Elastic limit of square lattices with three point interactions

Abstract : We derive the equivalent energy of a square lattice that either deforms into the three-dimensional Euclidean space or remains planar. Interactions are not restricted to pairs of points and take into account changes of angles. Under some relationships between the local energies associated with the four vertices of an elementary square, we show that the limit energy can be obtained by mere quasiconvexification of the elementary cell energy and that the limit process does not involve any relaxation at the atomic scale. In this case, it can be said that the Cauchy-Born rule holds true. Our results apply to classical models of mechanical trusses that include torques between adjacent bars and to atomic models.
Type de document :
Article dans une revue
Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2012, 22 (11), pp.10.1142/S0218202512500327. 〈10.1142/S0218202512500327〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00589926
Contributeur : Annie Raoult <>
Soumis le : samedi 11 février 2012 - 18:01:50
Dernière modification le : mardi 10 octobre 2017 - 11:22:04
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 05:01:01

Fichier

SquareLattices2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nicolas Meunier, Olivier Pantz, Annie Raoult. Elastic limit of square lattices with three point interactions. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2012, 22 (11), pp.10.1142/S0218202512500327. 〈10.1142/S0218202512500327〉. 〈hal-00589926v2〉

Partager

Métriques

Consultations de la notice

338

Téléchargements de fichiers

125