
HAL Id: hal-00589734
https://hal.science/hal-00589734

Submitted on 1 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Triangulation for P2P Networked Virtual
Environments

Eliya Buyukkaya, Maha Abdallah

To cite this version:
Eliya Buyukkaya, Maha Abdallah. Efficient Triangulation for P2P Networked Virtual Environments.
Multimedia Tools and Applications, 2009, Special Issue on Massively Multiplayer Online Games
(MTAP-MMO), 45 (1-3), pp.291-312. �10.1007/s11042-009-0301-0�. �hal-00589734�

https://hal.science/hal-00589734
https://hal.archives-ouvertes.fr

Efficient Triangulation for P2P Networked Virtual
Environments

Eliya Buyukkaya and Maha Abdallah

LIP6, University of Paris 6
104, Avenue du President Kennedy

75016 Paris, France

{Eliya.Buyukkaya, Maha.Abdallah }@lip6.fr

Phone +33-1-44.27.87.{47, 93}

Fax +33-1-44.27.70.00

Abstract Peer-to-peer (P2P) architectures have recently become a popular design choice for building

scalable Networked Virtual Environments (NVEs). In P2P-based NVEs, system and data management

is distributed among all participating users. Towards this end, a Delaunay Triangulation can be used to

provide connectivity between the different NVE users depending on their positions in the virtual

world. However, a Delaunay Triangulation clearly suffers from high maintenance cost as it is subject

to high connection change rate due to continuous users' movement. In this paper, we propose a new

triangulation algorithm that provides network connectivity to support P2P NVEs while dramatically

decreasing maintenance overhead by reducing the number of connection changes due to users'

insertion and movement. Performance evaluations show that our solution drastically reduces overlay

maintenance cost in highly dynamic NVEs. More importantly, and beyond its quantitative advantages,

this work questions the well accepted Delaunay Triangulation as a reference means for providing

connectivity in NVEs, and paves the way for more research towards more practical alternatives for

NVE applications.

Keywords Networked Virtual Environments, Peer-to-Peer Systems, Delaunay Triangulation.

1 Introduction

Networked Virtual Environments (NVEs) are 3-D virtual worlds in which a huge number of
participants play roles, and interact with their surroundings and each other through virtual
representations called avatars. Several application areas for NVEs exist, the most popular of which are
Massively Multiplayer Online Games (MMOGs) where hundreds of thousands of concurrent players
are currently reported. This challenges the scalability of currently employed client-server architectures
where the only way to cope with an ever growing user population is to employ more dedicated servers.
Clearly, this solution is extremely expensive to deploy, and its scalability is limited by server capacity
which can become a bottleneck during peak loads.

This has recently led to focusing on peer-to-peer (P2P) architectures as an alternative design
choice for building scalable NVEs. By aggregating and sharing users' resources, P2P architectures
achieve high scalability in a cost-effective manner. In P2P systems, the overall system load is
distributed among all participating users/nodes, which organize themselves into an overlay network in
which they all have an equal role and act as both clients and servers.

A key aspect of P2P networks is the overlay topology structure that defines the way peers
connect to other "neighboring" peers with whom they can interact and exchange messages. The
overlay topology can be arbitrary or, alternatively, can be inspired by some application-specific
semantics. In a typical NVE, a user sees only a portion of the virtual world where she/he can perform
actions (i.e., moving around, manipulating objects, communicating with other users, etc.). This portion
of the virtual world, commonly known as Area of Interest (AOI), is often based on virtual proximity
(i.e., distance in the virtual world) between users. A user is thus only interested in the activities
happening within its AOI. In this context, it is essential to dynamically organize the overlay network
with respect to users' positions in the virtual world by having each user only connect to the set of
neighboring users lying in her/his vicinity, and ensure that a user only receives state update messages
of events happening within its AOI.

Towards this end, the well-known Delaunay Triangulation (DT) [15] in computational
geometry can be used to provide connectivity between NVE users based on virtual proximity. The
Delaunay Triangulation provides nice features that make it particularly attractive for P2P-based NVEs.
In particular, it provides locality by connecting every node the set of neighbors lying in her/his vicinity
in the virtual world, thus enabling direct message exchange between nodes that are susceptible to
interact. This locality feature also achieves scalability by limiting the number of neighbors that a node
is connected to, independently from the size of the network. A global behavior is then achieved
through cooperative local interactions.

The basic geometric property underlying the broad success of Delaunay Triangulation is that
it provides the most overall balanced triangulation by avoiding long thin triangles with very acute
internal angles. This feature is very appealing for a wide range of applications. However, using a
Delaunay Triangulation in a highly dynamic environment, and particularly in the context of P2P-
NVEs, clearly suffers from high maintenance cost as it is subject to high connection change rate
(known as edge-flip operation) due to continuous users' movement [15]. As users tend to move in the
virtual world, the network topology should continuously adapt to users' movements such that the
triangulation is kept valid. Maintenance cost can become particularly high when crowding occurs in
parts of the virtual world, and a highly dynamic interaction with the surrounding takes place.

In the light of the above observation, the following question naturally arises: is Delaunay
Triangulation necessary or simply sufficient for maintaining NVEs connectivity?

In this paper, we argue that Delaunay Triangulation is very restrictive in the context of NVEs.
More precisely, we propose a new triangulation algorithm by slightly relaxing DT’s equiangular
property constraint, while still maintaining a suitable overlay for P2P NVEs. We achieve our goal by
maximizing the region where a user can freely move without generating a flip operation, therefore
reducing the message cost for maintaining a valid overlay. Intuitively, one would expect that this be
obtained at the cost of a higher latency/number of hops required for message delivery. Performance

 1

evaluations under various scenarios show that overall, our triangulation algorithm does not incur
higher latency that DT, while drastically reducing overlay maintenance cost.

Interestingly enough, while our solution induces a slightly higher latency in a very particular
scenario case, it outperforms the classical Delaunay Triangulation in all other scenarios as shown by
our performance evaluations.

The important contribution of this paper is beyond the good performances of our proposed
algorithm. It actually questions the broad consensus on using Delaunay Triangulation for maintaining
connectivity in highly dynamic P2P NVEs, and lays down the basis for further investigations for
alternative solutions specifically tailored for P2P NVEs.

The rest of the paper is organized as follows. Section 2 provides a description of existing
related works. Section 3 recalls the well-known Delaunay Triangulation construct. Section 4 discusses
our triangulation algorithm. Extensive performance evaluations are given in section 5. Section 6
provides a discussion of our solution, while section 7 concludes this work and points outs some of our
future perspectives.

2 Related Works

A number of P2P designs have been recently proposed for scalable NVE support. A key issue
common to all P2P-NVEs is dynamic topology maintenance. This implies that the network should
cope with user movement through neighbor discovery and self-reorganization such that the overlay
topology is kept consistent.

In [1], the authors propose a distributed NVE architecture based on the Pastry distributed
hash table [3] and its corresponding application-layer multicast, Scribe [4]. The game world is
partitioned into fixed-size regions, each managed by a unique coordinator node. The coordinator node
of a region also serves as the root of a multicast tree to which all the peers lying in the region
subscribe. State changes occurring in a region are subsequently multicast by the root node to all the
region members. Coordinator nodes are randomly chosen and connected to each other using Pastry. [2]
follows the same approach except that nodes of a region directly connect to the coordinator node of
their region, thus eliminating message relay through direct connections. However, both works suffer
from performance, scalability, and robustness issues inherent to server-based architectures as the
coordinator can quickly become a bottleneck when crowding occurs.

[7] describes fully-distributed P2P architecture for NVEs. Each node maintains a fixed
number of direct connections to its closest neighboring nodes. Neighbor discovery is however
achieved through regular neighbor-list exchange, which clearly introduces a high message overhead.
[8] is a combination of DHT, unstructured overlay, and neighbor-list exchange. The virtual world is
partitioned into hexagonal cells, each of which is assigned a unique master node present within the
cell. A DHT is used to maintain the hierarchical structure and assign masters to cells. A cell's master
keeps track of all other slave nodes in its cell, and regularly exchanges this list with master nodes of
the neighboring cells. Slave nodes are notified of new neighbors by their master, while other message
exchange is performed directly between the slaves. This scheme might however overload master
nodes, and although neighbor-list exchange is performed only between masters (compared to [7]), its
frequency is still a concern. [5, 6] is another fully-distributed architecture where each node maintains
direct connections to all its AOI neighbors (i.e., all the nodes lying in its AOI). In case of position
change, new neighbors are discovered through mutual cooperation and notification among direct
neighbors. However, the proposed solution might lead to inconsistencies where some neighboring
nodes go undetected.

The work presented in [9, 10] discusses a Voronoi-based partitioning of space in the context
of networked virtual environments. Each node maintains a Voronoi diagram of its AOI neighbors, and
keeps a direct connection to all of them. Neighbor discovery is again achieved by neighbor
cooperation and mutual notification. [12] and [16] are extensions of [9] that add support to data and
state

 2

Fig. 1 (a) Delaunay Triangulation (b) Flip operation resulting from node 4’s movement

(a) Before (b) After

(a) (b)

Fig. 2 Node 0’s flip-free area in (a) Delaunay (b) Triangulation algorithm

management in a fully distributed way. If crowding occurs, however, mechanisms that connect a node
to all its AOI neighbors might lead to situations where almost all nodes become connected to each
other due to overlapping AOIs (neighbor list size in O(N2), where N is the number of nodes in the
system). This leads to obvious scalability problems where computing and bandwidth requirements
exceed nodes' capabilities. To deal with this issue, [13] builds on the work presented in [9] to support
AOI-Scalability. The work proposes to build a spanning tree across all AOI neighbors of a node, thus
reducing bandwidth usage at the cost of a slightly higher latency.

However, none of the previously discussed works effectively deals with the high maintenance
cost associated with the continuous dynamic organization of the overlay. This cost can become
extremely high when crowding occurs, especially when it is associated with highly dynamic
interactions between the nodes. As expected, these situations can be very frequent in NVEs in general
and MMOGs in particular. Given this fact, [14] is, to the best of our knowledge, the first proposal to
deal with the maintenance cost introduced by dynamicity and crowding. The authors describe a
clustering scheme in a Delaunay-based overlay network. Every node in the network monitors its
maintenance cost, and triggers a cluster creation procedure whenever its cost exceeds a given
threshold. A cluster is then considered as a single node for the rest of the graph. Members of the same
cluster then expand their coordinates by stretching their inter-node links. Apart from the cost
associated with cluster creation and maintenance, the proposed mechanism indeed reduces the effect
of density, but still performs all edge-flip operations dictated by the Delaunay Triangulation. This is
exactly the issue tackled by our work. In this respect, our work can be regarded as orthogonal and both
mechanisms can be combined, each bringing its own optimization.

 3

Fig. 3 Flip operation resulting from crossing the base of the triangle during
node 0’s movement towards node 5

(a) Before (b) After

Fig. 4 Flip operation resulting from crossing the base line of the triangle during
node 0’s movement towards node 2

(a) Before (b) After

3 Delaunay Triangulation

The Delaunay Triangulation for a set of vertices A in a 2-D plane is a triangulation DT(A) such that no
vertex of A is inside the circumcircle of any triangle in DT(A) (see Figure 1a) [15]. Note that a
position change of a vertex in A can violate the basic property of DT. Let 0, 2, 1, 4 be vertices in A
and 021 and 042 be triangles in DT(A). If 4 changes position and enters inside the circumcircle of 021,
triangles 021 and 042 violate the Delaunay property. To meet the Delaunay condition, an edge flip
operation is performed by switching the common edge 20 for the common edge 41 resulting in two
valid triangles 041 and 214 (see Figure 1). The gray area in Figure 2a shows the area where node 0 is
allowed to move without triggering any flip operation.

A Delaunay Triangulation thus provides a connected graph of a set of vertices based on their
proximity. Furthermore, the average number of edges per vertex is small and independent of the size
of A (generally less than six). For this reason, the Delaunay Triangulation constitutes an interesting
choice for the structuring of P2P-NVEs. For our purposes, every user (or node) in the virtual world is
represented by a vertex in the Delaunay graph, with user virtual positions (i.e., position in the virtual
world) used as the corresponding vertex coordinates. Two nodes are direct neighbors (i.e., one-hop
neighbors) in the overlay if their corresponding vertices in the Delaunay graph are connected via an
edge. In the following, the terms "user", "node", and "vertex" will be used interchangeably. To
maintain a valid topology in spite of node movements, every node has to inform its direct neighbors of
its position change. This allows discovery of new neighbors through mutual notification where nodes
collaborate to inform each others of new "approaching" nodes, and thus enables dynamic organization
of the overlay through flip operations.

 4

previousNode(t, n)
nextNode(t, n)

n
previousTriangle(t, n) nextTriangle(t, n)

faceTriangle(t, n)

t

faceT

nextT previousT

previousN nextN

faceN
faceNode(faceT, t) n's angle area for t

Fig. 5 A triangle t of n

4 Delaunay Triangulation Revisited

As stated earlier, a position change in Delaunay Triangulation might initiate a flip operation so that
validity is maintained. NVEs are extremely dynamic environments due to continuous user movements.
In order to minimize the maintenance cost resulting from high connection change rate due to user
movements, we want to maximize the area where a node is allowed to move without triggering any
flip operation (hereafter, we call this area a flip-free area). To this end, we modify the flip-free area of
a node N to become the total of the triangular regions around N, i.e., the region composed of all the
triangles for which N is a vertex and a flip operation occurs only when N passes across the base line of
one of its triangles (see Figure 2b).

4.1 Node Movement

In our approach, during the movement of a node N inside the area containing all its triangular regions,
a flip operation occurs only when N passes across the base line of one of its triangles. In Figure 3,
when node 0 moves towards node 5, node 0 passes across the base of triangle 032 and results in
flipping the edge 32 to the edge 05. As a consequence, the movement of node 0 deletes triangles 032
and 523, and creates triangles 035 and 052.

In Figure 4, when node 0 moves towards node 2, node 0 passes across the base line 14 of
triangle 014. As a consequence, the movement of node 0 causes a flip operation between triangles 014
and 043 and creates triangles 013 and 431. This kind of flip operations occurs when the total triangular
region around a node N is not convex. As a result of N's movement, a base of any triangle violating the
convexity property of the total triangular region ends up with a flip operation switching this edge (base
of triangle) with an edge that meets the convexity property. Apart from flip operations occurring while
crossing the base line of a triangle, all other flip operations that might be triggered during a node
movement in classical Delaunay Triangulation are eliminated.

The algorithm ControlTriangleBaseLine checks if a moving node n passes across the
base line of any of its triangles. If so, a flip operation occurs between the couple of related triangles.
Figure 5 shows one of n's triangles, say t, to illustrate the functions used in the algorithm for this
triangle (i.e., the gray area indicates n's angle area for t, nextTriangle(t, n) returns the triangle
nextT, nextNode(t, n) returns the node nextN, and so on). Besides, getFirstTriangle(n) returns
the first triangle of n's triangle list and getTriangleNumber(n) returns the size of n's triangle list.

 5

Algorithm 1 ControlTriangleBaseLine(n)
Input: n : a node which changes position in the virtual world

t ← getFirstTriangle(n)
index ← 0
while index < getTriangleNumber(n)

previousT ← previousTriangle(t, n)
nextT ← nextTriangle(t, n)
faceT ← faceTriangle(t, n)
previousN ← previousNode(t, n)
nextN ← nextNode(t, n)
faceN ← faceNode(faceT, t)
previousN2 ← previousNode(previousT, n)
nextN2 ← nextNode(nextT, n)
if p does not pass across the base line of t then

{ check if there is a flip between t and nextT }
if p passes across the base line of nextT

and nextN2 is inside previousN's angle area for t then
Flip operation occurs between nextT and t
t ← getFirstTriangle(n)
index ← 0

{ check if there is a flip between t and previousT }
else if p passes across the base line of previousT

and previousN2 is inside nextN's angle area for t then
Flip operation occurs between previousT and t
t ← getFirstTriangle(n)
index ← 0

{ switch to the next triangle in n's triangle list }
else

index ← index + 1
t ← previousT

endif
{ check if there is a flip between t and faceT }
else if p is inside faceN's angle area for faceT then

Flip operation occurs between t and faceT
t ← getFirstTriangle(n)
index ← 0

{ switch to the next triangle in n's triangle list }
else

index ← index + 1
t ← previousT

endif
endwhile

end

 6

Fig. 6 Transmission of node 4 join request

0's angle area for triangle 012

1's angle area for triangle 192

New node

Algorithm 2 Insertion(n, p)
Input: n : a node in the virtual world, p : node wants to enter the virtual world

t ← getFirstTriangle(n)
index ← 0
while index < getTriangleNumber(n)

if p is inside t then
n inserts p in the world

else if p is inside n's angle area for t then
previousN ← previousNode(t, n)
nextN ← nextNode(t, n)
closestN ← FindClosestNode(nextN, previousN, p)
Insertion(closestN, p)

else
index ← index + 1
t ← previousTriangle(t, n)

endif
endwhile

end

4.2 Node insertion

For the node insertion algorithm, we define the angle area of a node N for a triangle T as the extended
area of the angle of T having N as a vertex (see Figure 6). A node P that wants to enter to system first
contacts a gate node1, say N. Gate node N first checks if P is inside one of its triangles. If so, N allows
P to enter the system according to the insertion algorithm. If not, N transmits P's entry demand to N's
closest neighbor to P, say K, selected from the triangle for which N's angle area contains P. K
performs in turn the same operation. This operation continues until the entry message reaches the node
allowing node A to enter the system. Figure 6 shows the transmission path of node 4's entry demand
beginning from the gate node 0 up to node 9. Since node 4 is inside node 0's angle area for triangle
012, node 0 transmits 4's entry demand to node 1, the closest among 1 and 2 to 4 in the virtual world.
Similarly, node 1 transmits 4's demand to node 9, which allows node 4 to enter to the system. The
algorithm Insertion allows the new node p to enter the system. The procedure
FindClosestNode(n1, n2, p) returns the closest node to node p between nodes n1 and n2.

1 We assume that there is a set of nodes, called gate nodes, which IP addresses are known by the system. Gate
nodes allow new nodes to join the virtual world.

 7

Fig. 7 Insertion of node 8 resulting in two flip operations with neighbor triangles

(a) Before (b) After

Let T be the triangle inside which the new node P enters. T has three neighbor triangles with

which T has a common edge. When P enters inside T, we also check whether P enters inside the
circumcircle of T's neighbor triangles. If so, a flip operation is performed with the neighbor triangle
inside the circumcircle of which P enters. Figure 7 shows the insertion of node 8. Let node 0 be the
node allowing node 8 to enter the system. Node 0 finds that node 8 enters inside triangle 012. Node 0
also controls if node 8 enters inside the circumcircle of neighbor triangles 041 and 025 and so a flip
operation is performed between triangles 012 and 041. The control with the third neighbor triangle
123 is done by one of 0's neighbors (either node 1 or node 2) of triangle 012. Then the second flip
operation is performed between triangles 012 and 321. The reason behind limiting the control
operation to the circumcircles of the three neighbor triangles is to avoid successive flip operations in
the virtual world (as would have been generated by standard Delaunay). As an example, in Figure 7,
node 8 can also be inside the circumcircle of triangles 163, 146 and 237, meaning that several flip
operations can be performed causing several message transmissions between the nodes.

4.3 Node deletion

A node N that wants to quit the system first starts by decreasing the number of its triangles. To do so,
successive flip operations occur between N's triangles until there is no possible flip operation between
any of its triangles. At this point, two cases are possible: (1) N has three remaining neighbors, or (2) N
has four remaining neighbors. In the following, we examine node deletion in detail, considering both
cases.

In Figure 8a, node 0 wants to quit the system. Triangles 043 and 032 are two adjacent
triangles of 0. Since node 2 is in the angle area of node 4 for triangle 043, the first flip operation
occurs between triangles 043 and 032, and are replaced by triangles 042 and 324 (see Figure 8b).
Figure 8c shows 0's triangles after the second flip operation occurring between triangles 021 and 015.
Since there is no more possible flip operations between 0's triangles (Figure 8c), 0's three remaining
neighbors form a new triangle 254 (Figure 8d). Node 0 deletes all its triangles and quits the world. If,
on the other hand, four neighbors remain for node 0 after performing the successive flip operations
among 0's triangles (which is the only other possible case), 0's four neighbors form two triangles
(Figure 9). Similarly, node 0 deletes all its triangles and quits the world. The algorithm Deletion
gives the details of the deletion of a node.

 8

Fig. 8 Deletion of node 0

 (a) (b) (c) (d)

Fig. 9 Deletion of node 0 having four neighbors

Algorithm 3 Deletion(n)
Input: n : a node in the virtual world

t ← getFirstTriangle(n)
index ← 0
{ All possible flip operations are performed between n's triangle }
while index < getTriangleNumber(n)

previousT ← previousTriangle(t, n)
nextN ← nextNode(t, n)
previousN2 ← previousNode(previousT, n)
if previousN2 is inside nextN's angle area within t then

Flip operation is performed between previousT and t
t ← n's new triangle resulted from the flip operation

else
index ← index + 1
t ← previousT

endif
endwhile

{ n is a node inside a triangle }
if getTriangleNumber(n) is 3 then

n's 3 triangle neighbors form a new triangle
else { n is connected to 4 nodes }

n's 4 triangle neighbors form two new triangles
endif

n removes its triangles
n quits the world

end

 9

 1200 Units

 1
20
0
U
ni
ts

O
bstacle

0 1

2

3

4

5

6

0

Direction

Fig. 10 Random movement of a peer

Fig. 11 Percentage of peers having X triangle neighbors

Delaunay

Peer Average Standard
Deviation

400 5.861 1.304
1300 5.898 1.339

Triangulation

Peer Average Standard
Deviation

400 5.831 1.760
1300 5.868 1.824

Delaunay #Peer = 400
Triangulation #Peer = 400

Delaunay #Peer = 1300
Triangulation #Peer = 1300

0

0,05
0,1

0,15
0,2

0,25
0,3

0 5 10 15
Neighbors

%
 P

ee
rs

5 Experimental Evaluations

In this section, we present the results of our simulation. We compare our Triangulation algorithm with
the classical Delaunay algorithm under four different movement scenarios. Notice that the movement
of a peer concerns two types of actions: (1) informing triangle neighbors about position change, and
(2) performing possible flip operations. Note that the communication cost of a flip operation is higher
than a simple sending of a position change message to a neighbor. This is due to the fact that a flip
operation involves message exchange between at least three peers, where two peers that do not have
information about the existence of each other become connected by the help of a third peer. To
illustrate, consider again Figure 3. The flip operation resulting from node 0’s movement towards node
5 occurs in the following way: while node 0 is moving, it regularly sends a position update to its
neighbors, namely nodes 1, 2, 3 and 4. When node 2 (or node 3) discovers that node 0 has
reached/crossed base line 23, it informs node 0 that a flip operation should occur by sending it a
message containing the identity of node 5 to which node 0 should connect. Consequently, node 0
sends a connection request message to node 5, which includes all the necessary information for node 5
about node 0 (physical and virtual addresses, port number, etc.). Upon receipt of the connection
request, node 5 sends node 0 an (application-layer) acknowledgement message including all the
needed information about node 5. This establishes a new edge between node 0 and node 5.
Consequently, the flip operation would have resulted in three message exchanges, compared to a
simple sending of a position update. Given this communication cost difference, each of these
parameters is evaluated separately.

 10

Fig. 12 Random movement

(a) Number of messages to triangle neighbors (b) Number of flip operations

Triangulation Delaunay

0

6

12

18

24

0 500 1000 1500 2000

M
illi

on
s

Peers

M

es
sa

ge
s

0

0,3

0,6

0,9

1,2

0 500 1000 1500 2000

M
illi

on
s

Peers

Fl

ip
s

5.1 Random movement

In the random movement scenario, peers move randomly in the world. Each peer moves towards a given
direction during a given period of time. If the peer meets any obstacle on its path or if the time period
expires, the direction and the period are reinitialized and the peer continues to move in its new direction.
We consider a two dimensional virtual world of 1200x1200 units. The simulations proceed in over 2000
discrete time-steps. The evaluation is performed with a number of peers varying between 100 and 2200 in
300 increments. Figure 10 shows the example of the random movement of a peer changing 5 times its
direction. Figure 11 represents the percentage of peers having X neighbors. We use the evaluation result
of a system with 400 and 1300 peers connected based on Delaunay algorithm and our triangulation
algorithm (henceforth referred to as Triangulation).

The average number of triangle neighbors is approximately 6 for both algorithms. Note that the
standard variation of this average in Delaunay is lower than the standard variation in our Triangulation.
This means that in Delaunay, the number of neighbors remains closer to the average number than in
Triangulation. While it might seem advantageous, this characteristic of Delaunay however forces peers to
have a strict number of neighbors that they are not allowed to change, which is not the case in
Triangulation. During our evaluation of Triangulation, a flip operation is only performed when a peer
passes across the base line of one of its triangles. However, Triangulation allows also a flip operation to
be performed even if no crossing of a triangle's base line occurs (for instance, when the peer decides to
drop the farthest neighbor). This flexibility allows peers to determine/adapt the number of neighbors to
which they can connect. This property can be very valuable in real systems where peers are
heterogeneous in terms of performance, capacity, energy, etc. Therefore, Triangulation algorithm allows
peers to increase/decrease the number of their neighbors with respect to both their own
conditions/requirements and the system's ones. It is also important to note that the Triangulation topology
becomes more similar to Delaunay topology as the number of neighbors approaches the average.

Figure 12 illustrates the comparison of Delaunay and Triangulation algorithms for the random
movement scenario. Figure 12a shows the total number of position update messages sent by each peer to
its triangle neighbors. The number of position update messages is the same for Delaunay and
Triangulation algorithms. This is clearly due to the fact that even though the standard deviation in the
number of neighbors is different in both algorithms (as seen in Figure 11), the average number of
neighbors is very close; therefore, we obtain similar curves. However, in Figure 12b, we clearly see the
performance difference between the two algorithms in terms of the number of the flip operations
performed during peers' movements. When the number of peers increases, the number of flip operations
increases more rapidly in the system based on Delaunay algorithm. More precisely, the number of flip
operations performed in a Delaunay-based system is 2.65 times more than a Triangulation-based system.

 11

Fig. 13 Percentage of peers receiving a message after X hops

Triangulation Delaunay

(a) radius = 50 (b) radius = 300

(c) radius = 500 (d) radius = 1100

 Average # Hops Standard Deviation
r AOI Delaunay Triangulation Delaunay Triangulation

50 1.077 1.275 0.644 0.807
300 4.637 4.506 1.743 1.719
500 6.997 6.610 2.634 2.475
1100 11.546 10.617 4.694 4.259

(e) Average and standard deviation values for Delaunay and Triangulation algorithms

peerID messageID counter radiusAOI X Y senderID

(f) Structure of a position update message

0

0,05

0,1

0,15

0 4 8 12# Hops

%
 P

ee
rs

0

0,05

0,1

0,15

0,2

0 3 6 9# Hops

%
 P

ee
rs

0

0,2

0,4

0,6

0 1 2 3 4
Hops

%
 P

ee
rs

0

0,02

0,04

0,06

0,08

0 5 10 15 20
Hops

%
 P

ee
rs

 12

In Figure 13, we compare message broadcast cost for Triangulation and Delaunay topologies.
To do so, we assume that each position update message is broadcast not only to its triangle neighbors
but also to all other peers lying inside the peer's area of interest AOI (i.e., the peers for whom the
movement is visible). For simplicity, we define a peer's AOI by a circle whose center point coincides
with the position of the moving peer.

Figure 13f illustrates the structure of a position update message. PeerID is the id of the
moving peer. MessageID is the id of the message. Counter helps with determining the number of
previous hops the message has made before reaching a peer. RadiusAOI is the AOI radius of the
moving peer. X and Y are the coordinates of the moving peer. SenderID is the id of the sender of the
message, which helps with avoiding sending the same message back to its previous sender. Each peer
keeps the last relevant received message from a peer.

When a peer changes its position in the world, it sends to each of its triangle neighbors a
message containing its id, the id of the last sent message augmented by one, the counter value
initialized to 0, the radius of its AOI, its coordinates and again its id as sender. When a peer P receives
a message M [pID | mID | c | r | X | Y | sID], one of the following occurs :

• If P does not have any message with pID, P keeps M and transmits the message by
incrementing c by one, to its triangle neighbors (except to the peer sID) which are inside the
AOI of the peer pID.

• If P has a message M2 [pID | mID2 | …], and

- If mID2 < mID, P replaces M2 par M, and transmits the message, by incrementing c by
one, to its triangle neighbors (except to the peer sID).

- If mID2 ≥ mID, P discards M.

In this evaluation, there are 1000 peers moving randomly in the world of 1200x1200 units
during 2000 time-steps. Figure 13 shows the percentage of peers, inside the moving peer's circle with
radius r, receiving a message after X hops from its originator. Figure 13a shows the evaluation results
when the circle radius is equal to 50 units, meaning that each time a peer changes position in the
world, all peers closer than 50 units to the moving peer receive its position updates.

Figure 13d shows the situation where nearly all peers in the world are informed about each
position change. We see that when the value of the radius is low, meaning that an update message is
only sent to the peers nearby the moving peer, Delaunay overlay provides better performances in terms
of the number of logical hops than Triangulation. This was to be expected given that in Triangulation,
the next hop routing choice is no longer guaranteed to be the closest neighbor to the destination node
in the virtual world. However, the situation is reversed and Triangulation provides better performances
when the radius of the AOI starts to increase (i.e., peers also want to communicate position updates to
distant peers in the world). This is due to the fact that in Triangulation, the probability for connecting
peers that are far away from each other is higher than in Delaunay (where locality guarantees are
stronger). Similarly to long range links in augmented graphs models, these connections play the role of
shortcuts that enable messages to reach their destination much faster than in a more conservative
topology.

As shown in Figure 13e, the algorithm with the lowest average number of hops has also the
lowest standard deviation value, meaning that the difference between the minimum and the maximum
number of hops of the same message received by the peers inside the circle is lower, and most of the
peers inside the circle receive the message after the average number of hops.

 However, the construction of the overlay network based on virtual positions of users in the
virtual world causes topology mismatch between the logical overlay and the underlying physical
network. This means that the number of logical communication hops does not reflect the latency of
the physical network. Therefore, an increased number of hops does not necessarily imply a higher
latency (and vice versa). In order to study the latency of both algorithms under various scenarios, we
analyze the network delay effect on communication cost. To do so, we attribute randomly selected
network latencies with values between 5 and 100 msec. We particularly evaluate the case when the

 13

Fig. 14 Cumulative distribution function of peers receiving a message before X msec

Triangulation Delaunay

(a) radius = 100 (b) radius = 150

(c) radius = 200 (d) radius = 250

0

0,2

0,4

0,6

0,8

1

0 100 200 300
Latency[msec]

C
D

F
of

 P
ee

rs

0

0,2

0,4

0,6

0,8

1

0 100 200 300
Latency[msec]

C
D

F
of

 P
ee

rs
0

0,2

0,4

0,6

0,8

1

0 100 200 300 400
Latency[msec]

C
D

F
of

 P
ee

r

0

0,2

0,4

0,6

0,8

1

0 100 200 300 400
Latency[msec]

C
D

F
of

 P
ee

r

1200 Units

 1
20
0
U
ni
ts

0

r

Circle movement
Peer movement
Circle's radius

Movement area

Fig. 15 Restricted movement of a peer

r

value of the AOI radius is small, for which Delaunay provides better performances than Triangulation
in terms of the number of logical communication hops. Figure 14 shows the cumulative distribution
function of peers receiving a message before X msec when the value of the AOI radius is between 100
and 250 in 50 increments. The performance of Delaunay is slightly better when the radius value is 100
(Figure 14a), nearly equal when the radius is 150 (Figure 14b) and Triangulation provides better
performances when the radius value ≥ 200 (Figure 14c, 14d). Starting at 200, the larger the AOI radius
gets, the more the Triangulation algorithm outperforms Delaunay.

 14

Fig. 16 Number of flip operations in Random and Restricted
movements for different values of r

(a) Delaunay algorithm (#Peer = 1900) (b) Triangulation algorithm (#Peer = 1900)

Radius (r) 10 30 50 70 90 110
#Flip Delaunay / #Flip Triangulation 6.88 3.15 2.75 2.64 2.60 2.61

(c) Comparison of number of flip operations in Delaunay & Triangulation algorithms

0,88

0,93

0,98

1,03

r=1
0

r=3
0

r=5
0

r=7
0

r=9
0

r=1
10

Ran
do

m
M

illi
on

s

Movement Types

Fl

ip
s

0,1

0,2

0,3

0,4

r=1
0

r=3
0

r=5
0

r=7
0

r=9
0

r=1
10

Ran
do

m

M
illi

on
s

Movement Types

Fl

ip
s

Fig. 17 Comparison of algorithms in Random & Restricted movement (r = 10)

Average Ratio
Del. Random / Tri. Random 2.65
Del. Restricted / Tri. Restricted 9.72
Del. Random / Del. Restricted 1.17
Tri. Random / Tri. Restricted 4.33 0

0,4

0,8

1,2

0 500 1000 1500 2000

M
illi

on
s

Peers

Fl

ip
s

Delaunay Random
Delaunay Restricted

Triangulation Random
Triangulation Restricted

5.2 Restricted movement

In the random movement scenario, peers move throughout the world. However, peers have generally a
stronger locality of interest in the nearby regions around them, and consequently perform their
movements inside their local environment. In such local movement scenarios, our algorithm has even
much better performances compared to Delaunay triangulation. In a locally restricted movement
scenario, a peer moves inside a circle centered on the initial position of the peer. With time, the center
position of the circle also moves in the world. In other words, a peer's movement is limited by a circle
around it, and this circle also slightly changes position in the world. Figure 15 shows the example of
the restricted movement of a peer where the movement circle changes also position with time.

 15

Time step

 10000 Units

START FINISH

1 42 3

Fig. 18 Race game

1 42 3

1 32 4

Figure 16 shows the number of flip operations for both Delaunay and Triangulation

algorithms. The evaluation is performed in a world of 1200x1200 units with 1900 peers moving inside
a circle with radius r taking values between 10 and 110 in 20 increments. When the radius decreases,
the number of flip operations also decreases for both algorithms. However, the number of flip
operations in Triangulation is extremely small for small radius restricted movements. Table 16c gives
the ratio of the flip operations in Delaunay algorithm versus in Triangulation algorithm.

Figure 17 compares the two algorithms while incrementing the number of peers in the system
from 100 to 2200 in both random and restricted movements when the radius of the restricted movement is
equal to 10. We see that in random movement, the number of flip operations performed in Delaunay is 2.65
times more than Triangulation. However, in restricted movement, this increases up to 9.72 times more.

5.3 Race game

We also evaluate the performance of our Triangulation algorithm through a simple race game
simulation. In the race game (illustrated in Figure 18), participants are aligned at the beginning at the
"Start" line (i.e., they have the same X coordinate value but different Y coordinate values).
Participants' goal is to reach the "Finish" line by moving horizontally on a 10000 unit-length linear
race (i.e., during the game, the Y coordinates of participants do not change). Each participant has a
speed, a duration value and a speed mode. The speed of a participant indicates how fast he runs. The
duration value determines how long he runs with the same speed. The speed mode, which can be
either positive or negative, determines if the participant speed is either in increase or decrease mode.
If the speed mode is positive, the participant will run with a higher speed during the next duration. At
the beginning of the game, the speed mode of all racers initializes to positive, the speed and the
duration values are initialized to random values respectively between 1 and 6 units/time-steps and
between 5 and 100 time-steps. At each time step, the X coordinates of participants change according to
their speed and their duration value decreases by one. If the duration becomes zero, the duration is
reinitialized to a random value and the racer's speed either increases or decreases by 1 depending on
the racer's speed mode. A positive speed mode becomes negative when the racer's speed reaches the
maximal speed, 6 unit/time-step. Similarly, a negative speed mode becomes positive when the racer's
speed reaches the min speed, 1 unit/time-step.

Figure 19 shows the number of flip operations performed in both algorithms while incrementing
the number of participants from 50 to 1850 in 200 increments. As shown in the table, for a race with 1850
participants, the number of flip operations performed in Delaunay algorithm is 44.91 times more than the
Triangulation algorithm. The important performance difference between the two algorithms comes from
the fact that in Triangulation, a triangle from a previous time-step stays valid most of the times in the next
step since the three points of the triangle change positions towards the same direction (i.e., all participants
move towards the same direction in order to be closer to the Finish line of the game). However, in
Delaunay, a flip operation can also be performed because of the circumcircle property (i.e., no other point
in the circumcircle of a triangle). Thus, a point that is close to a triangle may enter the circumcircle of the
triangle in the next time-step, which generates a flip operation.

 16

Fig. 19 Comparison of both algorithms in a Race game

0

0,3

0,6

0,9

1,2

0 500 1000 1500

M
illi

on
s

Peers

Fl

ip
s

Delaunay
Triangulation

Peer Delaunay /
Triangulation

50 13.57
250 21.72
450 25.76
650 29.76
850 33.44

1050 35.20
1250 38.48
1450 39.20
1650 42.41
1850 44.91

5.4 Second Life

Second Life is a popular online virtual world that enables its user residents to explore a digital
universe and interact via their digital representations called "avatar" [17]. Liang et al. [18] analyze the
traces of user movement in Second Life to examine avatars mobility and behavior. We use the traces
collected by Liang et al. to evaluate our Triangulation algorithm and to compare it with Delaunay. The
virtual world in Second Life is made up of regions, each of which is 256m × 256m. The traces of
avatars moving around within a region are collected during one-day time period. In our evaluations,
we use the avatar traces collected from the Freebies region in the virtual world. Avatar movements are
registered every 10 seconds during 24 hours. Compared to existing virtual world applications, a 10-
second time interval is extremely large for informing nodes about position updates. Therefore, we
divide a 10-second time interval into 500-msec intervals and evaluate nodes' movements for each 500
msec (i.e., Δt = 500 msec). In order to calculate the movement of a node (Δx, Δy) per Δt, we divide the
distance between the node's position at time ti and at time ti+1 (i.e., ti+1 = ti +10sec) by (10sec / Δt), as
follows:

t

tytyy
t

txtxxmt iiii

Δ

−
=Δ

Δ

−
=Δ=Δ ++

sec10
)()(,sec10

)()(sec,500 11

Figure 20 represents the cumulative distribution function of peers having less than X
neighbors in both Delaunay and Triangulation algorithms. Figure 21a shows the total number of
update messages sent by each peer to its triangle neighbors. The number of update messages in the
Triangulation algorithm is slightly higher than that in Delaunay. This is due to the difference in the
number of neighbors in both algorithms (Figure 20). In Figure 21b, we clearly see the performance
difference between the two algorithms in terms of the number of the flip operations.

In Figure 22, we compare the latency of both algorithms with respect to the latency of the
underlying physical network. We attribute randomly selected network link latencies with values
between 5 and 100 msec. An update message of a peer is sent to all other peers lying inside the peer's
AOI. The evaluation is performed for an AOI radius varying between 100 and 250 in 50 increments.
Figure 22 shows that overall, the Triangulation algorithm does not incur higher latency than Delaunay.

 17

TriangulationDelaunay

Fig. 20 Cumulative distribution function of peers having smaller than X triangle neighbors

0

0,3

0,6

0,9

0 5 10 15 20 25 30
#Neighbors

C
D

F
of

 P
ee

r

Fig. 21 Second Life

(a) Number of messages to triangle neighbors (b) Number of flip operations

Triangulation Delaunay

0

4

8

12

0

M
ill

io
ns

One-day period#M
es

sa
ge

s

0

100

200

300

0

Th
ou

sa
nd

s

One-day period

#F
lip

s

5.5 Node insertion

Peers join the world at random positions. We evaluate the cost of peers' entrance procedure according
to both algorithms. Figure 23 shows the number of flip operations generated by peers' entrance to the
virtual world. In our algorithm, the join of a new peer affects at most four neighboring triangles.
Therefore, our triangulation algorithm is more efficient than Delaunay in terms of the number of
messages exchanged for peers' entrance in the system.

 18

Fig. 22 Cumulative distribution function of peers receiving a message before X delays

Triangulation Delaunay

(a) radius = 100 (b) radius = 150

(c) radius = 200 (d) radius = 250

0

0,2

0,4

0,6

0,8

1

0 100 200 300 400
Latency [msec]

C
D

F
of

 P
ee

r

0

0,2

0,4

0,6

0,8

1

0 100 200 300 400

Latency[msec]

C
D

F
of

 P
ee

r

0

0,2

0,4

0,6

0,8

1

0 100 200 300 400
Latency[msec]

C
D

F
of

 P
ee

r

0

0,2

0,4

0,6

0,8

1

0 100 200 300 400
Latency[msec]

C
D

F
of

 P
ee

r

Fig. 23 Number of flip operations during a join procedure

0

2

4

6

8

0 500 1000 1500 2000

Th
ou

sa
nd

s

Peers

Fl

ip
s

Delaunay
Triangulation

 19

6 Discussion

One of the main thoughts that come into one’s mind is that Delaunay Triangulation allows distributed
state management through the use of its corresponding dual structure, i.e., the Voronoi diagram [11].

A Voronoi diagram is mostly useful for distributed object state management, where the
virtual world is partitioned into regions equal to the number of nodes such that each node lies in the
region that contains all the points that are closer to it than to any other node. Simply stated, a Voronoi
diagram defines the region that each node has to manage, while the Delaunay triangulation determines
the neighbors to which the node is to be directly connected. Destroying the Delaunay structure clearly
eliminates the possibility of using Voronoi for state management. Our thoughts on this issue can be
resumed as follows:

While it appears natural that the virtual world decomposition among the peers, which
translates their dynamically changing locality of interest, captures this evolution (as is case in Voronoi
regions), it is not feasible from a performance perspective to couple object state management and
ownership with the continuously evolving nature of the game world. Furthermore, such a scheme
makes objects’ ownerships very hard to determine (if not impossible), jeopardizing the system’s
performances and stability. Therefore, we believe that a good design choice would be to decouple
object ownership for state management from users’ positions in the virtual world (which eliminates
Voronoi as an option). One possibility is to maintain two separate overlays/structures: a user overlay
for connecting users in the game world depending on their virtual position and proximity, and a more
stable structure for managing objects’ ownerships and states.

7 Conclusion

Peer-to-peer (P2P) architectures have recently become a very popular design choice for building
scalable Networked Virtual Environments (NVEs). While the well-known Delaunay Triangulation has
several nice features that make it an interesting choice to provide connectivity between NVE users
based on proximity, it introduces a high topology maintenance cost as it is subject to high connection
change rate due to continuous user movement in the virtual world.

The contribution of this paper is twofold. First, we revisited the Delaunay Triangulation in the
context of NVEs, and proposed a new triangulation algorithm that drastically reduces the overlay
maintenance overhead. This is achieved by maximizing the region where a user can freely move
without generating an edge-flip operation due to users' insertion and movement, therefore reducing the
message cost for maintaining a valid overlay. Our mechanism proves particularly efficient in highly
dynamic environments, and achieves even better performances when crowding occurs in parts of the
virtual world and a highly dynamic interaction with the surrounding takes place. We have evaluated
our mechanism through simulation and shown that it drastically reduces overlay maintenance cost in
such situations, while even reducing the average number of message hops in a wide range of
scenarios.

From the above emerges a more general contribution through which the broad consensus on
using Delaunay for maintaining user connectivity in highly dynamic P2P NVEs is questioned. This
opens the door for more research into alternative solutions designed with P2P NVEs requirements and
constraints in mind.

9 References

[1] Knutsson B, Lu H, Xu W, Hopkins B (2004) Peer-to-peer support for massively multiplayer

games. In: Proc. IEEE INFOCOM, pp 96-107

 20

[2] Iimura T, Hazeyama H, Kadobayashi Y (2004) Zoned federation of game servers: a peer-to-peer

approach to scalable multi-player online games. In: Proc. NetGames, pp 116-120

[3] Druschel P, Rowstron A (2001) Pastry: scalable, distributed object location and routing for large-

scale peer-to-peer systems. In: Proc. of Middleware, pp 329-350

[4] Castro M, Druschel P, Kermarrec A, Rowstron A (2002) SCRIBE: a large-scale and decentralized

application-level multicast infrastructure. IEEE Journal on Selected Areas in Communications

20(8):1489–1499

[5] Keller J, Simon G (2003) Solipsis: a massively multi-participant virtual world. In: Proc. of

PDPTA, pp 262-268

[6] Frey D, Royan J, Piegay R, Kermarrec AM, Anceaume E, Le Fessant F (2008) Solipsis: a

decentralized architecture for virtual environments. In: Proc. MMVE, pp 29-33

[7] Kawahara Y, Morikawa H, Aoyama T (2002) A peer-to-peer message exchange scheme for large

scale networked virtual environments. In: Proc. of IEEE ICCS, pp 957-961

[8] Yu A, Vuong ST (2005) MOPAR: a mobile peer-to-peer overlay architecture for interest

management of massively multiplayer online games. In: Proc. of NOSSDAV, pp 99-104

[9] Hu SY, Liao GM (2004) Scalable peer-to-peer networked virtual environment. In: Proc. of

NetGames, pp 129-133

[10] Hu SY, Chen JF, Chen TH (2006) VON: a scalable peer-to-peer network for virtual

environments. IEEE Network 20(4):22–31

[11] Aurenhammer F (1991) Voronoi diagrams-a survey of a fundamental geometric data structure.

ACM Computing Surveys 23(3):345-405

[12] Buyukkaya E, Abdallah M (2008) Data management in Voronoi-based P2P gaming. In: Proc. of

IEEE CCNC Int. Workshop on Digital Entertainment, Networked Virtual Environments, and Creative

Technology, pp 1050-1053

[13] Jiang JR, Huang YL, Hu SY (2008) Scalable AOI-cast for peer-to-peer networked virtual

environments. In: Proc. of ICDCSW CDS

[14] Varvello M, Biersack E, Diot C (2007) Dynamic clustering in Delaunay-based P2P networked

virtual environments. In: Proc. of NetGames, pp 105-110

[15] de Berg M, van Kreveld M, Overmars M, Schwarzkopf O (1997) Computational geometry,

algorithms and applications. Springer-Verlag

[16] Hu SY, Chang SC, Jiang JR (2008) Voronoi state management for peer-to-peer massively

multiplayer online games. In: Proc. of NIME

[17] http://www.secondlife.com

[18] Liang H, Tay I, Neo MF, Ooi WT, Motani M (2008) Avatar mobility in networked virtual

environments: measurements, analysis, and implications. CoRR

 21

