Classification-based Policy Iteration with a Critic
Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, Bruno Scherrer

To cite this version:
Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, Bruno Scherrer. Classification-based Policy Iteration with a Critic. 2011. hal-00590972

HAL Id: hal-00590972
https://hal.archives-ouvertes.fr/hal-00590972
Submitted on 5 May 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Classification-based Policy Iteration with a Critic

Victor Gabillon
victor.gabillon@inria.fr
Alessandro Lazaric
alessandro.lazaric@inria.fr
Mohammad Ghavamzadeh
mohammad.ghavamzadeh@inria.fr
INRIA Lille - Nord Europe, Team SequeL, FRANCE
Bruno Scherrer
bruno.scherrer@inria.fr
INRIA Nancy - Grand Est, Team Maia, FRANCE

Abstract

In this paper, we study the effect of adding a value function approximation component (critic) to rollout classification-based policy iteration (RCPI) algorithms. The idea is to use the critic to approximate the return after we truncate the rollout trajectories. This allows us to control the bias and variance of the rollout estimates of the action-value function. Therefore, the introduction of a critic can improve the accuracy of the rollout estimates, and as a result, enhance the performance of the RCPI algorithm. We present a new RCPI algorithm, called direct policy iteration with critic (DPI-Critic), and provide its finite-sample analysis when the critic is based on LSTD and BRM methods. We empirically evaluate the performance of DPI-Critic and compare it with DPI and LSPI in two benchmark reinforcement learning problems.

1. Introduction

Policy iteration is a method of computing an optimal policy for any given Markov decision process (MDP). It is an iterative procedure that discovers a deterministic optimal policy by generating a sequence of monotonically improving policies. Each iteration k of this algorithm consists of two phases: policy evaluation in which the action-value function Q^π_k of the current policy π_k is computed, and policy improvement in which the new (improved) policy π_{k+1} is generated as the greedy policy w.r.t. Q^π_k, i.e., $\pi_{k+1}(x) = \arg\max_{a \in A} Q^\pi_k(x,a)$. Unfortunately, in MDPs with large (or continuous) state and/or action spaces, the policy evaluation problem cannot be solved exactly and approximation techniques are required. There have been two main approaches to deal with this issue in the literature. The most common approach is to find a good approximation of the action-value function of π_k in a real-valued function space (see e.g., Lagoudakis & Parr 2003a). The second approach 1) replaces the policy evaluation step (approximating the action-value function over the entire state-action space) with computing rollout estimates of Q^π over a finite number of states $D = \{x_i\}_{i=1}^N$, called the rollout set, and the entire action space, and 2) casts the policy improvement step as a classification problem to find a policy in a given hypothesis space that best predicts the greedy action at every state (see e.g., Lagoudakis & Parr 2003b; Fern et al. 2004; Lazaric et al. 2010b). Although whether selecting a suitable policy space is any easier than a value function space is highly debatable, it may be argued that classification-based API methods can be advantageous in problems where good policies are easier to represent and learn than their value functions.

As it is suggested by both theoretical and empirical analysis, the performance of the classification-based API algorithms is closely related to the accuracy in estimating the greedy action at each state of the rollout set, which itself depends on the accuracy of the rollout estimates of the action-values. Thus, it is quite important to balance the bias and variance of the rollout estimates, \hat{Q}^π’s, that both depend on the length H of the rollout trajectories. While the bias in \hat{Q}^π, i.e., the difference between \hat{Q}^π and the actual Q^π, decreases as H becomes larger, its variance (due to stochastic MDP transitions and rewards) increases with the value of H. Although the bias and variance of \hat{Q}^π estimates may be optimized by the value of H, when the budget, i.e., the number of calls to the generative model, is limited, it may not be possible to find an H that guarantees an accurate enough training set.
Classification-based Policy Iteration with a Critic

A possible approach to address this problem is to introduce a critic that provides an approximation of the value function. In this approach, we define each \(\hat{Q}^{\pi} \) estimate as the average of the values returned by \(H \)-horizon rollouts plus the critic’s prediction of the return from the time step \(H \) on. This allows us to use small values of \(H \), thus having a small estimation variance, and at the same time, to rely on the value function approximation provided by the critic to control the bias. The idea is similar to actor-critic methods (Barto et al., 1983) in which the variance of the gradient estimates in the actor is reduced using the critic’s prediction of the value function.

In this paper, we introduce a new classification-based API algorithm, called DPI-Critic, obtained by adding a critic to the direct policy iteration (DPI) algorithm (Lazaric et al., 2010b). We provide finite-sample analysis for DPI-Critic when the critic approximates the value function using least-squares temporal-difference (LSTD) learning (Bradteke & Barto, 1996). The finite-sample analysis of DPI-Critic with Bellman residual minimization is available in section 7.1. We empirically evaluate the performance of DPI-Critic and compare it with DPI and LSPI (Lagoudakis & Parr, 2003a) on two benchmark reinforcement learning (RL) problems: mountain car and inverted pendulum. The results indicate that DPI-Critic can take advantage of both its components and improve over DPI and LSPI.

2. Preliminaries

In this section we set the notation used throughout the paper. For a measurable space with domain \(\mathcal{X} \), we let \(\mathcal{S}(\mathcal{X}) \) and \(\mathcal{B}(\mathcal{X}; L) \) denote the set of probability measures over \(\mathcal{X} \), and the space of bounded measurable functions with domain \(\mathcal{X} \) and bound \(0 < L < \infty \), respectively. For a measure \(\rho \in \mathcal{S}(\mathcal{X}) \) and a measurable function \(f : \mathcal{X} \to \mathbb{R} \), we define the \(\ell_p(\rho) \)-norm of \(f \) as \(\| f \|_{p,\rho} = \int |f(x)|^p \rho(dx) \). We consider the standard RL framework (Sutton & Barto, 1998) in which a learning agent interacts with a stochastic environment and this interaction is modeled as a discrete-time MDP. A discounted MDP is a tuple \(\mathcal{M} = (\mathcal{X}, \mathcal{A}, r, p, \gamma) \), where the state space \(\mathcal{X} \) is a subset of a Euclidean space \(\mathbb{R}^d \), the set of actions \(\mathcal{A} \) is finite, \(|\mathcal{A}| < \infty \), the reward function \(r : \mathcal{X} \times \mathcal{A} \to \mathbb{R} \) is uniformly bounded by \(R_{\text{max}} \), the transition model \(p(\cdot|x, a) \) is a distribution over \(\mathcal{X} \), and \(\gamma \in (0, 1) \) is a discount factor. We define deterministic policies as the mapping \(\pi : \mathcal{X} \to \mathcal{A} \). The value function of a policy \(\pi \), \(V^{\pi} \), is the unique fixed-point of the Bellman operator \(T^{\pi} : \mathcal{B}(\mathcal{X}; V_{\text{max}}) \to \mathcal{B}(\mathcal{X}; V_{\text{max}}) \) defined by

\[
(T^{\pi} V)(x) = r(x, \pi(x)) + \gamma \int_{\mathcal{X}} p(dy|x, \pi(x)) V(y),
\]

while the action-value function \(Q^{\pi} \) is defined as

\[
Q^{\pi}(x, a) = r(x, a) + \gamma \int_{\mathcal{X}} p(dy|x, a) V^{\pi}(y). \]

Since the rewards are bounded by \(R_{\text{max}} \), all values and action-values are bounded by \(q = R_{\text{max}}/1-\gamma \). A policy \(\pi \) is greedy w.r.t. an action-value function \(Q \), if \(\pi(x) = \arg \max_{a \in \mathcal{A}} Q(x, a), \forall x \in \mathcal{X} \).

To approximate value functions, we use a linear approximation architecture with parameters \(\alpha \in \mathbb{R}^d \) and basis functions \(\varphi_j : \mathcal{X} \to \mathbb{R} \), \(j = 1, \ldots, d \). We denote by \(\phi : \mathcal{X} \to \mathbb{R}^d \), \(\phi(\cdot) = (\varphi_1(\cdot), \ldots, \varphi_d(\cdot))^{\top} \) the feature vector, and by \(\mathcal{F} \) the linear function space spanned by the features \(\varphi_j \), i.e., \(\mathcal{F} = \{ f_\alpha(\cdot) = \phi(\cdot)^\top \alpha : \alpha \in \mathbb{R}^d \} \). Finally, we define the Gram matrix \(G \in \mathbb{R}^{d \times d} \) w.r.t. a distribution \(\rho \in \mathcal{S}(\mathcal{X}) \) as

\[
G_{ij} = \int \varphi_i(x) \varphi_j(x) \rho(dx), \quad i, j = 1, \ldots, d.
\]

3. The DPI-Critic Algorithm

In this section, we outline the algorithm we propose in this paper, called Direct Policy Iteration with Critic (DPI-Critic), which is an extension of the DPI algorithm (Lazaric et al., 2010b) by adding a critic. As illustrated in Fig. 1, DPI-Critic starts with an arbitrary initial policy \(\pi_0 \in \Pi \). At each iteration \(k \), we build a set of \(n \) samples \(S_k \), called the critic training set. The critic uses \(S_k \) in order to compute \(\hat{V}^{\pi_k} \), an approximation of the value function of the current policy \(\pi_k \). Then, a new policy \(\pi_{k+1} \) is computed from \(\pi_k \), as the best approximation of the greedy policy w.r.t. \(Q^{\pi_k} \), by solving a cost-sensitive classification problem. Similar to DPI, DPI-Critic is based on the following loss function and expected error:

\[
\ell_{\pi_k}(x; \pi) = \max_{a \in \mathcal{A}} Q^{\pi_k}(x, a) - Q^{\pi_k}(x, \pi(x)), \quad \forall x \in \mathcal{X},
\]
Classification-based Policy Iteration with a Critic

In order to minimize this loss, a rollout set \(\mathcal{D}_k \) is built by sampling \(N \) states i.i.d. from a distribution \(\rho \). For each state \(x_i \in \mathcal{D}_k \) and each action \(a \in \mathcal{A} \), \(M \) independent estimates \(\{ R_{j}^{x_k}(x_i,a) \}_{j=1}^{M} \) are computed, where

\[
R_{j}^{x_k,H}(x_i,a) = R_j^{x_k,H}(x_i,a) + \gamma H \hat{V}^{x_k}(x_{i,j}^H),
\]

in which \(R_{j}^{x_k,H}(x_i,a) \) is the outcome of an \(H \)-horizon rollout, i.e.,

\[
R_{j}^{x_k,H}(x_i,a) = r(x_i,a) + \sum_{t=1}^{H-1} \gamma^t r(x_{i,t},\pi_k(x_{i,t})) \tag{2}
\]

and \(\hat{V}^{x_k}(x_{i,j}^H) \) is the critic’s estimate of the value function at state \(x_{i,j}^H \). In Eq. 2, \((x_1, x_{1,j}^1, x_{2,j}^2, \ldots, x_{i,j}^H) \) is the trajectory induced by taking action \(a \) at state \(x_i \) and following the policy \(\pi_k \) afterwards, i.e., \(x_{t+1}^t \sim p(\cdot|x_t,a) \) and \(x_t^t \sim p(\cdot|x_t-1,a,\pi_k(x_{t-1})^t) \) for \(t \geq 2 \). An estimate of the action-value function of the policy \(\pi_k \) is then obtained by averaging the \(M \) estimates as

\[
\hat{Q}^{x_k}(x_i,a) = \frac{1}{M} \sum_{j=1}^{M} R_{j}^{x_k}(x_i,a). \tag{3}
\]

Given the action-value function estimates, the empirical loss and empirical error are defined as

\[
\hat{L}_{x_k}(x;\pi) = \max_{a \in \mathcal{A}} \hat{Q}^{x_k}(x,a) - \hat{Q}^{x_k}(x,\pi(x)), \quad \forall x \in \mathcal{X},
\]

\[
\hat{L}_{\pi_k}(\hat{\rho};\pi) = \frac{1}{N} \sum_{i=1}^{N} \left[\max_{a \in \mathcal{A}} \hat{Q}^{x_k}(x_i,a) - \hat{Q}^{x_k}(x_i,\pi(x_i)) \right]. \tag{4}
\]

Finally, DPI-Critic makes use of a classifier which solves a multi-class cost-sensitive classification problem and returns a policy that minimizes the empirical error \(\hat{L}_{\pi_k}(\hat{\rho};\pi) \) over the policy space \(\mathcal{P} \).

As it can be seen from Eq. 1, the main difference between DPI-Critic and DPI is that after \(H \) steps DPI rollouts are truncated and the return thereafter is implicitly set to 0, while in DPI-Critic an approximation of the value function learned by the critic is used to predict this return. Hence, with a fixed horizon \(H \), even if the critic is a rough approximation of the value function, whenever its accuracy is higher than the implicit prediction of 0 in DPI, the rollouts in DPI-Critic are expected to be more accurate than those in DPI. Similarly, we expect DPI-Critic to obtain the same accuracy as DPI with a shorter horizon, and as a result, a smaller number of interactions with the generative model. In fact, while in DPI decreasing \(H \) leads to a smaller variance and a larger bias, in DPI-Critic the increase in the bias is controlled by the critic. Finally, it is worth noting that DPI-Critic still benefits from the advantages of the classification-based approach to policy iteration compared to value-function-based API algorithms such as LSPI. This is due to the fact that DPI-Critic still relies on approximating the policy improvement step, and thus similar to DPI, whenever approximating good policies is easier than their value functions, DPI-Critic is expected to perform better than its value-function-based counterparts. Furthermore, while DPI-Critic only needs a rough approximation of the value function at certain states, value-function-based API methods, like LSPI, need an accurate approximation of the action-value function over the entire state-action space, and thus they usually require more samples than the critic in DPI-Critic.

4. Theoretical analysis

In this section, we provide a finite-sample analysis of the error incurred at each iteration of DPI-Critic. The full analysis of the propagation is reported in section 7.3.

In order to use the existing finite-sample bounds for pathwise-LSTD (Lazaric et al., 2010c), we introduce the following assumptions.

Assumption 1. At each iteration \(k \) of DPI-Critic, the critic uses a linear function space \(\mathcal{F} \) spanned by \(d \) bounded basis functions (see Section 2). A data-set \(S_k = \{(X_i,R_i)\}_{i=1}^{N} \) is built, where \(X_i \)'s are obtained by following a single trajectory generated by a stationary \(\beta \)-mixing process with parameters \(\beta, b, \kappa \), and a stationary distribution \(\sigma_k \) equal to the stationary distribution of the Markov chain induced by policy \(\pi_k \), and \(R_i = r(X_i,\pi_k(X_i)) \).

Assumption 2. The rollout set sampling distribution \(\rho \) is such that for any policy \(\pi \in \mathcal{P} \) and any action \(a \in \mathcal{A} \), \(\mu = \rho P^n(\pi)^{H-1} \leq C \sigma \), where \(C < \infty \) is a constant and \(\sigma \) is the stationary distribution of \(\pi \). The distribution \(\mu \) is the distribution induced by starting at a state sampled from \(\rho \), taking action \(a \), and then following policy \(\pi \) for \(H - 1 \) steps.

Before stating the main results of this section, Lemma 1 and Theorem 1, we report the performance bound for pathwise-LSTD as in Lazaric et al. (2010c). Since all the following statements are true for any iteration \(k \), in order to simplify the notation, we drop the dependency of all the variables on \(k \).

Proposition 1 (Thm 5 in Lazaric et al. 2010c). Let \(n \) be the number of samples collected as in Assumption 1 and \(\hat{V} \) be the approximation of the value function of policy \(\pi \) obtained by pathwise-LSTD truncated in the range \([-q,q]\). Then for any \(\delta > 0 \), we have

\[
||V^\pi - \hat{V}||_{2,\sigma} \leq \epsilon_{LSTD} = \sqrt{\frac{2}{1-\gamma^2}} \left(2\sqrt{2} \inf_{f \in \mathcal{F}} ||V^\pi - f||_{2,\sigma} + \epsilon_2 \right)
\]
and use the fact \(\log(32/4) \) holds and

\[
\frac{2}{\gamma} \left(\gamma q \sqrt{\frac{8 d \log(32/4)}{n}} + 1 \right) + \xi, \tag{1}
\]

with probability \(1 - \delta \) (w.r.t. the samples in \(S \)), where

\[
\xi = \frac{2}{\gamma} \sqrt{\frac{8 (d + 1) \log n + \log \frac{2}{\gamma}}{n}} + \log^+ \left(\max \left\{ 18(6e)^{(d+1)}, \beta \right\} \right).
\]

\[
\xi = 24q \sqrt{\frac{2 \log(32/4)}{n}} \max \left\{ \frac{2 \log(32/4)}{b}, \frac{1}{\epsilon} \right\}, \tag{2}
\]

in which \(\Lambda(n, d, \epsilon) = 2(d + 1) \log n + \log \frac{2}{\epsilon} + \max \left\{ 18(6e)^{(d+1)}, \beta \right\} \).

\[
\Lambda(n, d, \epsilon) = \log \left(\frac{d}{\epsilon} \right) \left(12 Ne \right)^{2(d+1)}, \tag{3}
\]

with \(\Lambda(n, d, \epsilon) = \log \left(\frac{d}{\epsilon} \right) \left(12 Ne \right)^{2(d+1)} \).

The statement of the lemma is obtained by setting \(\delta' = \delta/4 \) and taking a union bound over actions.

(a) We use Eq. 3 to replace \(\tilde{H}(x_i, a) \).

(b) We replace \(H_j(x_i, a) \) from Eq. 1 and use the fact that \(Q^\pi(x_i, a) = Q_{H_j}^\pi(x_i, a) + \gamma H \mathbb{E}_{x \sim \pi} [V^\pi(x)] \), where \(Q_{H_j}^\pi(x_i, a) = \mathbb{E} [r(x_i, a) + \sum_{t=1}^{H_j} \gamma^t r(x_t', \pi(x_t'))] \).

(c) Using the Chernoff-Hoeffding inequality, with probability \(1 - \delta' \) (w.r.t. the samples used to build the rollout estimates), we have

\[
\left| \frac{1}{MN} \sum_{i=1}^{N} \sum_{j=1}^{M} \left[\tilde{H}(x_i, a) - Q_{H_j}(x_i, a) \right] \right| \leq \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4.
\]

(d) Using the Chernoff-Hoeffding inequality, with probability \(1 - \delta' \) (w.r.t. the last state reached by the rollout trajectories), we have

\[
\left| \frac{1}{MN} \sum_{i=1}^{N} \sum_{j=1}^{M} \left[V^\pi(x_i, a) - V^\pi(x_i, a) \right] \right| \leq \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4.
\]
Using the result of Lemma 1, we now prove a performance bound for a single iteration of DPI-Critic.

Theorem 1. Let \(\Pi \) be a policy space with finite VC-dimension \(h = VC(\Pi) < \infty \) and \(\rho \) be a distribution over the state space \(\mathcal{X} \). Let \(N \) be the number of states in \(\mathcal{D}_k \) drawn i.i.d. from \(\rho \), \(H \) be the horizon of the rollouts, \(M \) be the number of rollouts per state-action pair, and \(\bar{V}^n_k \) be the estimation of the value function returned by the critic. Let Assumptions 3 and 4 hold and \(\pi_{k+1} = \arg\min_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\hat{\rho}; \pi) \) be the policy computed at the \(k \)’th iteration of DPI-Critic. Then, for any \(\delta > 0 \), we have

\[
\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \leq \inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi) + 2(\epsilon_0 + \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4),
\]

with probability \(1 - \delta \), where

\[
\epsilon_0 = 16d \sqrt{\frac{2}{N} \left(h \log \frac{eN}{h} + \log \frac{32}{\delta} \right)}.
\]

The proof is reported in section 7.2.

Remark 1. The terms in the bound of Theorem 1 are related to the performance at each iteration of DPI-Critic. The first term, \(\inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi) \), is the approximation error of the policy space \(\Pi \), i.e., the best approximation of the greedy policy in \(\Pi \). Since the classifier relies on a finite number of samples in its training set, it is not able to recover the optimal approximation and incurs an additional estimation error \(\epsilon_0 \) which decreases as \(O(N^{-1/2}) \). Furthermore, the training set of the classifier is built according to action-value estimates, whose accuracy is bounded by the remaining terms. The term \(\epsilon_1 \) accounts for the variance of the rollout estimates due to the limited number of rollouts for each state in the rollout set. While it decreases as \(M \) and \(N \) increase, it increases with \(H \), because longer rollouts have a larger variance due to the stochasticity in the MDP dynamics. The terms \(\epsilon_2, \epsilon_3 \), and \(\epsilon_4 \) are related to the bias induced by truncating the rollouts. They all share a factor \(\gamma^H \) decaying exponentially with \(H \) and are strictly related to the critic’s prediction of the return from \(H \) on. While \(\epsilon_3 \) depends on the specific function approximation algorithm used by the critic (LSTD in our analysis) just through the dimension \(d \) of the function space \(\mathcal{F} \), \(\epsilon_4 \) strictly related to LSTD’s performance, which depends on the size \(n \) of its training set and the accuracy of its function space, i.e., the approximation error \(\inf_{f \in \mathcal{F}} ||V^\pi - f||_{2,\sigma} \).

Remark 2. We now compare the result of Theorem 1 with the corresponding result for DPI in Lazaric et al. (2010b), which bounds the performance as

\[
\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \leq \inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi) + 2(\epsilon_0 + \epsilon_1 + \gamma^H q).
\]

While the approximation error \(\inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi) \) and the estimation errors \(\epsilon_0 \) and \(\epsilon_1 \) are the same in Eqs. 5 and 6, the difference in the way that these algorithms handle the rollouts after \(H \) steps leads to the term \(\gamma^H q \) in DPI and the terms \(\epsilon_2, \epsilon_3 \), and \(\epsilon_4 \) in DPI-Critic. The terms \(\epsilon_2, \epsilon_3 \), and \(\epsilon_4 \) have the term \(\gamma^H q \) multiplied by a factor which decreases with the number of rollout states \(N \), the number of rollouts \(M \), and the size of the critic training set \(n \). For large enough values of \(N \) and \(n \), this multiplicative factor is smaller than 1, thus making \(\epsilon_2 + \epsilon_3 + \epsilon_4 \) smaller than \(\gamma^H q \) in DPI. Furthermore, since these \(\epsilon \) values upper bound the difference between quantities bounded in \([−q, q] \), their values cannot exceed \(\gamma^H q \). This comparison supports the idea that introducing a critic improves the accuracy of the truncated rollout estimates by reducing the bias with no increase in the variance.

Remark 3. Although Theorem 1 reveals the potential advantage of DPI-Critic w.r.t. DPI, the comparison in Remark 2 does not take into consideration that DPI-Critic uses \(n \) samples more than DPI, thus making the comparison potentially unfair. We now analyze the case when the total budget (number of calls to the generative model) of DPI-Critic is fixed to \(B \). The total budget is split in two parts: 1) \(B_R = B(1−p) \) the budget available for the rollout estimates and 2) \(B_C = Bp = n \) the number of samples used by the critic, where \(p \in (0, 1) \) is the critic ratio of the total budget. By substituting \(B_R \) and \(B_C \) in the bound of Theorem 1 and setting \(M = 1 \), we note that for a fixed \(H \), while increasing \(p \) increases the estimation error terms \(\epsilon_0, \epsilon_1, \epsilon_2, \) and \(\epsilon_3 \) (the rollout set becomes smaller), it decreases the estimation error of LSTD \(\epsilon_4 \) (the critic’s training set becomes larger). This trade-off (later referred to as the critic trade-off) is optimized by a specific value \(p = p^* \) which minimizes the expected error of DPI-Critic. By comparing the bounds of DPI and DPI-Critic, we first note that for any fixed \(p \), DPI benefits from a larger number of samples to build the rollout estimates, thus has smaller estimation errors \(\epsilon_0 \) and \(\epsilon_1 \) w.r.t. DPI-Critic. However, as pointed out in Remark 2, the bias term \(\gamma^H q \) in the DPI bound is always worse than the corresponding term in the DPI-Critic bound. As a result, whenever the advantage obtained by relying on the critic is larger than the loss in having a smaller number of rollouts, we expect DPI-Critic to outperform DPI. Whether this is the case depends on a number of factors such as the dimensionality and the approximation error of the space \(\mathcal{F} \), the horizon \(H \), and the size \(N \) of the rollout set.

Remark 4. According to Assumption 1 the samples in the critic’s training set are completely independent from those used in building the rollout estimates. A more data-efficient version of the algorithm can be devised as follows: We first simulate all the trajectories
used in the computation of the rollouts and use the last few transitions of each to build the critic’s training set S_k. Then, after the critic (LSTD) computes an estimate of the value function using the samples in S_k, the action-values of the states in the rollout set D_k are estimated as in Eqs. 1–3. This way the function approximation step does not change the total budget. We call this version of the algorithm Combined DPI-Critic (CDPI-Critic). From a theoretical point of view, the main problem is that the samples in S_k are no longer drawn from the stationary distribution $σ_k$ of the policy under evaluation $π_k$. However, the samples in S_k are collected at the end of the rollout trajectories of length H obtained by following $π_k$, and thus, they are drawn from the distribution $μ = ρP^0(P^{π_k})^{H−1}$ that approaches $σ_k$ as H increases. Depending on the mixing rate of the Markov chain induced by $π_k$, the difference between $μ$ and $σ_k$ could be relatively small, thus supporting the conjecture that CDPI-Critic may achieve a similar performance to DPI-Critic without the overhead of n independent samples. While we leave a detailed theoretical analysis of CDPI-Critic as future work, we use it in the experiments of Section 5.

5. Experimental Results

In this section, we report the empirical evaluation of DPI-Critic with LSTD and compare it to DPI (built on truncated rollouts) and LSPI (built on value function approximation). In the experiments we show that DPI-Critic, by combining truncated rollouts and function approximation, can improve over DPI and LSPI.

5.1. Setting

We consider two standard goal-based RL problems: mountain car (MC) and inverted pendulum (IP). We use the formulation of MC in Dimitrakakis & Lagoudakis (2008) with action noise bounded in $[-1, 1]$ and $γ = 0.99$. The value function is approximated using a linear space spanned by a set of radial basis functions (RBFs) evenly distributed over the state space. The critic training set is built using one-step transitions from states drawn from a uniform distribution over the state space, while LSPI is trained off-policy using samples from a random policy. In IP, we use the same implementation, features, and critic’s training set as in Lagoudakis & Parr (2003a) with $γ = 0.95$. In both domains, the function space to approximate the action-value function in LSPI is obtained by replicating the state-features for each action as suggested in Lagoudakis & Parr (2003a). Similar to Dimitrakakis & Lagoudakis (2008), the policy space $Π$ (classifier) is defined by a multi-layer perceptron with 10 hidden units, and is trained using stochastic gradient descent with a learning rate of 0.5 for 400 iterations. In the experiments, instead of directly solving the cost-sensitive multi-class classification step as in Fig. 1, we minimize the classification error. In fact, the classification error is an upper-bound on the empirical error defined by Eq. 4. Finally, the rollout set is sampled uniformly over the state spaces.

Each DPI-based algorithm is run with the same fixed budget B per iteration. As discussed in Remark 3, DPI-Critic splits the budget into a rollout budget $B_R = B(1−p)$ and a critic budget $B_C = Bp$, where $p ∈ (0, 1)$ is the critic ratio. The rollout budget is divided into M rollouts of length H for each action in A and each state in the rollout set D, i.e., $B_R = H M N |A|$. In CDPI-Critic the critic training set S_k is built using all transitions in the rollout trajectories except the first one. LSPI is run off-policy (i.e., samples are collected once and reused through iterations) and, in order to have a fair comparison, it is run with a total number of samples equal to B times the number of iterations (5 in the following experiments).

In Fig. 2 and 3, we report the performance of DPI, DPI-Critic, CDPI-Critic, and LSPI. In MC, the performance is evaluated as number of steps-to-go with a maximum of 300. In IP, the performance is the number of balancing steps with a maximum of 3000 steps. The performance of each run is computed as the best performance over 5 iterations of policy iteration. The results are averaged over 1000 runs. Although in the graphs we report the performance of DPI and LSPI at $p = 0$ and $p = 1$, respectively, DPI-Critic does not necessarily tend to the same performance as DPI and LSPI when p approaches 0 or 1. In fact, values of p close to 0 correspond to building a critic with very few samples (thus affecting the performance of the critic), while values of p close to 1 correspond to a very small rollout set (thus affecting the performance of the classifier). We tested the performance of DPI and DPI-Critic on a wide range of parameters (H, M, N) but we only report the performance of the best combination for DPI, and show the performance of DPI-Critic for the best choice of M ($M = 1$ was the best choice in all the experiments) and different values of H.

5.2. Experiments

In both MC and IP, the reward function is constant everywhere except at the terminal state. Thus, rollouts are informative only if their trajectories reach the terminal state. Although this would suggest to have large values for the horizon H, the size of the rollout set would correspondingly decrease as $N = O(B/H)$, thus decreasing the accuracy of the classifier (see c_0 in Thm. 1). This leads to a trade-off (referred to as the rollout trade-off) between long rollouts (which increase the chance of observing informative rewards) and the
number of states in the rollout set. The solution to this trade-off strictly depends on the accuracy of the estimate of the return after a rollout is truncated. As discussed in Sec. 3, while in DPI this return is implicitly set to 0, in DPI-Critic it is set to the value returned by the critic. In this case, a very accurate critic would lead to solve the trade-off for small values of H, because the lack of informative rollouts is compensated by the critic. On the other hand, when the critic is inaccurate, H should be selected in a way to guarantee a sufficient number of informative rollouts, and at the same time, a large enough rollout set.

Fig. 2 shows the learning results in MC with budget $B = 200$. In the left panel, the function space for the critic consists of 9 RBFs distributed over a uniform grid. Such a space is rich enough for LSPI to learn nearly-optimal policies (about 80 steps to reach the goal). On the other hand, DPI achieves a poor performance of about 150 steps, which is obtained by solving the rollout trade-off at $H = 12$ and $N = 5$. We also report the performance of DPI-Critic for different values of H and p. We note that, as discussed in Remark 3, for a fixed H, there exists an optimal value p^* which optimizes the critic trade-off. For very small values of p, the critic has a very small training set and is likely to return a very poor approximation of the return. In this case, DPI-Critic performs similar to DPI and the rollout trade-off is achieved by $H = 12$, which limits the effect of potentially inaccurate predictions without reducing too much the size of the rollout set. On the other hand, as p increases the accuracy of the critic improves as well, and the best choice for H rapidly reduces to 1, which corresponds to rollouts built almost entirely on the basis of the values returned by the critic. For $H = 1$ and $p \approx 0.8$, DPI-Critic achieves a slightly better performance than LSPI. Finally, the

![Figure 2](image-url)
In Sec. 4, we theoretically analyzed the performance of DPI-Critic and showed that depending on several factors (notably the function approximation error), DPI-Critic may achieve a better performance than DPI. This analysis is also supported by the experimental results of Sec. 5, which confirm the capability of DPI-Critic to take advantage of both rollouts and critic, and improve over both DPI and LSPI. Although further investigation of the performance of DPI-Critic in more challenging domains is needed and in some settings either DPI or LSPI might still be the better choice, DPI-Critic seems to be a promising alternative that introduces additional flexibility in the design of the algorithm. Possible directions for future work include complete theoretical analysis of CDPI-Critic, a more detailed comparison of DPI-Critic and LSPI, and finding optimal or good rollout allocation strategies.

Acknowledgments Experiments presented in this paper were carried out using the Grid’5000 experimental testbed (https://www.grid5000.fr). This work was supported by Ministry of Higher Education and Research, Nord-Pas de Calais Regional Council and FEDER through the “contrat de projets état région 2007–2013”, and by PASCAL2 Network of Excellence.

7. Appendix
7.1. DPI-Critic with Bellman Residual Minimization

In this section we bound the performance of each iteration of DPI-Critic when Bellman Residual Minimization (BRM) is used to train the critic.

Assumption 3. At each iteration \(k \) of DPI-Critic, the critic uses a linear function space spanned by \(d \) bounded basis functions (see Section 2). A dataset \(S_k = \{(X_i, R_i, Y_i, Y'_i)\}_{i=1}^n \) is built, where \(X_i \sim \tau \), \(R_i = r(X_i, \pi_k(X_i)) \), and \(Y_i \) and \(Y'_i \) are two independent states drawn from \(P^{\pi_k} (\cdot|X_i) \). Note that here in BRM (unlike LSTD) the sampling distribution \(\tau \) can be any distribution over the state space.

Assumption 4. The rollout set sampling distribution \(\rho \) is such that for any policy \(\pi \in \Pi \) and any action \(a \in A \), \(\mu = \rho P^{\pi} (P^n)^{H-1} \leq C_k \tau \), where \(C_k < \infty \) is a constant. The distribution \(\mu \) is a distribution induced by starting at a state sampled from \(\rho \), taking action \(a \), and then following policy \(\pi \) for \(H - 1 \) steps.

We first report the performance bound for BRM.

Proposition 2. (Thm. 7 in Maillard et al. 2010) Let \(n \) samples be collected as in Assumption 1 and \(\hat{V}^\pi \) be the approximation returned by BRM using the linear function space \(\mathcal{F} \) as defined in Section 2. Then for any
\(\delta > 0 \), we have
\[
\|V^* - \tilde{V}^*\|_{2,\tau} \leq \epsilon_{BRM} = (7)
\]
with probability \(1 - \delta \), where
\[
(1) \ c = 12 \left(\frac{2}{3} \right) ((1 + \gamma)^2 L^2 + 1) R_{\max},
\]
\[
(2) \ \xi = \frac{\omega}{\max_{i \in A} \left\| (I - \gamma P^*)^{-1} \right\|},
\]
\[
(3) \ \omega > 0 \text{ is the smallest strictly positive eigenvalue of the Gram matrix w.r.t. the distribution } \tau.
\]

In the following lemma, we bound the difference between the actual action-value function and the one estimated by DPI-Critic.

Lemma 2. Let Assumptions 3 and 4 hold and \(\{x_i\}_{i=1}^N \) be the rollout set with \(x_i \overset{iid}{\sim} \rho \). Let \(Q^\pi \) be the true action-value function of policy \(\pi \) and \(\hat{Q}^\pi \) be its estimation computed by DPI-Critic using \(M \) rollouts with horizon \(H \). Then for any \(\delta > 0 \), we have
\[
\max_{\pi \in \Delta(A)} \left| \frac{1}{N} \sum_{i=1}^N \left[Q^\pi(x_i, a) - \hat{Q}^\pi(x_i, a) \right] \right| \leq \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4,
\]
with probability \(1 - \delta \) (w.r.t. the random rollout estimates and the random samples in the critic’s training set \(S_k \)), where
\[
\epsilon_1 = (1 - \gamma^H) q (2 \gamma N d / M N), \quad \epsilon_2 = \gamma^H q \sqrt{\frac{2 \log(4 (\Delta / \delta))}{M N}},
\]
\[
\epsilon_3 = 12 \gamma^H B \frac{2 N (d + 1) \log(N) + \log \left(\frac{\epsilon}{\delta} \right) + \log (9 (12 e)^2 (d + 1))}{N}, \quad \epsilon_4 = 2 \gamma^H \sqrt{C} \epsilon_{BRM},
\]
with
\[
\Lambda(N, d, \delta) = 2(d + 1) \log(N) + \log \left(\frac{\epsilon}{\delta} \right) + \log (9 (12 e)^2 (d + 1)),
\]
\[
B = q \left(\frac{1}{\omega} + \frac{1 + 2(1 - \gamma^2) L^2 (1 - \gamma^{P^*^\pi})^{-1} \| x \|_2^2}{\omega} \right).
\]

Proof. We prove the following series of inequalities:
\[
\left| \frac{1}{N} \sum_{i=1}^N [Q^\pi(x_i, a) - \hat{Q}^\pi(x_i, a)] \right| \leq \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4,
\]
\[
= \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4,
\]
\[
= \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4,
\]
\[
= \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4,
\]
\[
= \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4,
\]
\[
= \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4.
\]

The statement of the lemma is obtained by setting \(\delta' = \delta/4 \), by taking the union bound over actions.

(a) We use Eq. 3 to replace \(\hat{Q}^\pi(x_i, a) \).

(b) We replace \(R^\pi_{ij}(x_i, a) \) from Eq. 1 and use the fact that \(Q^\pi(x_i, a) = Q^\pi_{ij}(x_i, a) + \gamma^H \hat{E}_{x \sim \nu_{ij}} [V^\pi(x)] \), where \(Q^\pi_{ij}(x_i, a) = \mathbb{E} [r(x_i, a) + \sum_{k=1}^{H-1} \gamma^k r(x^i_k, \pi(x^i_k))] \) and \(\nu_{ij} = \delta(x_i) P^\pi(\pi)^{H-1} \) is the distribution over states induced by starting at state \(x_i \), taking action \(a \), and then following the policy \(\pi \) for \(H - 1 \) steps. We split the sum using the triangle inequality.

(c) Using the Chernoff-Hoeffding inequality, with probability \(1 - \delta' \) (w.r.t. the random samples used to build the rollout estimates), we have
\[
\left| \frac{1}{MN} \sum_{i=1}^M \sum_{j=1}^M [Q^\pi_{ij}(x_i, a) - R^\pi_{ij}(x_i, a)] \right| \leq \epsilon_1
\]
\[
= (1 - \gamma^H) q \sqrt{\frac{2 \log(1/\delta')}{MN}}.
\]

(d) Using the Chernoff-Hoeffding inequality, with probability \(1 - \delta' \) (w.r.t. the last state achieved by the rollouts trajectories), we have
\[
\left| \frac{1}{MN} \sum_{i=1}^M \sum_{j=1}^M \left(V^\pi(x^i_{1:j}) - \mathbb{E}_{x \sim \nu_{ij}} [V^\pi(x)] \right) \right| \leq \epsilon_2
\]
\[
= \gamma^H q \sqrt{\frac{2 \log(1/\delta')}{MN}}.
\]

We also use the definition of empirical \(\ell_1 \)-norm and replace the second term with \(\| V^\pi - \hat{V}^\pi \|_{1, \hat{\mu}_j} \), where \(\hat{\mu}_j \) is the empirical distribution corresponding to the distribution \(\mu = \rho P^\pi (P^\pi)^{H-1} \). In fact for any \(1 \leq j \leq M \), the samples \(x^i_{1:j} \) are i.i.d. from \(\mu \).

(e) We move from \(\ell_1 \)-norm to \(\ell_2 \)-norm: for any \(x \in \mathbb{R}^n \), using the Cauchy-Schwarz inequality, we obtain
\[
\| x \|_{1, \hat{\mu}} = \frac{1}{n} \sum_{i=1}^n |x_i| \leq \sqrt{\frac{n}{n}} \sqrt{\frac{1}{n} \sum_{i=1}^n \frac{1}{n} |x_i|^2} = \| x \|_{2, \hat{\mu}}.
\]
(f) We note that \(\hat{V} \) is a random variable independent from the samples used to build the rollout estimates. Thus, applying Corollary 12 in Lazaric et al. (2010c), for any \(j \) we have

\[
||V^\pi - \hat{V}||_{2,\mu_j} \leq 2||V^\pi - \hat{V}||_{2,\mu} + \epsilon_3(\delta'')
\]

with probability \(1 - \delta'' \) (w.r.t. the samples in \(\hat{\mu}_j \)) and \(\epsilon_3(\delta'') = 12B \sqrt{\frac{2\Lambda(N,d,\delta'').\log N}{n}} \). Using the upper bound on the solutions returned by BRM, when the number of samples \(n \) is large enough, then with high probability (see Corollary 5 in Maillard et al. 2010 for details)

\[
B = q\left(1 + \frac{2(1 - \gamma^2)L^2\| (I - \gamma P^{a\sigma})^{-1} \|^2_{\infty}}{\omega} \right).
\]

Finally, by taking a union bound over all \(j \)'s and setting \(\delta'' = \delta' / M \), we obtain the definition of \(\epsilon_3 \) in the final statement.

(g) Using Assumption 4, we have \(||V^\pi - \hat{V}||_{2,\pi} \leq \sqrt{C} ||V^\pi - \hat{V}||_{2,\tau} \).

(h) Here, we simply replace \(||V^\pi - \hat{V}||_{2,\tau} \) with the bound in Proposition 2.

\[\square\]

7.2. Proof of Theorem 1

Since the proof of Theorem 1 does not depend on the specific critic employed in DPI-Critic, we report its proof in the general form where the \(\epsilon \) terms depend on the specific Lemma (Lemma 1 for LSTD or Lemma 2 for BRM) used in the proof.

Proof. The proof follows the same steps as in Thm. 1 in Lazaric et al. (2010a). We prove the following series of inequalities:

\[
L_{\pi_k} (\rho; \pi_{k+1}) \leq L_{\pi_k} (\hat{\rho}; \pi_{k+1}) + \epsilon_0 \quad \text{w.p.} \ 1 - \delta'\quad \ \\
= \frac{1}{N} \sum_{i=1}^{N} [Q^\pi_k (x_i, a^\ast) - Q^\pi_k (x_i, \pi_{k+1}(x_i))] + \epsilon_0 \quad \text{w.p.} \ 1 - \delta'\quad \ \\
\leq \frac{1}{N} \sum_{i=1}^{N} [Q^\pi_k (x_i, a^\ast) - \hat{Q}^\pi_k (x_i, \pi_{k+1}(x_i))] + \epsilon_0 + \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4 \quad \text{w.p.} \ 1 - 2\delta'\quad \ \\
\leq \frac{1}{N} \sum_{i=1}^{N} [Q^\pi_k (x_i, a^\ast) - \hat{Q}^\pi_k (x_i, \pi^*(x_i))] + \epsilon_0 + \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4 \quad \text{w.p.} \ 1 - 3\delta'\quad \ \\
\leq \frac{1}{N} \sum_{i=1}^{N} [Q^\pi_k (x_i, a^\ast) - Q^\pi_k (x_i, \pi^*(x_i))] + \epsilon_0 + 2(\epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4) \quad \text{w.p.} \ 1 - 4\delta' \quad \text{w.p.} \ 1 - 4\delta'.
\]

The statement of the theorem follows by \(\delta' = \delta / 4 \).

(a) It is an immediate application of Lemma 1 in Lazaric et al. (2010a).

(b) This is the result of Lemma 2 (for BRM).

(c) From the definition of \(\pi_{k+1} \) in the DPI-Critic algorithm we have

\[
\pi_{k+1} = \arg \min_{\pi \in \Pi} \hat{L}_{\pi_k} (\hat{\rho}; \pi) = \arg \max_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^{N} \hat{Q}^\pi_k (x_i, \pi(x_i)),
\]

thus, \(\frac{1}{N} \sum_{i=1}^{N} \hat{Q}^\pi_k (x_i, \pi(x_i)) \) can be maximized by replacing \(\pi_{k+1} \) with any other policy particularly with \(\pi^* = \arg \min_{\pi \in \Pi} L_{\pi_k} (\rho; \pi) \).

(d)-(e) These steps follow from Lemma 2 and Lemma 1 in Lazaric et al. (2010a).

\[\square\]

7.3. Error Propagation

In this section, we first show how the expected error is propagated through the iterations of DPI-Critic. We then analyze the error between the value function of the policy obtained by DPI-Critic after \(K \) iterations and the optimal value function in \(\eta \)-norm, where \(\eta \) is a distribution over the states which might be different from the sampling distribution \(\rho \). Let \(P^\sigma \) be the transition kernel for policy \(\pi \), i.e., \(P^\sigma(dy|x) = p(dy|x, \pi(x)) \). It defines two related operators: a right-linear operator, \(P^\sigma \), which maps any \(V \in \mathcal{B}(X; \eta) \) to \((P^\sigma V)(x) = \int V(y)P^\sigma(dy|x) \), and a left-linear operator, \(-P^\sigma \), that returns \((\eta P^\sigma)(dy) \) for any distribution \(\eta \) over \(X \).

From the definitions of \(\ell_{\pi_k}, \mathcal{T}^\ast, \) and \(\mathcal{T} \), we have \(\ell_{\pi_k}(\pi_{k+1}) = \mathcal{T}V^{\pi_k} - \mathcal{T}^{\pi_{k+1}}V^{\pi_{k}} \). We deduce the following pointwise inequalities:

\[
V^{\pi_k} - V^{\pi_{k+1}} = \mathcal{T}V^{\pi_k} - \mathcal{T}^{\pi_{k+1}}V^{\pi_k} = \mathcal{T}^{\pi_{k+1}}V^{\pi_k} - \mathcal{T}^{\pi_{k+1}}V^{\pi_{k+1}}
\leq \ell_{\pi_k}(\pi_{k+1}) + \gamma P^{\pi_{k+1}}(V^{\pi_k} - V^{\pi_{k+1}}),
\]

which gives us \(V^{\pi_k} - V^{\pi_{k+1}} \leq (I - \gamma P^{\pi_{k+1}})^{-1} \ell_{\pi_k}(\pi_{k+1}) \).

We also have

\[
V^{\ast} - V^{\pi_{k+1}} = \mathcal{T}V^{\ast} - \mathcal{T}^{\pi_k}V^{\ast} - \mathcal{T}^{\pi_{k+1}}V^{\ast} + \mathcal{T}^{\pi_{k+1}}V^{\pi_k} - \mathcal{T}^{\pi_{k+1}}V^{\pi_{k+1}}
\leq \gamma P^\ast(V^{\ast} - V^{\pi_k}) + \ell_{\pi_k}(\pi_{k+1}) + \gamma P^{\pi_{k+1}}(V^{\pi_k} - V^{\pi_{k+1}}),
\]

which yields

\[
V^{\ast} - V^{\pi_{k+1}} \leq \gamma P^\ast(V^{\ast} - V^{\pi_k}) + \gamma P^{\pi_{k+1}}(V^{\pi_k} - V^{\pi_{k+1}}) + I\ell_{\pi_k}(\pi_{k+1})
\]

\[\square\]
Finally, by defining the operator $E_k = (I - \gamma P^{\pi_{k+1}})^{-1}$, which is well defined since $P^{\pi_{k+1}}$ is a stochastic kernel and $\gamma < 1$, and by induction, we obtain

$$V^* - V^{\pi_K} \leq (\gamma P^*)^K (V^* - V^{\pi_0}) + \sum_{k=0}^{K-1} (\gamma P^*)^{K-k-1} E_k \ell_{s_k}(\pi_{k+1}).$$

(8)

Eq. 8 shows how the error at each iteration k of DPI-Critic, $\ell_{s_k}(\pi_{k+1})$, is propagated through the iterations and appears in the final error of the algorithm, $V^* - V^{\pi_K}$. Since we are interested in bounding the final error in η-norm, which might be different than the sampling distribution ρ, we use one of the following assumptions:

Assumption 5. For any policy $\pi \in \Pi$ and any non-negative integers s and t, there exists a constant $C_{\eta,\rho}(s, t) < \infty$ such that $\eta(P^*)^t \leq C_{\eta,\rho}(s, t).\rho$. We define $C_{\eta,\rho} = \frac{1}{\gamma} \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \gamma^{s+t} C_{\eta,\rho}(s, t)$.

Assumption 6. For any $x \in X$ and any $a \in A$, there exist a constant $C_{\rho} < \infty$ such that $p(x|a) \leq C_{\rho}$.

Note that concentrability coefficients similar to $C_{\eta,\rho}$ and C_{ρ} were previously used in the ℓ_∞-analysis of fitted value iteration (Munos, 2007; Munos & Szepesvári, 2008) and approximate policy iteration (Antos et al., 2008). We now state our main result.

Theorem 2. Let Π be a policy space with finite VC-dimension h and π_K be the policy generated by DPI-Critic after K iterations. Let M be the number of rollouts per state-action and N be the number of samples drawn i.i.d. from a distribution ρ over X at each iteration of DPI-Critic. Then, for any $\delta > 0$, we have

$$||V^* - V^{\pi_K}||_{1,\eta} \leq \frac{2}{1 - \gamma} \left[C_{\eta,\rho} \left(\sup_{x \in X} \inf_{\pi \in H} \mathcal{L}_\pi(\rho, \pi') \right) + 2(\epsilon_0 + \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4) \right] + \gamma^K R_{\max},$$

under Assumption 1

$$||V^* - V^{\pi_K}||_{\infty} \leq \frac{2}{1 - \gamma} \left[C_{\rho} \left(\sup_{x \in X} \inf_{\pi \in H} \mathcal{L}_\pi(\rho, \pi') \right) + 2(\epsilon_0 + \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4) \right] + \gamma^K R_{\max},$$

under Assumption 2

with probability $1 - \delta$, where $\epsilon_4 = \epsilon_{LSTD}$ when LSTD is used to approximate the critic and $\epsilon_4 = \epsilon_{BRM}$ when BRM is used.

Proof. We have $C_{\eta,\rho} \leq C_{\rho}$ for any η. Thus, if the ℓ_1-bound holds for any η, choosing η to be a Dirac at each state implies that the ℓ_∞-bound holds as well. Hence, we only need to prove the ℓ_1-bound. By taking the absolute value point-wise in Eq. 8 we obtain

$$|V^* - V^{\pi_K}| \leq (\gamma P^*)^K |V^* - V^{\pi_0}| + \sum_{k=0}^{K-1} (\gamma P^*)^{K-k-1} |E_k \ell_{s_k}(\pi_{k+1})|.$$
the greedy action estimated by the algorithm at state $x_i \in \mathcal{D}$, respectively.

The budget B is set to 2000, N is set to 20, and the values of M are computed as

$$M(p, H) = \frac{B}{N|\mathcal{A}|} \times \frac{1 - p}{H},$$

where the first term is a constant and the second one indicates that M decreases linearly with p with a coefficient inversely proportional to H. The results are averaged over 1000 runs. The policy π is fixed as follows:

$$\pi(\theta, \hat{\theta}) = \begin{cases}
\text{with probability 0.2, random action,} & \text{if } \frac{\theta_{\pi}}{\pi/\theta} > \hat{\theta}, \\
\text{with probability 0.8, left,} & \text{if } \frac{\theta_{\pi}}{\pi/\theta} < \hat{\theta}.
\end{cases}$$

This policy has an average performance of 20 steps to balance the pendulum.

For $H = 1$ and $p = 0$, the horizon is not long enough to collect any informative reward (i.e., reaching a terminal state). Therefore, the accuracy of the training set is almost the same as for a training set in which the greedy action is selected at random (33% as the domain contains 3 actions). For positive values of p, DPI-Critic adds an approximation of the value function to the rollout estimates. The benefit obtained by using the critic increases with the quality of the approximation (i.e., when p increases). At the same time, when p increases, the number of rollouts M for each rollout state decreases, thus increasing the variance of rollout estimates. For $H = 1$, this reduction has no effect on the accuracy of the training set except when M is forced to be 0 for the values of p close to 1. In fact, when $H = 1$, the variance is limited to the variance introduced by the noise in one single transition and even a very small number of rollouts would be enough to obtain accurate estimates of the action values.

The accuracy of DPI ($p = 0$) improves with horizon $H = 4$ and $H = 6$. For p close to 0, the critic has a poor performance which causes the rollouts to be less accurate than in DPI. On the other hand, when p increases, the value function approximation is sufficiently accurate to make DPI-Critic improve over the accuracy of DPI. However for $p > 0.5$, the variance of the training set starts decreasing. Indeed, as H is large, the variance of \hat{Q}^π estimates is bigger than in the case when $H = 1$. Moreover, for large values of H, M is small. Therefore, with high variance and a small number of rollouts M, the \hat{Q}^π estimates are likely to be inaccurate.

These results show that the introduction of a critic improves the accuracy of the training set for a value of p which balances between having a sufficiently accurate approximation of the critic (p large leads to an accurate critic) and having sufficiently many rollouts M (p small leads to rollouts with less variance). This still does not account for the complete critic trade-off since the parameter N is fixed. Indeed, in order to return a good approximation of the greedy policy, it is essential for the classifier to both have an accurate training set and a large number of states in the training set. The impact of the number of states in the training set and the propagation through iterations of the benefit obtained from the use of critic are studied in the Experiments section.

References

