω1

(theor) [eV]

h̄ωm (exp)

[eV]

φ(xm) I′

I
(xm)

50 0.8 0.772 2.09 2.25 0.84 1.55

40 1.6 0.951 2.58 2.48 3.00 1.9

25 6.6 0.997 2.71 2.70 49.42 1.75

(the best coincidence with the experimental data is attained at β = 28×10−3 502

(a[nm])2
)

In Fig. 2, an estimation of normalized photo-current, I ′/I, with respect to the

wave-length is presented for three sizes of metallic nanospheres (Au) deposited on

a photo-active Si layer, with various structure parameters (the proximity parameter

β = 28 × 10−3 502

(a[nm])2
):

As indicated above, the relatively high value of qm

q
∼ 104 β40

H[nm]
enables a significant

growth of the efficiency of the photo-energy transfer to the semiconductor, mediated

by surface plasmons in nanoparticles deposited on the active layer, by increasing β or

reducing H (at constant ns). However, because of the fact that an enhancement of

β easily induces the overdamped regime, a greater perspective would be thus lowering

H, the layer depth (cf. Fig.2 (left), where a significant growth of the photo-current

with the lowering of the active layer depth H illustrates the surface character of the

effect). The overall behaviour of I ′/I(ω) = 1+qm/q calculated according to the relation

(36), and depicted in the central panel in Fig. 2, agrees quite well with the experimental

observations [7] (cf. inset in the central panel of Fig. 2), in the position, height and shape

of the photo-current curves for distinct samples (the strongest enhancement is achieved

for a = 40 nm, as indicated in the central panel of Fig. 2), though qm/q is probably

overestimated as the q denominator would be greater for a doped real semiconductor

structure but was not taken into account in the present calculus, similarly as surface

effects; all of these would change the q denominator as well as its energy dependence,

especially for longer wavelengths, where the discrepancy between the theoretical model

and the experimental data is noticeable.

When the metallic nanosphere would be immersed in the dielectric medium, the

renormalisation of the resonance plasmon frequency takes place, which was analyzed

widely for small clusters [11, 34] and for larger particles, within the Mie-type approach

[22, 23, 24, 35, 36, 37] or in RPA semiclassical method [15, 16].

It is evident that the PV efficiency enhancement due to energy transfer to

semiconductor layer via plasmon excitations in metallic nanospheres is the surface-type

effect, because of short range of near-field zone being essential to coupling of plasmons
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a) b)

c) d)

Figure 2. a) Dependence of the normalized photo-current I′

I (λ) with respect to the
wave-length for growing radius a from 25 nm (bottom) to 50 nm (upper), step 2 nm
(H=4 µm, ns = 1.6 × 108 1/cm2) b) The same as in a) for better visualisation of
the red-shift of the maximum with radius growth c) Dependence of the normalized
photo-current I′

I (λ) with respect to the wave-length for growing layer depth H from
4 µm (upper) to 10 µm (bottom), step 0.5 µm (a = 20 nm, ns = 1.6 × 108 1/cm2) d)
Comparison with the experimental data—inset[7] for A: a = 25 nm (better fitting for
19 nm), ns = 6.6 × 108 1/cm2, B: a = 40 nm, ns = 1.6 × 108 1/cm2, C: a = 50 nm,
ns = 0.8 × 108 1/cm2 (H = 3 µm)

in surface-located nanocomponents with the substrate photo-active system. Therefore

the plasmon effect would be of practical importance for a thin-film (e.g., III-V) solar

cell technology. These systems are, however, relatively expensive and thus addressed to

special applications rather, while for a commercial usage in the energy market, cheaper

solutions are strongly desired. Of particular interest are ’plastic’ solutions of polymer

or dye chemical cells, which are, however, of low efficiency, as yet. An enhancement

of their efficiency by only few percent would make these solutions competitive in an

economical scale. Organic photovoltaics can be fabricated with an active polymer

and a fullerene-based electron acceptor, arranged to separate charges dissociated by

incident photons [38]. Though some analogy to semiconductor crystalline structure
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the significant differences in conjugated polymer based PV systems occur, resulting

in lower efficiency of the latter ones. Smaller dielectric constant in polymers than in

typical semiconductors causes that excitons are more strongly coupled and localized in

organic materials. Transition of polymer molecular states (so-called HOMO-LUMO)

[38] are the main source of carriers in conjugated polymers which are, however, of much

lower mobility in comparison to ordinary semiconductor case. Thus the efficiency of

plastic solar cell depends on many factors on all steps of the process, not only of the

initial photon energy capturing [38]. Nevertheless, one can expect that application

of plasmon metallic nanocomponents in polymer photo-active matrices would lead to

similar efficiency enhancement to those in the case of inorganic semiconductors (the

similar arguments behind the transition probability growth due to plasmon energy

concentration in the near-field zone and contribution of indirect quantum jumps for non

translational invariant near-field coupled nano-system hold). An instructive illustration

of such a possibility would be recently reported control over optical transition efficiency

in single molecule located closely to a nearby metallic nanosphere with surface plasmons

[39]. The gain of efficiency was predicted up to a factor 5 but depending of the

separation of molecule from the metallic nanoparticle (the best effect was for 20 nm

separation for nanospheres of 40 nm radius) and geometry of both system polarizations.

Despite of these constraints the effect indicates possibility of strengthening of PV effects

by plasmon mediated energy transport also in other than semiconductor substrate

situations. There is reported [40] increase of conjugated polymer cell efficiency from ca

1.7 % to 2. 5 % by application of metallic (Ag) nano-coverings of photo-active surface,

though competitive mechanism were manifested themselves via strong dependence of

construction parameters.

4. Undamped collective surface plasmon oscillations along metallic

nanosphere chains

Let us report here another effect connected with plasmon radiation in the near-field zone.

One can consider plasmon excitations in a long linear chain of metallic nanospheres [21].

The transmission of a collective plasmon excitation of a wave-type along the chain can

take place due to mutual coupling of nanospheres in the near-field zone. This results

in hybrid state of plasmons with near-field electro-magnetic field called as plasmon-

polariton [2, 21]

For the model, let us consider a linear chain of metallic nanospheres with radii a

in a dielectric medium with dielectric constant ε. We assume that spheres are located

along the z-axis direction equidistantly with the separation of the sphere centers d > 2a

[21, 41]. At time t = 0 we assume the excitation of plasmon oscillations via a Dirac

delta, ∼ δ(t), shaped signal of electric field. Taking into account the mutual interaction

of the induced surface plasmons on the spheres via the radiation of dipole oscillations,

we aim to determine the stationary state of the whole infinite chain. For a separation d

much shorter than the wavelength λ of the e-m wave corresponding to surface plasmon
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self-frequency in a single nanosphere, the dipole type plasmon radiation can be treated

within the near-field regime, at least for nearest neighbouring spheres. In the near-field

region a < R0 < λ, the radiation of the dipole D(t) is not a planar wave (as it is for

far-field region, R0 � λ) but is of only a retarded electric field (without a magnetic

field) [27]:

E(R, R0, t) =
1

εR3
0

[
3n

(
n · D

(
R, t − R0

v

))
− D

(
R, t − R0

v

)]
, (37)

R is the position of the sphere (center) irradiating e-m energy due to its dipole surface

plasmon oscillations, R0 is the position of another sphere (center), with respect to the

center of the former one, where the field E(R, R0, t) is given by the above formula,

R0 < λ, n = R0/R0, v = c/
√

ε = c/n0.

When both vectors R and R0 are along the z-axis (the linear chain) the above

equation can be resolved as:

Eα(R, R0, t) =
σα

εR3
0

Dα

(
R, t − R0

v

)
, (38)

where α = (x, y, z), σx = σy = −1 and σz = 2. Assuming that the z-axis origin

coincides with the center of one sphere in the chain, for the lth sphere located in the

point Rl = (0, 0, ld), an electric field caused by neighbouring spheres, E(Rm, Rml, t),

and the Lorentz friction force caused by self-radiation, EL(Rl, t), have to be accounted

for. By virtue of Eq. (23) the equation for the surface plasmon oscillation of the lth

sphere is
[

∂2

∂t2
+ 2

τ0
∂
∂t

+ ω2
1

]
q(Rl, t)

= ene

m

m=∞∑
m=−∞, m 6=l, Rml<λ

E(Rm, Rml, t) + ene

m
EL(Rl, t),

(39)

provided that the dipole field of the mth sphere can be treated as homogeneous over the

lth sphere and the sum over m is confined by the distance of the mth sphere from the lth

sphere not exceeding the near-field range (∼ λ). In the case of the equidistant chain,

Rl = ld and Rml = |l−m|d, and using Eqs (38), (22) and (26), one can rewrite Eq. (39)

in the form: [
∂2

∂t2
+ 2

τ0
∂
∂t
− 2

3ω1

(
ω1a
v

)3
∂3

∂t3
+ ω2

1

]
qα(ld, t)

= σαω2
1

a3

d3

m=∞∑
m=−∞, m 6=l, |l−m|d<λ

qα(md,t− d
v
|l−m|)

|l−m|3 ,
(40)

here α = x, y, which describe the transversal plasmon modes and α = z, which describes

the longitudinal mode; ω2
1 =

ω2
p

3ε
= 4πnee2

3εm
, v = c√

ε
. The above equation coincides with

the similar considered by Atwater [21, 41], if one assumes that 4π
3

a3ne = N = 1 and

neglects the retardation of the field.

Taking into account the periodicity of the infinite chain, one can consider the

solution of the above equation in the form

qα(ld, t) = q̃α(k, t)e−ikld. (41)
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The right-hand-side term in Eq. (40) attains the form

∞∑
m=−∞, m 6=l

qα(md,t− d
v
|l−m|)

|l−m|3 =
l−1∑

m=−∞

qα(md,t− d
v
|l−m|)

|l−m|3 +
∞∑

m=l+1

qα(md,t− d
v
|l−m|)

|l−m|3

= 2e−ikld
∞∑

m=1

cos(mkd)
m3 q̃α(k, t − md/v).

Thus the Eq. (40) can be written as follows:
[

∂2

∂t2
+ 2

τ0
∂
∂t
− 2

3ω1

(
ω1a
v

)3
∂3

∂t3
+ ω2

1

]
q̃α(k, t)

= σαω2
1

a3

d3 2
∞∑

m=1, md<λ

cos(mkd)
m3 q̃α(k, t − md/v).

(42)

This equation is linear and therefore we look for the solutions of the shape:

q̃α(k, t) = Q̃α(k)eiωαt, and we arrive at the condition,

−ω2
α +

2iωα

τα(ωα)
+ ω̃2

α(ωα) = 0, (43)

where

ω̃2
α(ωα) = ω2

1


1 − 2σαa3

d3

∞∑

m=1, md<λ

cos(mkd)

m3
cos

(
ωαmd

v

)
 (44)

and

1

τα(ωα)
=

1

τ0

+
ω2

1a

3v

(
ωαa

v

)2

+σαω2
1

a3

d3

∞∑

m=1, md<λ

cos(mkd)

m3

sin
(

ωαmd
v

)

ωα

.(45)

If we confine the sum in Eq. (44) to m = 1 (the nearest neighbour approximation)

we get

ω̃2
α(ωα) ' ω2

1

[
1 − 2σαa3

d3
cos(kd)cos

(
ωαd

v

)]
(46)

and from Eq. (45),

1

τα(ωα)
=

1

τ0
+

ω2
1a

3

4vd2



(

ωαd

v

)2

− (kd − π)2 +
π2

3


 , for α = x, y (47)

and

1

τz(ωz)
=

1

τ0
+

ω2
1a

3

2vd2



(

ωzd

v

)2

+ (kd − π)2 − π2

3


 , for α = z. (48)

In the derivation of the two above formulae the following summation was performed

[42]:

1
ωα

∞∑
m=1

cos(mkd)
m3 sin

(
ωαmd

v

)
= 1

2ωα

∞∑
m=1

1
m3 [sin(kmd + ωαmd/v) − sin(kmd − ωαmd/v)]

= d
v

[
π2

6
− π

2
kd + k2d2

4
+ ω2

αd2

2v2

]
.

Because the terms in the sum drop quickly to zero, the above formula approximates well

the sum with limitation md < λ.
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Assuming now ωα = ω
′
α + iω

′′
α, the Eq. (43) gives the dependence of ω

′
α and ω

′′
α on

k. The general solution of Eq. (40) attains the form,

qα(ld, t) =
Ns∑

n=1

Q̃α(kn)e
i(ω

′
α(kn)t−knld)−ω

′′
α(kn)t, (49)

where kn = 2πn
Nsd

, L = Nsd is the assumed length of the chain with Ns spheres, when

periodic (Born-Karman type) boundary conditions are imposed. The components of Eq.

(49) describe monochromatic waves with wavelength λn = 2π
kn

= L
n
, which are analogous

to planar waves in crystals, when damping is not big, i.e., when ω
′′
α � ω

′
α. Provided

with this inequality, one can approximate:

for the transversal modes (α = x, y)

(ω
′

α)2 = ω̃2
α = ω2

1

[
1 +

2a3

d3
cos(kd)cos(ω

′

αd/v)

]
, (50)

ω
′′

α =
1

τα
=

1

τ0
+

ω2
1a

3

4vd2



(

ω
′
αd

v

)2

− (kd − π)2 +
π2

3


 , (51)

and for the longitudinal mode (α = z)

(ω
′

z)
2 = ω̃2

z = ω2
1

[
1 − 4a3

d3
cos(kd)cos(ω

′

zd/v)

]
, (52)

ω
′′

z =
1

τz
=

1

τ0
+

ω2
1a

3

2vd2



(

ω
′
αd

v

)2

+ (kd − π)2 − π2

3


 . (53)

From Eqs (51) and (53) it follows that ω
′′
α can change its sign. In the case of ω

′′
α < 0

the oscillations are destabilized, which could be avoided by inclusions of some nonlinear

terms neglected in the expression for the Lorentz friction, which in more accurate form

[27] includes also a small nonlinear term with respect to D, aside from the term with
∂3D
∂t3

. Including this will result in damping of too highly rising oscillations and will lead

to stable oscillation amplitude. Due to this stabilization caused by nonlinear effects,

undamped wave modes of dipole oscillations will propagate in the chain in the region

of parameters where ω
′′
α ≤ 0 (and with fixed amplitude accommodated by the nonlinear

term). The condition ω
′′
α = 1

τα
= 0, for critical parameters, resolves into:

(
ωαd

v

)2

= (kd − π)2 − π2

3
− 4vd2

τ0ω2
1a

3
, (54)

for α = (x, y) and for α = z,
(

ωzd

v

)2

= −(kd − π)2 +
π2

3
− 2vd2

τ0ω
2
1a

3
. (55)

(
ωαd
v

)
obtained from the above equations leads to determination of the dependence of

wave vector k with respect to parameters d and a, via Eqs (50)-(53). Solutions for these

equations, found numerically for the chain of Ag nanospheres, are depicted in Fig. 3.
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Figure 3. Wave vector kd for undamped surface plasmon propagation along the
metallic nano-sphere chain versus sphere separation d at (top) constant d/a = 3, with
a the sphere radius, and (bottom) for a = 20 nm for Ag sphere chains, respectively;
transversal modes are shown by solid lines, while longitudinal modes are shown by
dotted lines

Undamped plasmon waves in the chain appear if d < dmax and have k = π/d,

dmax = 98.5(68.8) nm for transversal(longitudinal) modes. For example, for Ag spheres

with the radius a = 20 nm and the separation d = 60 nm, undamped transversal modes

appear for 0 ≤ kd ≤ π/4 or 3π/4 ≤ kd ≤ 2π and an undamped longitudinal mode for

3π/4 ≤ kd ≤ 5π/4.

Let us underline that the determined undamped plasmon oscillation wave modes

would explain similar, numerically observed behaviour [25]. Within that numerical

analysis two types of collective surface plasmons with distinct propagation along

the nano-sphere chain were identified, and called as quasistatic (ordinary) and

nonquasistatic (extraordinary) surface plasmon modes. The quasistatic modes were

damped while nonquasistatic ones were undamped (and additionally, the latter turn out

to be relatively robust against the disorder in the chain) [25]. One can associate these

observations with undamped collective plasmon modes with the negative imaginary part

of the frequency, accessible in the described above regions of the chain parameters and

the wave vector values (stabilized by nonlinear terms of Lorentz friction at a certain

amplitude), which are, however, accompanied by ordinary damped modes with the

positive imaginary frequency part.
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5. Conclusions

We have analyzed various channels of surface plasmon damping. Inclusion of irradiation

losses due to Lorentz friction of oscillating electrons gives the satisfactory explanation

of the scale and radius dependence of plasmon resonance in metallic spheres with

the radii > 10 nm. The most effective channel for the surface plasmon damping

turns out to be the dipole-type near-field coupling of the surface dipole plasmons with

semiconductor substrate, on which metallic nanospheres would be deposited, e.g., in

nanomodified diode-type systems. Due to the nano-scale of the spheres for this coupling

the momentum is not conserved, which results in a strong enhancement of the interband

transition probability (because all indirect electron transitions between the valence and

conductivity bands in the substrate semiconductor have to be accounted for, provided

energy conservation alone). This agrees with the experimental data referring to a

significant growth of the energy transfer from surface plasmons in metallic nanoparticles

to the semiconductor substrate. In the presented model nanosphere surface plasmons

couple with substrate charges (band electrons in a substrate semiconductor) via photon-

less short range e-m dipole interaction with very quick timing (thus very effective)—as

confirmed by the time-resolved spectroscopy measurements. The strong enhancement

of the efficiency results from the nanoscale-induced incommensurability, leading to

all momentum-indirect interband transitions, not allowed for the interaction of band

electrons with the original incident planar wave photons as in an ordinary photo-

effect. The type of dipole coupling is connected here with a specific e-m field gauge

in the vicinity of the nanosphere within the distance lower than the wave-length (thus

’inside’ the single photon), crucially distinct than for the planar wave (in the latter

case, only the vector potential can be used, which is impossible in the former case).

The above schematically described scenario qualitatively fits with the experimentally

observed behaviour and elucidates the timing of the particular steps of the energy-

transfer-processes, including the mediating role of metallic nanosphere surface plasmons.

The relevant time rates can be estimated within the standard quantum mechanical

attitude of the Fermi-golden-rule-type.

The another effect connected with near-field coupling is a plasmon-polariton

collective excitation in metal-dielectric interfaces, including periodic nano-particle

systems, with convenient for applications sub-diffraction wave length (due to lower

group velocity in comparison to light velocity) We have considered also such a wave-type

collective plasmon oscillations in the metallic nano-sphere chain. The undamped region

of wave propagation through the chain is found for a certain sphere separation in the

chain with the corresponding wavelength of plasmon waves. This phenomenon confirms

similar behaviour observed by numerical simulations.

The novelty of presented results consists in an analysis of the energy transfer of

plasmon energy from nanosphere to substrate semiconductor band electrons, assessed

in the framework of Fermi golden rule, and resulting in a different transition probability

than for ordinary photo-effect. This agrees with the experimental observations of photo-
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current enhancement in the Si diode setup with active surface covered by sparsely

distributed metallic nanospheres with radius of several tens nm, both with respect to

maximum of photo-current enhancement and the overall dispersion shape. The other

effect closely related with the near-field zone coupling of the surface plasmons in metallic

nanospheres is energy transfer along a chain of metallic nanocomponents. Described in

the paper, an identification of an undamped collective mode of surface plasmons near-

field coupled in the chain of metallic nanospheres would be of some significance for sub-

diffraction arrangement of electro-photonic circuits and possibly for energy transport

in novel constructions of solar cells, especially for plastic cells where low mobility and

short free path of carriers are severe restrictions imposed on their efficiency.
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