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NON-LOCAL SEGMENTATION AND INPAITING

Miyoun Jung, Gabriel Peyré and Laurent D. Cohen

Ceremade, Université Paris-Dauphine, 75775 Paris Cedex 16, France

ABSTRACT

This article introduces a new variational image segmentation
method that makes use of non-local comparisons between
pairs of patches in the image and is robust to missing data
(e.g. damaged pixels or large missing regions). The resulting
segmentation is at the heart of a novel inpainting algorithm
that also uses a non-local regularization. This segmentation
and inpainting approach only requires a local homogeneity
of the features inside and outside the region to be segmented.
In contrast to existing region-based segmentation methods, it
allows us to segment regions with smoothly varying intensity
as well as multiple objects with different intensities. This
comparison principle is also less sensitive to initialization
than edge-based approaches.

Index Terms— segmentation, active contour, inpainting,
non-local energy, level set function

1. INTRODUCTION

Region-based and edge-based segmentation. Image seg-
mentation refers to the process of partitioning an image into
several regions or locating objects and boundaries. Many ex-
isting methods segment an image according to edge informa-
tion and/or region information. Edge-basded methods such as
geodesic active contours of Caselles et al. [1] use edge de-
tection functions depending on the image gradient and evolve
contours towards sharp gradients of pixel intensity. Chan and
Vese [2] proposed an active contours without edges model,
which is also based on a level set implementation [3], but the
gradient-based information is replaced by a criterion related
to region homogeneity. This model approximates an image
by a two-phase piecewise constant function. This was also
extended to vector valued images [4]. Sagiv et al. [5] used
a hybrid model that incorporates a more general weighted
arc-length in the active contours without edges model, for the
problem of texture segmentation. In this article, we propose
an active contour model with a novel energy functional that
allows to only constrain the local homogeneity, in contrast to
the Chan-Vese approach. The local homogeneity property al-
lows our model to capture regions with features that vary spa-
tially in a smooth way, as well as to segment several separated
objects with different features.

Variational inpainting. Image inpainting is the process of
reconstructing lost or corrupted parts of an image. Image
inpainting has received considerable interest since the work
by Masnou and Morel [6] who proposed variational princi-
ples for image disocclusion. A recent wave of interest in in-
painting has also started from [7] of Bertalmio et al. These
authors proposed nonlinear partial differential equations for
non-texture inpainting. In this work, we incorporate the seg-
mentation model with inpainting problem so that the inter-
actions between pairs of patches inside and outside the seg-
mented domain can improve the result of inpainting.

Non-local segmentation and inpainting. Nonlocal image
processing regularizes the image using comparison of patches
in the image. This was originally proposed by Buades et
al [8] for denoising, and has been extended to regularize in-
verse problems [9] and regularize partition functions for semi-
supervised and supervised segmentation [10, 11, 12].

Contributions. We introduce a novel non-local framework
for unsupervised segmentation and inpainting of images. Pre-
vious non-local segmentation methods only use patch inter-
actions to regularize the contours of the segmentation. In
contrast, we propose a novel energy that compares pairs of
patches within the segmented regions, thus extending region
based method to a non-local setting. This is particularly use-
ful to segment object and background with smoothly varying
intensity and color. We also take into account missing data
to enable a robust segmentation of damaged images, thus en-
abling an inpainting process as a post-processing.

2. NON-LOCAL ACTIVE CONTOURS

Given some missing region D ⊂ [0, 1]2, we aim at per-
forming a segmentation and then an inpainting (filling in the
image inside D) from the noisy damaged observation f =
Φu0 + w. Here u0 is the original high resolution image to
recover, w is an additive noise, and Φ is the damaging opera-
tor. It is a masking operator: (Φu)(x) = u(x) for x /∈ D and
(Φu)(x) = 0 if x ∈ D. If D = ∅, then Φ =Id and one is only
interested in segmentation.



2.1. Non-local Segmentation

Pairwise Patch Interaction. A patch in some image f
around a pixel x ∈ [0, 1]2 is defined as

∀ t ∈ [−τ/2, τ/2]2, pfx(t) = f(x+ t). (1)

The non-local interaction between two patches is measured
using a weighted L2 distance

d(pfx, p
f
y) =

∫
t

Ga(t)||pfx(t)− pfy(t)||2dt, (2)

with Ga(t) = e−
||t||2

2a2 . The Gaussian weight is used to give
more influence to the central pixel. Note that missing pixels in
patches are not accounted for the computation of the distance.

Non-local segmentation energy. The segmented region Ω is
represented using a level set function φ : [0, 1]2 → R so that
Ω = {x \ φ(x) > 0}. The integration inside and outside the
domain is carried over using a smoothed Heaviside function
H(φ) = 1

2 + 1
π atan(φ/ε). The parameter ε should be cho-

sen small enough to obtain a sharp region boundary, but not
too small to avoid numerical instabilities. In the numerical
examples, we use ε = 1/n for a discretized image of n × n
pixels.

We introduce an energy functional E(φ) enforcing the
similarity of features located either inside or outside Ω,

E(φ) =

∫∫
ρ(H(φ(x)),H(φ(y)))Gσ(x− y) (3)

·d(pfx, pfy)T (x, y)dxdy

The function ρ restricts the comparison of pairs of patches
that are in the same region (inside or outside). Since H(φ(x))
takes values 0 or 1 most of the time, we use ρ(u, v) = 1 −
|u− v| for the numerical experiments (but other similar func-
tionals could be used as well). The function T (x, y) excludes
patches whose center is located in the damaged region from
the comparison, and we use T (x, y) = 0 if x ∈ D or y ∈ D,
and T (x, y) = 1 otherwise. Note that the parameter σ > 0 is
important since it controls the scale of the local homogeneity
one requires for the segmented object.

To enforce the regularity of the extracted region, follow-
ing previous works in active contours, we penalize the length
of the boundary, which is computed as

L(φ) =

∫
||∇H(φ(x))||dx =

∫
H ′(φ(x))||∇φ(x)||dx

where ∇H(φ(x)) is the gradient at point x of the function
H(φ).

Non-local segmentation algorithm. Our robust non-local
active contour method computes the segmentation as a sta-
tionary point of the energy

min
φ

E(φ) + γL(φ) (4)

where γ > 0 is a parameter that should be adapted to the
expected regularity of the boundary of the region. Note that
within the missing region only the term L(φ) regularizes the
contours, which is thus expected to be a straight line segment
in each connected component. Penalization using higher or-
der curve derivatives could be used to allow curvilinear con-
tours completion, such as those proposed in [6, 7].

We compute a local minimizer of (4) using a gradient de-
scent, that corresponds to a discretization of the following
evolution equation with an artificial time paramater t > 0

∂φt

∂t
= − (∇E(φt) + γ∇L(φt)) , (5)

where φt(x) is the level set function at time t and the gradient
∇E(φt) is computed as

∇E(φt)(x) =

∫
(∂1ρ)(H(φt(x)),H(φt(y)))Gσ(x− y)

· d(pfx, pfy)T (x, y)dy H ′(φt(x)),

∇L(φt)(x) = −div
(

∇φt(x)

||∇φt(x)||

)
H ′(φt(x)).

The evolution equation (5) for φt is solved with an explicit
scheme, and H ′(φt) is replaced by ||∇φt|| to evolve all the
level sets of φt in parallel. To ensure the stability of the level
set evolution (5), one needs to re-initialize it from time to
time. This corresponds to replacing φt by the signed distance
function to the level set {x \ φt(x) = 0}.

2.2. Non-local Inpainting

Once the evolution (5) has converged to some final seg-
mentation function, φt → φ∗, we perform the inpainting by
minimizing the non-local energy with respect to the image to
fill in the missing values.

Non-local inpainting energy. Inpainting is achieved by
solving the following convex (quadratic) minimization prob-
lem over the image u

min
u

λ

2
||f − Φu||2 + F (u) (6)

where λ > 0 is a parameter that should be adapted to the
noise level ||w||, and where the non-local interaction func-
tional reads

F (u) =

∫∫
ρ(H(φ∗(x)),H(φ∗(y)))Gσ(x− y) (7)

·d(pux, puy )dxdy.

Non-local inpainting algorithm. The minimization (6) is
obtained using a conjugate gradient descent to solve

λΦ∗(Φu− f) +∇F (u) = 0,

where ∇F (u)(x) =

∫
ρ(H(φ∗(x)),H(φ∗(y)))

·Gσ(x− y)∇d(pux, p
u
y )dy.



Parameters for segmentation and inpainting. It is possi-
ble to use a different patch width τ in the definition (1) of the
patches for the segmentation energy (3) and for the inpainting
energy (7). In the numerical examples, we used a segmenta-
tion patch size of τ = 3 or 1 and an inpainting size of τ = 1
pixels. The width σ of the windowing function Gσ(x − y)
depends on the initial curve: if the initial curve is far away
from the object boundaries, then a large windowing function
may be required. Here, 31 × 31 or 41 × 41 are used with a
fixed σ = 10 for 100× 100 or 200× 200 images.

3. EXPERIMENTAL RESULTS AND COMPARISONS

This section presents experimental results with synthetic
and real images.

Segmentation Results. We compare our approach with both
region-based and edge-based active contour segmentation
models, by minimizing a hybrid energy of the form

min
φ,p

αEr(φ, p) + (1− α)Ec(φ) + γL(φ) (8)

where α weights the influence of the region term Er and the
edge term Ec:

Er(φ, p) = λ1

∫
H(φ(x))d(px, p1)dx

+λ2

∫
(1−H(φ(x)))d(px, p2)dx,

Ec(φ) = µ

∫
||∇H(φ(x))||g(x)dx,

with positive parameters λ1, λ2, µ and a positive edge func-
tion g, and where p represents the expected constant value of
the features inside and outside the object. In particular, we
consider (A) the geodesic active contour model (α = 0,
GAC model [13]) with the balloon force term ηg||∇φ||
that helps to avoid poor local minima by forcing moving
the curve forward/outward (depending on the sign of η):
∂φ
∂t = µ||∇φ||div

(
g φ
||φ||

)
+ ηg||∇φ||, (B) the region-based

model (α = 1) of Chan and Vese [2], and (C) the integrated
region/edge based model (α = 1/2) of Sagiv et al. [5], called
IAC model. Note that, in practice, we use an edge function
g(x) = 1

δ2+(Gb∗∥∇f∥)(x) with δ2 = 0.1 and b = 0.5, and then
we normalize it from 0 to 1. And we let λ1 = λ2 = 1.

In Fig. 1, our model detects objects with spatially vary-
ing background or with small gradients on the boundary, as
well as multiple separated objects with different intensities,
unlike two phase Chan-Vese model. This is due to the lo-
cal homogeneity property of our model, while the two-phase
Chan-Vese model [2] requires a global homogeneity in each
region. We note that our model needs a small number of itera-
tions (around 150 iterations) to obtain final curves, even with
an explicit scheme.

Top: initial curve, Middle: Our model, Bottom: Chan-Vese model

Fig. 1. Detection of objects with spatially varying background
or object, and comparison with Chan-Vese model (α = 1) in
(8). 100×100 image and 31×31 windowing function is used.
Our model: final curves are obtained at k = 150 (1st, 2nd),
k = 80 (3rd), k = 120 (4th).

α = 0 with balloon force α = 1/2 and two different µ

Fig. 2. Final curves of models given in (8): α = 0 with
balloon force term (GAC), α = 1/2 (IAC) with two different
but close parameters µ. GAC: µ = 1, η = −0.3. IAC: (top)
µ = 3.6 and 3.5, (bottom) µ = 1 and 0.9. IAC used initial
curves given in Fig. 1.

Fig. 2 presents the results of other existing models,
given in (8): α = 0 with balloon force term ηg(x)||∇φ(x)||
(geodesic model), α = 1/2 (integrated active contour model).
For the IAC model, two final curves are shown with two dif-
ferent but close parameters µ (µ1 > µ2). Because µ is a
balancing term between the region-based and edge-based en-
ergies, when µ > µ1 (or µ < µ2), the model tends to act
like the geodesic snake model (or Chan-Vese model). Thus,
with the given initial curves, all the models fail to detect the
correct object boundaries. This shows that our model is less
sensitive to the choice of initial curves than edge-based active
contour models.

In Fig. 3, by using an initial curve near the boundary of
object(s) and a small windowing function, our model could
detect the boundary of non-homogeneous object(s). The seg-
mentation result is fairly good, compared with vector-valued



Fig. 3. Real color images. Initial Curve, final curves of our
model, vector-valued Chan-Vese model [4], and integrated ac-
tive contour model (IAC).

segmentation inpainting with φ (left), without φ (right) in F (u)

Fig. 4. Segmentation in images with missing pixels, and post-
processing inpainting. 1st: segmentation result, 2nd: inpaint-
ing with φ obtained by the segmentation, 3rd: inpainting us-
ing (6) but without ρ in F (u).

Chan-Vese model [4] and IAC model [5] that only capture
part of object(s). On the other hand, these examples also
show a limitation of our model: in order to detect the bound-
ary of non-homogeneous objects, the initial curve needs to be
located near the object boundary so that a small windowing
function can be used.

Inpainting Results. In Fig. 4, the first example has large
missing regions and the second one has 50% of missing pix-
els. Our segmentation model detects the boundaries of ob-
jects in the inpainting area, which helps inpainting process by
restricting the inpainting area to either inside or outside ob-
jects. The edges of objects are also kept well after inpainting
process. These are well shown by the comparison with the
inpainting results using our model (6) but without ρ in the
energy F (u) (without using the segmentation results), espe-
cially in the first example.

4. CONCLUSION

In this article, we have proposed a novel non-local energy
for segmentation and inpainting of images. The local homo-
geneity property allows us to detect regions with smoothly
spatially varying features and segment several separated ob-
jects with different features. It is also less sensitive to the
choice of initial curves than edge-based segmentation mod-

els. Furthermore, the segmentation model is robust to missing
data, which enables incorporating segmentation with inpaint-
ing to improve the inpainting process.
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