Asymptotic behavior of a hard thin linear elastic interphase: An energy approach
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The mechanical problem of two elastic bodies separated by a thin elastic film is studied here. The stiffness
of the three bodies is assumed to be similar. The asymptotic behavior of the film as its thickness tends to
zero is studied using a method based on asymptotic expansions and energy minimization. Several cases
of interphase material symmetry are studied (from isotropy to triclinic symmetry). In each case, non-local
relations are obtained relating the jumps in the displacements and stress vector fields at order one to

these fields at order zero.

1. Introduction

During the mechanical assembly of structures, interphases can
have crucial effects. In particular, imperfections in the assembly
can lead to structural failure. Although the thickness of interphases
is generally very small in comparison with the dimensions of the
structure, their mechanical role cannot be neglected and they need
to be taken into account in modeling procedures. From the numer-
ical point of view, the thinness of interphases gives rise to prob-
lems which are very difficult to solve. In particular, the number
of degrees of freedom adopted in studies using a finite element ap-
proach can be very large, which affects the convergence and the
accuracy of the solution. Interphase modeling therefore has to be
performed before solving the problem numerically. One classical
technique consists in replacing the thin interphase by an interface
of zero thickness, while keeping some important mechanical prop-
erties of the interphase. From the geometrical point of view, the
interphase is eliminated, although it is accounted for mechanically.
The resulting equivalent interface model is simpler to implement
in numerical simulations than the original multi-scale problem.
This idea was the starting-point of several studies published during
the last years (Caillerie, 1980; Ait-Moussa, 1989; Klarbring, 1991;
Licht, 1993; Licht and Michaille, 1996, 1997; Ould-Khaoua et al.,
1996; Ganghoffer et al, 1997; Geymonat and Krasucki, 1997;
Lebon et al., 1997; Zaittouni et al., 2002; Lebon and Rizzoni,
2008; Lebon and Zaittouni, 2010). To model the equivalent inter-
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face, asymptotic techniques are necessary, i.e., we take the thick-
ness of the interface to be a small parameter which tends to
zero. Interface models usually relates the stress vector to the jump
in the displacement (or in the velocity). In most cases, like in soft
interface models (Geymonat et al., 1999; Krasucki et al., 2001;
Lebon et al., 2004; Lebon and Ronel-Idrissi, 2004; Pelissou and
Lebon, 2009; Rekik and Lebon, 2010), this means that not only
the thickness of the interface but also its rigidity is small. In the
present study on a hard interface model, only the thickness is
assumed to be small, and the stiffness of the adherents and the
interphase are taken to be similar.

Some studies, focused on adherents and a flat interphase with a
comparable level of rigidity (Caillerie, 1980; Abdelmoula et al.,
1998; Lebon and Ronel, 2007; Lebon and Rizzoni, 2010), have al-
ready established that at the first order (¢ — 0) one obtains a per-
fect interface model, which prescribes the vanishing of the jumps
in the stress and the displacement vectors. At a higher order (the
second term in the expansion), an imperfect interface model is
obtained, with a transmission condition involving the first order
displacement and traction vectors and their derivatives (Abdelmoula
et al., 1998; Lebon and Ronel, 2007; Lebon and Rizzoni, 2010). The
higher order term, giving rise to an imperfect interface model, can
be interpreted as a correction of the leading solution corresponding
to the perfect interface model.

All these studies model the interphase as an isotropic, linear
elastic material. Even though in many practical cases the adhesive
is an isotropic material, typically an epoxy resin, it is possible that
the process of producing a thin layer of adhesive causes the mate-
rial to become anisotropic or layered. In this paper, we extend the
results obtained in Abdelmoula et al. (1998), Lebon and Ronel



(2007), Lebon and Rizzoni (2010) to the case of an anisotropic
adhesive.

The equilibrium problem involved in the interphase/adherents
system is presented in Section 2. The mathematical methods used
so far for this purpose have often been matched asymptotic expan-
sions (Eckhaus, 1979; Sanchez-Hubert and Sanchez-Palencia,
1992). In this paper, an energy approach is also used. The main
assumption adopted, which is introduced in Section 3, is the exis-
tence of expansions in series of the displacements and stress vector
fields in terms of the small parameter describing the thickness. The
second assumption is that we can obtain the fields which are sta-
tionary points of the energy of the system by finding the stationary
points of the energies obtained at each level in the expansion. In
the second part of Section 3, the minimization is performed at or-
ders —1, 0, 1 and 2. Two types of relations are obtained: either an
interface relation or an equilibrium relation. In particular, at orders
—1 and 1, we obtain conditions on the displacement fields at order
zero and order one, respectively, determining the jumps at the
interface. At orders 0 and 2, we obtain the equilibrium equations
for the adherents written in terms of the displacement fields at or-
der zero and order one, respectively. The former are balance equa-
tions for the zero order stress and displacement vector fields
associated with a perfect interface law, and the latter are balance
equations for the first order stress and displacement vector fields
associated with an imperfect interface law, involving tangential
derivatives and first order terms. We also find that some (natural)
boundary condition arising at order 2 (Eq. (54)) are not verified by
the classical asymptotic expansion assumed here. We interpret this
as an indication of a phenomenon of boundary layer, whose anal-
ysis is beyond the scope of this paper.

In Section 4 and in the Appendices, several cases of anisotropy
are analyzed. In the case of isotropy, we obtain the same results
as those presented in Lebon and Rizzoni (2010). In the case of
orthotropic symmetry, that of transverse isotropy, in the case
where a symmetry axis is running perpendicular and parallel to
the interface, and in the case of monoclinic and triclinic materials,
we obtain the forms of the coefficients involved in the imperfect
interface relations.

2. Statement of the problem

Let S be an open bounded subset of R?> with a smooth boundary
and let us take a thin interphase B with cross-section S and a con-
stant small thickness & < 1. The interphase lies between two
bodies ¢, c R?, as shown in Fig. 1. Let S denote the flat interfaces

between the interphase and the two bodies and let Q%= Q% u
S%. U B? denote the composite comprising the interphase and the
two bodies. We take an orthogonal frame (0,x1,x2,x3) with its ori-
gin at the center of the interphase midplane and with x3-axis run-
ning perpendicular to the interfaces S°.. The adhesion between the
bodies and the interphase is assumed to be perfect. Let u® : Q¢ — R>
be a displacement field defined in ©°. The continuity conditions
across the surfaces S are

[, =0 onS:,

(1)

where

%, =u? <x1,x;, (i%y) - u‘5<X1,X2, (i§>—)7

gives the jumps in the displacement across S5. In (2), u(x1, %, ($)")
(resp. uf(x1, Xz, (5)7)) indicates the limit of u”(x;,x2,x3) as x3 tends to
(3. % > (3) (resp. x; <3)

The interphase and the two bodies are assumed to be homoge-
neous and linear elastic. We take by, to denote the components of
the elasticity tensor b at the interphase and a.;i to denote the
components of the elasticity tensors a. of the two bodies. Let e
be the strain tensor

(2)

3)
In a general anisotropic context, linear elasticity gives the Cauchy
stress tensor ¢ as follows:
o =b(e) in B,

0 =a.(e) in Q.

e(u’) = % (Vu’3 + (Vuﬂ)T).

(4)
(5)
A body force density f is applied to Q¢ and a surface force density g
to I'g C 0Q% On I', = 0Q%\I'4\(2Q° N OB®), we prescribe the homoge-
neous boundary conditions
u*=0 on . (6)
We also make the following assumptions:

a., bel™(Q),

Aijjkl = Apitij = Aujite = Aol

bijkl = bklij = bjilk = bijlk:

3., n>0:a.(e)-(e) = n.lef,

b(e)-(e) = n.le[’, Ve:e=eT,

(H2) 3&o : B.n (I'; U supp(f)) =0, Ve < &,

(H3) f € (L*(Q))°, g € (L(Iy))’.

(H1)
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Fig. 1. (a) Initial configuration with a thin interphase placed between two bodies; (b) rescaled configuration with the two bodies separated by an interphase of unit thickness;

(c) limit configuration, where the interphase is replaced by an interface.



Assumption (H1) deals with the usual symmetry properties and po-
sitive definiteness hypothesis about the elasticity tensors. Assump-
tion (H2) means that I'y is located far from the interphase. In (H3),
the fields of the external forces are endowed with sufficient regular-
ity to ensure the existence of equilibrium configurations (see
below).

The composite body equilibrium configurations are the mini-
mizers of the total energy

E(u) = /Q (%ai(e(u)) -e(u) —f~u> dx —/F g - uds,
+/B; %b(e(u)) -e(u)dx, (7)

in the space of kinematically admissible displacements
VE:{ueH(Q‘E;R3):u=O on ru}, (8)

where H(Q?; R®) is the space of the vector-valued functions on the
set Q°, which are continuous and differentiable as many times as
necessary. The assumptions (H1), (H2) and (H3) ensure the exis-
tence of a unique minimizer u® in V¢ (Ciarlet, 1988, Theorem 6.3-2).

3. Asymptotic analysis

In this section, the asymptotic expansion method is used to ob-
tain the interface conditions giving the effect of a thin interphase
on the mechanical behavior of the composite . In order to refor-
mulate the equilibrium problem in an interphase domain indepen-
dent of ¢, we introduce the change of variables

(21,22,23) = P(X1,X2,X3) = (X1,X2,X38 1),  (X1,X2,X3) € B, 9)

- e 1
(21,22,23) = P(X1,X2,X3) := <x17X27X3i§$§>7 (X1,X2,X3) € Q.
(10)

In particular, B is rescaled by a factor &' along the interphase
thickness and the bodies %, are shifted by +1/2(1 — ¢) in the same
direction, as shown in Fig. 1b. In the new coordinate system, the
interphase occupies the domain

1

1
B:{(Z1722723)6R32(21722)65,‘23‘<§}, (11)

and the two bodies occupy the domains Q. = Q +1/2(1 - ¢)is,
where i3 denotes the unit vector along the zz-axis. Let
S. =1(z21,22,23) € R3: (z1,22) €S,25 = i% denote the interfaces
between the interphase and the two bodies after rescaling, and let
Q=Q,UQ UBUS, US_ denote the configuration of the compos-
ite body after the change of variables (Fig. 1b). Lastly, let I', and
I'y denote the shifts of I', and I', respectively.
Let
U (21,22,23) := (U o P V)(21,22,23), (21,22,23) € Q1 (12)

be the displacement from configuration €2 of the bodies adjacent to

the rescaled interphase, and let
U%(z1,22,23) == (U 0 P 1)(21,22,23), (21,22,23) € B, (13)

be the displacement from configuration 2 in the rescaled inter-
phase. In view of the continuity condition (1), we have

uf, (zl,zz,i%> :uﬁ(zl,zz,j:%) (z1,22) €. (14)

Note also that in view of the change of variables, we can write

ut (x1.,x2, (i%;) =1’ <z1,zz, (i%)x), (X1,%2), (21,22) €5,

(15)

X e\t _ N+
u‘<x1,x2,(i§> >:uC z1,zz,<ij> , (X1,%2),(z1,22) €S.
(16)

Let f:=fop! and g :=gop! denote the rescaled external forces.
We also rephrase assumption (H2) as follows:

(H2)BN (I'g U supp(f)) = 0. (17)

We make no further rescaling assumptions about the unknown dis-
placements, the loads or the elastic properties of the bodies.
With these assumptions, the rescaled energy takes the form

(i) = [ (G0 (elit) (i)~ it ) dz

_ [ goatds,+ /B %(841@3 (5) -

Ig

2K (@) - Uy + eK* (U8 - ) dz, (18)

where a comma is used to denote partial differentiation and K, j,
1=1,2,3, are the matrices whose components are defined by the
relations

KL = by (19)

ki *

In view of the symmetry properties of the elasticity tensor b, the
matrices K have the property that K" = (KY)", j, I =1,2,3.

The rescaled equilibrium problem P? can be formulated as fol-
lows: find the pair (%, u%) minimizing the energy (18) in the set
of displacements
V= {(ai,a) €H(Q.:R*) x HB:R®) :i1. =it onS.,ii, =0 on r}

(20)

Since we are looking for the behavior of the minimizer of (7) when
the interphase thickness ¢ is small, we assume that the minimizing
displacements can be expressed as the sum of the series

it =0 + et + & +o(e?), (21)
uf =0 4 ' + £20* + 0(&?), (22)

where the displacement vectors u', u? are independent of &. Substi-
tuting this expansion into (12) and (13) and inserting the result into
(18), we obtain

£, 1) = L7 () + £ (80, 1P, ) + e (i, L 0, )

+e2e (@, ul, u?, u, u',u*, u) + o(e?), (23)

£ @) = /B TR ) dz, (24)

(25)

- ‘g.a;dsﬁ/_ (1(33(ug).a_23+%K33(ﬂé)~a;>dz
Iy B

+ /B (1(“3(113).11}3 +K7 (i) - 1 +%K“(u1) .ag> dz,
(26)



0 <1 52 o0 o1 12 -1 - - =
@, ul, i, u',u?, ) :/g (iai(e(uli)ye(uli)—f.ui) dz

+ [ KB@9) o dz+/(1<33( L) -

+ K W,) K () - uh) dz

+ /B (K (W) - uldz + K (@5, - uly)dz.  (27)

We now minimize each of these energies separately. The function
class in which we seek the solution of each energy minimization
is assumed to be a class of displacements which have finite energy.

Remark. Some considerations on minimization, stationarity and
decoupling between orders. We consider a functional f(u®). We
suppose that the following expansions exist:

@) =00 +ef (0" + - (28)

In this case the minimization problem fi(u®) < ff(¢#), V¥ becomes
formally

f°(u°)+8f1(u1)+ ) +ef (V') +

and thus f2(u°) < f°(° Hh < fi(vh). . .. If we consider the problem
(which is not usually equlvalent to the minimization problem):

..<f°(z/° 7 (29)

VFi(u) =0, (30)
it becomes formally
VW®) =0,Vf'(u') =0,... (31)

3.1. Minimization of &'

The energy is minimized in the class of displacements
° € H(B; R®). Since b is a positive definite tensor, the second order
tensor K33 is also positive definite. Therefore, the energy £~! is non-
negative and the minimizers have the property
1% =0, ae. inB, (32)
i.e., the minimizing displacements are independent of z3 in the
interphase. Based on this result and the continuity conditions
(14), we obtain the following condition on #° evaluated at S*

- 1 - 1 =
u0<zl7227+§> :u0<zl7227_§)7 (21722)637 (33)

In view of (15) and (16), condition (33) implies that

u(x1,%2,0%) = u%(%1,%,,07), (x1,X2) €. (34)

From the mechanical viewpoint, condition (34) gives a perfect inter-
face condition for the interphase modeling.

3.2. Minimization of £°

Based on (32), the energy £° turns out to become independent
of u%, u'. With a little abuse of notation, we drop the dependence
of the these vector fields from the argument of £°, which becomes

) = [ (Gumes@ea(i) -F it ) dz- [ g-ids. (35)

Iy
In view of (33), we seek the energy minimizer in the class of
displacements

V= {(ﬂi) (S H(Qi;R3) : ibr (217227-"-%) =1_ <Z]7ZQ,—%>7
x (zl,zz)eﬁ, i.=0 on r} (36)

Using standard arguments, we obtain the equilibrium equations

div(a.(e(@)) +f) in Q., (37)
as(e(@)n=g on Iy, (38)
a.(e(@)n=0 on dQ. \ Iy, (39)
a.(e(@®))is =a (e@®))i; onS. (40)

The last condition states that as expected, the jump in the traction
vector across the rescaled interphase B vanishes, and we take 6%i; to
denote its constant value.

3.3. Minimization of &'
Condition (32) makes &' independent of u2. Again with a little

abuse of notation, we drop the dependence of this vector field in
the argument of £!, which simplifies as

(0L, 0) = [ (aufei) el ~fi)dz - [ g-utds,
'+ &
(1 s, on
+ /E <§1<33(u}3) -y + K@) - uly
+ %K“ﬁ (@) - ﬂf},) dz. (41)

Applying the divergence theorem and using the equilibrium equa-
tions (37)-(39), it turns out that minimizers of £' also minimize
the functional

ﬁ GK”( L)+ K2 (@) - 0'013> -ulydz. (42)
B

The corresponding Euler-Lagrange equation takes the form

6°%i; = K> (u}y) + K= (1°). (43)
This relation together with the continuity condition (33) gives the

following condition on the jump in the displacement vector field
u' across the interphase

@' = (k)" (6% — K*u’,). (44)

Note that in view of the conditions (14) of continuity of the dis-
placement fields at the interfaces S*, the latter condition can be
rewritten in the equivalent form

('] = (K*)7'(6%; — Ki). (45)

3.4. Minimization of &

Using the divergence theorem, Eq. (32), the equilibrium equa-
tions (37)-(39), and the jump conditions (45), we eliminate
19,42 and @® from the expression for the energy £2 and we simplify
this expression:

g @, u u" ::/{Z %ai(e(ﬂl))-e(ﬂl)dz

+ /B (K*(@}) - uy + K (@) - u}) dz. (46)

In view of Eq. (43) and of the continuity conditions (14) written for
ul and @', the vector field u! can be written in the form

_ _ 1.

u!(2,,23) = [0'](2:)23 + js(ul)(za)v (47)

where S(il1)(z,) := U1(2,,1/2,) + 0" (z,,—1/27). Substituting (47)
and (45) into (46), and integrating with respect to z3 give

il 1, at) 1 ~1
e, ul u /Qi as(e(uy))-e(ul)dz
+ (%1<“3<5<ﬂ> RUSONICL

+%K“/‘(ag) S )ﬁ) ds,. (48)

— K”uf)



The Euler-Lagrange equations for the minimization problem of the
latter functional are

div(a.(e(il))) =0 in Q., (49)
as(e(@l))n=0 on I}y, (50)
as(e(@))n=0 on Q. \ Iy, (51)
1 1,205 _

— a.(e(})is — 5 (K (K*)1(6% — K1),

+ %K“/’(agﬁ) =0 onS", (52)
a_(e(@"))is — 5 (K KP) (6% - K,

+ %K“/‘(agﬁ) =0 onS, (53)
(k)T (K**)™" (%5 — K”u) + K*(i))n, =0 on 5. (54)

We now add Egs. (52) and (53) together to obtain the following
relation for the jump in the traction at order one, defined as
(6] = a,(e(@i}))(z4, 1/27 )iz — a_(e(Ui}))(zy, —1/27)is:

[6'] = —(K?)"(K®) (6% — K”u') , — K™ (). (55)

Again using (14), we rewrite the latter condition as follows:
6] = —(K®)"(K®) (6% — KPUS) , — K (i). (56)

Relations (45) and (56) are non-local laws for imperfect contact in
the minimization problem associated with the rescaled energy (18).

Remark. Condition (54) shows that the asymptotic expansions
(21) and (22) do not hold in the neighborhood of 8S. More
correctly, the energy (48) has to be defined not on the total domain
but on a truncated domain defined as (Q. UB)\ T,, where T is a
torus of small radius r > 0 enclosing S. In this case, (54) is replaced
by the new condition

/ a(e(@l))nds; + ((K*)'(K?) 7 (6% — K™uf)
aTru(Q)

+ 1<“/‘(afj,)))mmn[x =0. (57)

As r tends to zero, there appear concentrated forces on the bound-
ary of S (see Abdelmoula et al., 1998, Eq. (10)).

4. Form of the imperfect contact laws with various material
symmetries

In this section, the forms of interface laws (45) and (56) for the
following classes of material symmetry are deduced: isotropic,
orthotropic, transversally isotropic, monoclinic and triclinic.

4.1. Isotropy

The thin layer is assumed to be isotropic and E, v and G are ta-
ken to denote the Young’s modulus, the Poisson’s ratio and the
shear modulus, respectively.

Using the following expressions:

B B B E(-1+4v)
bi111 = bao22 = bazzz = v (58)
Ev
bi122 = b1133 = bozzs = Ty (59)
bi212 = b1313 = b33 =G, (60)

we obtain the following expressions for the jumps in the displace-
ment components at order one.

0
[} =70 g, (61)

G
- 9 -
@) =% -, (62)
_ (=1+v+2v)6%; +Ev(@®, +13,)
17 _ 5 ,
[u3] - E(f‘l +V) . (63)

To express the jumps of the stress components at order one, we
have the relations

_ _ZEﬁ?,]] +E(-1+ V)ﬂ?‘zz -1+ V)(Eﬂgjz +2v6%;,)

=1
[075] 2(—1+12) ’
(64)
[61,] = —E(1+ )i} 5 + E(=1+ )13y — 2(Eig 5, + v(1 +)6%,)
z 2(-1+1?) '
(65)
[6'%3] = —6?3‘1 - 5’23.} (66)

4.2. Orthotropic symmetry

It is now assumed that the thin layer is orthotropic and we take
E(i=1,2,3), v4(i, j=1,2,3) and Gy((i,j) =(1,2), (1,3), (2,3)) to de-
note the Young’s moduli, the Poisson’s ratios and the shear moduli,
respectively. We also recall that %2 = % %13 = %] and %23 = %32 By
taking the expressions

E}(E> — E3v3,)

b = , 67
L E](Ez 7E3V%3) 7E2(E2V%2 +E3V13(V13 +2V12Vz3))/ ( )
E2(Ey — E3V2,)
b = 2 13 , 68
227 F (E2 — E3v%;) — Ex(Exv3,) + E3vis(Vis + 2V12V23)) (68)
bysss = Eaba(Er — Eaviy) (69)
E{(Ey — E3V3;) — Ex(Eav3, + E3viz(Vis + 2Vi2Va3))
E{E;(E E
Briiss = bypiy = 1E2(Exviz + E3vi3vas) (70)

Ei(Ea — E3v33) — E2(E2V2, + E3vi3(Vi3 4+ 2vi2V3))

E{E3E3(Vi3 4+ Vi2V23)
Ei(E; — E3v3;) — Ex(ExVv2, + E3vis(Vis + 2V12V23))
(71)

b1133 = b33]1 =

E2E3(E1va3 + E3vi2v13)
E; — E3vZ;) — E3(Eov3, 4 Esviz(Vis + 2V12v23))
(72)

b2233 = b3322 = E](

b1212 = GIZ§b]313 = G13;b2323 = GZ3> (73)

the elastic constants by, are replaced by constants E;, v; and G;; and
the following jumps in the displacements at order one are obtained:

1 0% oo

[] = [ us g, (74)
- 0%, .

i :G—i—ugz, (75)
[ﬂ;] = 060623 - Boﬂ[l).l - yoﬂglv (76)

where

E1(E; — E3Vv3;) — Ex(E2V2, + E3vi3(V13 + 2V12V23))
EzEg(E] — EzV%z) ’

0y =



B = Ei(vi3 + Vi2V23) ’ (78)

E] — Ezv%z
_ Eyviovis +Eivas

p =212’ TS 79
/0 El _ EZV%Z ( )
The jumps in the stress components at order one are
~q = -0 0 > ~0 Vis + Vi2V23
O3] = Oolly 11 + Grall] 55 + Polly 1 — ————— 80
[ 13] oty 11 12Uy 55 + Bolly 12 [ EFIRTRTIREER) (80)
<1 - ~0 -0 = =0 V23 + Vi3V o
Oy | = Polly 15 + Grally 11 + Polly g — —————— 0O 81
[ 23] Bolly 12 12Uy 11 + Vollz 22 1 vppvy 332 (81)
~1 ~0 ~0
[033] = —0731 — 023, (82)
where
- Es(vi3 + vi2v23)® — Er (=1 + viaVar)(—1 + v23v3)
. =

(=1 +vi2v21) (=1 4 vi2(V21 + V23 V31) + Va3Vaz + Vi3(Va1 + Vo1 Va2))
(83)

Bo = Glz
E3(Vi3Va1 + V23) (Vi3 + V12 Va3)

(=1 +v12V21) (=1 4 vi2(Va1 + V23V31) + Va3 V3z + Vi3(V31 + Va1 V32))
(84)

B E>(Viz2 + Vi3V32)
=14 V12(V21 4+ V23V31) + Va3 V32 4+ Vi3(V31 + V21 V32)

(85)

7o = —E3(Vi3Va1 + V23)? 4+ Ea(—=1 4 viava1) (=1 + vizv3y)
O (=1 + viavar) (=1 + vi2 (Va1 + Va3V31) + Va3Va2 + Vis(Va1 + Va1 Vs)) |
(86)

4.3. Transverse isotropy (axis 1)

The thin layer is assumed to be transversally isotropic in one of
the directions in the plane of the glue (for example along the 1-
axis), and we take Eq, E; = E3, V13, V13 and G;3 to denote the Young's
modulus, the Poisson’s ratio and the shear modulus, respectively.
Using the following expressions:

E3 (=1 + vy3)

by = , 87
T 2EV2, 4 Ey (<1 4 va3) (87)
Eg(—E] +E3V2 )
By — 12 7 88
222 7 (2E3v2, + Er(—1 + v33))(1 + va3) (88)
Es(—E1 + E3v},)
i3s3 = , 89
33 T (2E5v2, + Er(—1 +vy3))(1 + va3) (89)
_ _ EiE3vip
b1122 - b2211 - El — 253\)%2 — E] V23 ) (90)
_ _ EiE3vip
b1133 = b3311 = El — 253‘)%2 — E] V23 ) (9])
b2233 = b3322 = - E3 (E3V%2 + E] VB) (92)
(2E3n12? + Ey (=1 + v93))(1 + va3)
b1212 = G127 (93)
biz13 = Gy, (94)
2B
by = Tovg (95)

we obtain the jump in the displacement at order one

17 _ 0% oo
[u1] =G, b (96)
. 6% (1+v -
R (97)
_ 2 2 _
[a;] __ (E1 E3V12)(2E3V12 +Elj]( 1+ V23))(] + V23) 683 (98)
Eiviz(1+vy3) - E3V%2 +Evas
E1 _ E3V%2 1.1 E] _ E3V%2 u2.27 (99)

and the jump in the stress vector at order one

E _

R R S, 100
[01] E _EV, Ui+ G2ty (100)
+E1G12 + E1E3vyy — E3Gi2V3, 0 Eivia(1+v23) -

E1 _ E3v%2 2,12 El _ E3V%2 33,1y
(101)
_ —E3G12v3, + E1(Gia + E3vya) - ~
o] - 2 e LB 4 Gt (102)
EqEs ~ E3V2 + E1vy3 .
E] _ E3 v%Z 8‘22 Ellz_ E3 V%z g3.2’ (103)
[6;3] = —5?3‘1 - 6'(2]3.2 (104)

4.4. Transverse isotropy (axis 3)

The thin layer is assumed to be transversally isotropic in the
orthogonal direction with respect to the plane of the glue and we
take E; = E,, E3, Vi3, V13 and G;3 to denote the Young’s modulus,
the Poisson’s ratio and the shear modulus, respectively. Using the
following expressions:

E4 (E] — E3V%3)

biii1 = bazza = — (T4 V2 (Es (=1 + v2) + 2E5V2,) (105)
bsass = & (iEi(;]lz)++ggv%3 , (106)
bi122 = b1 = " E (El(lqu-v:)zl;)r 5-3;}%533)\1%3 ' (107)
bi133 = b3311 = E Zf;jgli Evgy’ (108)
b33 = bz = E_ 2?353%:? Evg’ (109)
bina = 5 iE;u , (110)
bi313 = Gis, (111)
bysa3 = G, (112)
we obtain the jump in the displacement at order one
[ﬂ%]:%%*ﬂgp (113)

~13
[t2] =% 55, (114)
] - B e 2B g

+ 4_123“2 (U, +13,). (115)



and the jump in the stress vector at order one

0h] =~ T - i (116)
%gn %@3_17 (117)
(03] = - 2571115‘1)%\)212 s 1 ZEL(;}:;%‘:Z) U35, (118)
g e e (119)
[033] = —0151 — G335 (120)

4.5. Monoclinic symmetry

The thin layer is now assumed to be monoclinic. The jump in
the displacement at order one is given by

[u'] =A"63 + B"Dil°, (121)
where A™ is a 3 x 3-matrix, B™ is a 3 x 6-matrix,

09 = (0%3,09,0%)" and Di’ = (ﬂg‘],ﬂg_z,ﬁ?J,ﬂ?_z,ﬁg_],ﬂg‘z)T.
The non-equal to zero coefficients of A™ (5 coefficients) and B™ (6

coefficients) are given in Appendix. The jump in the stress vector
at order one is given by the relation
[6']es = C"D*i° + D"Da, (122)

where C™ is a 3 x 6-matrix, D™ is a 3 x 4-matrix,
~0 0 0 0 =0 AT
DG3 = (0331,033,,0131,053,) and

20 _ (50 #0500 50 0 T
D" = (U3 19, U7 19, U7 41, U 12, U 1, U3 5)

The non-equal to zero coefficients of C™ (8 coefficients) and D™ (6
coefficients) are given in Appendix.

4.6. Triclinic symmetry

The thin layer is assumed to be fully anisotropic. The jump in
the displacement at order one is given by the relation

[u'] =A™6S + B"Di®, (123)
where A“" is a 3 x 3-matrix, B" is a 3 x 6-matrix,

6? = (6'?376'(2)3’ 623)T and D’ = (a?.vi’?zﬂag,lvﬁg.z’ﬁg.lvag.z)T-
The non-equal to zero coefficients of A** (9 coefficients) and B*" (14
coefficients) are given in Appendix. The jump in the stress vector at
order one is given by the relation
[6']es = C™"D*i° + D" Dé9, (124)
where C*" is a 3 x 7-matrix, D" is a 3 x 6-matriXx,

DG§ = (623,17 623,276(1)3,176'(1)3.27 633.17633.2)T and

20 _ (70 0 50 0 0 0 50 50 AT
DU = (U7 11, U7 125 U7 49, Uy 125 Ug 175 Uz 12, Up 90, U3 12) -

The non-equal to zero coefficients of C*" (13 coefficients) and D**
(6 coefficients) are given in Appendix.

5. Conclusion

In this paper, a method is presented for obtaining interface law
based on a model for a composite consisting of adherents separated
by a thin interphase with a similar stiffness to that of the two adher-
ents. This method is based on two main assumptions: the possible
existence of expansions in series in terms of the interphase thickness
of the displacement vector fields and stress tensor fields, and the
assumption that the minimizations of the energies at each order is
equivalent to the minimization of the energy of the initial three-
dimensional problem. This yields a family of non-local imperfect
interface laws, which define a jump in the displacements and in
the traction vector fields. Several cases of interphase material sym-
metry are studied here, resulting in various types of interface laws.
In future studies, it is proposed to test the validity of these laws by
comparing the results obtained with experimental data, and to
implement them in a computational software program. Shear tests
and the possible use of digital image correlation method for full-field
displacement measurements would allow a validation of the inter-
face laws (Cognard et al., 2008; Nunes, 2010). A first comparison
with results obtained by using the finite element method is per-
formed in Lebon and Ronel (2007).

Appendix A. Coefficients for monoclinic materials
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Appendix B. Coefficients for anisotropic materials
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