
HAL Id: hal-00589706
https://hal.science/hal-00589706

Submitted on 30 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The behaviour of Fenchel-Nielsen distance under a
change of pants decomposition

Athanase Papadopoulos, Lixin Liu, Daniele Alessandrini, Weixu Su

To cite this version:
Athanase Papadopoulos, Lixin Liu, Daniele Alessandrini, Weixu Su. The behaviour of Fenchel-Nielsen
distance under a change of pants decomposition. Communications in Analysis and Geometry, 2012,
20 (2), p. 369-395. �10.4310/CAG.2012.v20.n2.a6�. �hal-00589706�

https://hal.science/hal-00589706
https://hal.archives-ouvertes.fr


THE BEHAVIOUR OF FENCHEL-NIELSEN DISTANCE UNDER

A CHANGE OF PANTS DECOMPOSITION

D. ALESSANDRINI, L. LIU, A. PAPADOPOULOS, AND W. SU

Abstract. Given a topological orientable surface of finite or infinite type
equipped with a pair of pants decomposition P and given a base complex
structure X on S, there is an associated deformation space of complex struc-
tures on S, which we call the Fenchel-Nielsen Teichmüller space associated to
the pair (P, X). This space carries a metric, which we call the Fenchel-Nielsen
metric, defined using Fenchel-Nielsen coordinates. We studied this metric in

the papers [1], [2] and [3], and we compared it to the classical Teichmüller met-
ric (defined using quasi-conformal mappings) and to another metric, namely,
the length spectrum, defined using ratios of hyperbolic lengths of simple closed
curves metric. In the present paper, we show that under a change of pair of
pants decomposition, the identity map between the corresponding Fenchel-
Nielsen metrics is not necessarily bi-Lipschitz. The results complement results
obtained in the previous papers and they show that these previous results are
optimal.

AMS Mathematics Subject Classification: 32G15 ; 30F30 ; 30F60.

Keywords: Teichmüller space, Fenchel-Nielsen coordinates, Fenchel-Nielsen metric.

L. Liu and W. Su are partially supported by NSFC grant No. 10871211.

Contents

1. Introduction 1
2. The Fenchel-Nielsen metric 3
3. The effect of an elementary move on the torus with one hole 5
4. The effect of an elementary move on the sphere with four holes 8
5. Comparing Fenchel-Nielsen distances 12
6. General surfaces 13
References 17

1. Introduction

This paper is in the lineage of the papers [1], [2], [3] and [6], in which we studied
and compared various metrics on Teichmüller spaces of surfaces of finite or of infinite
topological type. The first important thing to know in that respect is that some
definitions that are equivalent to each other in the Teichmüller theory of surfaces
of finite type are no more equivalent in the setting of surfaces of infinite type.
Indeed, there are Teichmüller spaces that are associated to a surface of infinite
type that are distinct (in the set-theoretic sense) and that would be equal if the
same definitions were made in the case of a surface of finite type. Furtermore,
each such space associated to a surface of finite or of infinite type carries a natural
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distance function, and it is an interesting problem to study the relations between
the various spaces, their distance functions and their topologies.

It is necessary to have different names to the various spaces that arise, and we
briefly recall the terminology.

We use the name quasi-conformal Teichmüller space for the “classical” Te-
ichmüller space defined using quasi-conformal mappings and equipped with its
Teichmüller metric.

In the paper [1], we introduced the Fenchel-Nielsen Teichmüller space, a certain
space of equivalence classes of complex structures on a surface, equipped with a
distance, called the Fenchel-Nielsen distance, defined using Fenchel-Nielsen coor-
dinates. This Teichmüller space and its metric depend on the choice of a pair of
pants decomposition of the surface. The Fenchel-Nielsen Teichmüller space was a
fundamental tool in our work, because it has explicit coordinates and an explicit
distance function, and we used it in the other papers mentioned to describe and
understand the other Teichmüller spaces. One of the results obtained was that
if the lengths of all the boundary curves of the pair of pants decomposition are
bounded above by a uniform constant then there is a set-theoretic equality between
the Fenchel-Nielsen Teichmüller space and the quasiconformal Teichmüller space.
Furthermore, the identity map between the two Teichmüller spaces, equipped with
their respective metrics, is a locally bi-Lipschitz homeomorphism. This gives an
explicit description of the global topology and the local metric properties of the
quasiconformal Teichmüller space.

In the paper [3], we obtained similar local comparison results between the Fenchel-
Nielsen Teichmüller space and the so-called length spectrum Teichmüller space, an-
other deformation space of complex structures, whose definition and metric are
based on the comparison of lengths of simple closed curves between surfaces.

In the cases of surfaces of finite type, the various Teichmüller spaces coincide
set-theretically, but there are still interesting questions on the local and global
comparison of the metrics that are defined on these spaces.

In the present paper, we prove that under a change of the pair of pants decom-
position, the identity map between the corresponding Fenchel-Nielsen Teichmüller
spaces is not bi-Lipschitz in general. This result holds for surfaces of finite and
for those of infinite type. We first prove this result in the case where the surface
is a torus with one hole or a sphere with four holes. In this case, the two pair of
pants decompositions are obtained from each other by a single elementary move.
The proof is based on explicit computations that use formulae obtained by Okai in
[8]. We then deduce an analogous result for arbitrary surfaces of finite or of infinite
type.

To state the theorems precisely, we now introduce some minimal amount of
notation. We refer the reader to Section 2 for more details.

If X0 is a surface equipped with a complex structure, we denote by Tqc(X0)
the quasi-conformal Teichmüller space of X0, equipped with the quasi-conformal
distance dqc, and by TFN,P(X0) the Fenchel-Nielsen Teichmüller space of X0 with
reference to the pair of pants decomposition P, equipped with its associated Fenchel-
Nielsen distance dFN,P.

In Section 6 we prove the following:

Theorem 1.1. Let S be an orientable surface which is either of finite topological
type of negative Euler characteristic and which is not a pair of pants, or of infinite
topological type. Let P be a pair of pants decomposition of S. Then we have the
following:

(1) There exists another pair of pants decomposition P
′ such that for every base

complex structure X0 on S we have TFN,P(X0) = TFN,P′(X0) as sets, but
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the identity map between the two spaces equipped with their Fenchel-Nielsen
distances dFN,P and dFN,P′ respectively is not Lipschitz.

(2) For every base complex structureX0 on S, consider the space T = Tqc(X0)∩
TFN,P(X0). Then the identity map from (T, dFN,P) to (T, dqc) is not Lip-
schitz.

(3) If S is of infinite topological type, there exists a base complex structure X0

on S and another pair of pants decomposition P
′ such that if T is the space

Tqc(X0)∩TFN,P(X0), then the identity map from (T, dFN,P) to (T, dFN,P′)
is not continuous.

(4) If S is of infinite topological type, there exists a base complex structure X0

on S such that if T is the space Tqc(X0) ∩ TFN,P(X0), then the identity
map from (T, dFN,P) to (T, dqc) is not continuous.

From this result, we can see that the local comparison results we obtained in
the papers [1] and [3] are optimal in the sense that they cannot be extended to
global comparison results, since the global metric geometry of the Fenchel-Nielsen
distance depends on the choice of the pair of pants decomposition.

2. The Fenchel-Nielsen metric

In this section, we recall a few facts from our previous papers, which will help
making the present paper self-contained.

Let S be an orientable connected surface of finite or of infinite topological type,
that can have punctures and/or compact boundary components. The complex
structures that we consider on S are such that each boundary component has a
regular neighborhood that is bi-holomorphically equivalent to a bounded cylinder
and each puncture has a neighborhood that is bi-holomorphically equivalent to a
punctured disc.

We start by reviewing the definition of the Fenchel-Nielsen metric on the Te-
ichmüller space T(S) of S. The definition depends on the choice of a pair of pants
decomposition of S.

A pair of pants decomposition P = {Ci i = 1, 2, . . .} of S is a decomposition
into generalized pairs of pants glued along their boundary components, where a
generalized pair of pants is a sphere with three holes, a hole being either a point
removed (leaving a puncture on the pair of pants) or an open disc removed (leaving
a boundary component on the pair of pants). The curves Ci in the above definition
are the closed curves on S (including the boundary components) that define the
decomposition. It is well-known that every surface of finite topological type with
negative Euler characteristic admits a pair of pants decomposition. It also follows
from the classification of surfaces of infinite type that every such surface admits a
pair of pants decomposition [1].

To every complex structure on S we can associate a hyperbolic metric, called
the intrinsic metric, which was defined by Bers in [4]. This metric is conformally
equivalent to the given complex structure, and every boundary curve is a geodesic
for that metric. The definition of the intrinsic metric is recalled in [1]. In the sequel,
when we talk about geometric objects (geodesics, length, angles, etc.) associated to
a complex structure on S, it is understood that these are associated to the intrinsic
metric on S. A pair of pants decomposition P = {Ci} of the surface S equipped
with its intrinsic metric is said to be geodesic if each Ci is a geodesic closed curve in
S with respect to this metric. In [1] we proved that every topological pair of pants
decomposition of S is homotopic to a unique geodesic pair of pants decomposition.
(Note that this is not true for general hyperbolic metrics on S. For example, the
Poincaré metric of S may not satisfy this property if this metric is different from
the intrinsic metric, and this may happen; we discussed this fact in [1].)
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Given a closed curve C on the surface S, we make the convention that we shall
call also C the unique geodesic representative of this closed curve with reference to
the intrinsic metric.

Given a complex structure X on S and a geodesic pair of pants decomposition
P = {Ci} of this surface, then for any closed geodesic Ci ∈ P there is a well-
defined length parameter lX(Ci), which is the length of this closed geodesic, and
a twist parameter τX(Ci), which is defined only if Ci is not the homotopy class
of a boundary component of S. The quantity τX(Ci) is a measure of the relative
twist amount along the geodesic Ci between the two generalized hyperbolic pair of
pants (which might be the same) having this geodesic in common. In this paper,
the value τX(Ci) is a signed distance-parameter, that is, it represents an amount of
twisting in terms of a distance measured along the curve, as opposed to an angle of
twisting parameter (whose absolute value would vary by 2π after a complete Dehn
twist).

For any complex structure X on S, its Fenchel-Nielsen parameter relative to P

is a collection of pairs

((lX(Ci), τX(Ci)))i=1,2,...

where it is understood that if Ci is a boundary geodesic, then it has no associated
twist parameter, and instead of a pair (lX(Ci), τX(Ci)), we have a single parameter
lX(Ci).

Given two complex structures X and X ′ on S, their Fenchel-Nielsen distance
(with respect to P) is defined as

(1) dFN (X,X ′) = sup
i=1,2,...

max

(
∣

∣

∣

∣

log
lX(Ci)

lX′(Ci)

∣

∣

∣

∣

, |τX(Ci)− τX′(Ci)|

)

,

again with the convention that if Ci is a boundary component of S and therefore
has no associated twist parameter, we consider only the first factor.

If S is a surface of finite topological type, then dFN (X,X ′) is always finite, and
the function dFN defines a distance on the Teichmüller space of S, which we will
denote simply by T(S). If, instead, S is of infinite topological type, dFN (X,X ′)
can assume the value infinity. In this case we fix a base complex structure X0 on S,
and we define the Fenchel-Nielsen Teichmüller space of X0 as the set of homotopy
classes of complex structures X on S such that dFN (X0, X) is finite. We denote
this space by TFN(X0). The function dFN is a distance function in the usual sense
on this space, and it makes it isometric to the sequence space ℓ∞.

When it is important to stress on the dependence on a given pair of pants decom-
position P, we shall denote the Teichmüller space by TFN,P(X0) (this dependence
of the space on P may happen only for surfaces of infinite type), and the Fenchel-
Nielsen distance by dFN,P (the distance function depends on P also for a surface of
finite type).

If a pair of pants decomposition P is obtained from another pair of pants de-
composition P

′ by a finite number of elementary moves (represented in Figures
1 and 2 below), then for any basepoint X0 we have the set-theoretic equality
TFN,P(X0) = TFN,P′(X0).

In the last section of this paper we will prove that for every surface S, there exist
two pair of pants decompositions P,P′ such that for every base complex structure
X0, the Fenchel-Nielsen Teichmüller spaces are the same (that is, we have a set-
theoretical equality TFN,P(X0) = TFN,P′(X0)), but the identity map between the
two spaces is not Lipschitz with reference to the two Fenchel-Nielsen distances
dFN,P and dFN,P′ .
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3. The effect of an elementary move on the torus with one hole

In this section, the surface S = S1,1 is a torus with one hole, where the hole can
be either a boundary component or a puncture. A pair of pants decomposition of
S is determined by a unique simple closed curve on S which is not homotopic to a
point or to the hole.

We consider two distinct pair of pants decomposition {α} and {α′} of S defined
by two essential simple closed curves α and α′ satisfying i(α, α′) = 1, as represented
in Figure 1.

Figure 1. The two curves α and α′ intersect at one point. An ele-

mentary move replaces one of these curves by the other one.

LetX be a complex structure on S, equipped with its intrinsic hyperbolic metric.
At the hole, X can have geodesic boundary, and in this case we denote by l0 its
length, or it can have a cusp, and in this case we write l0 = 0. We denote by (l, τ)
the length and twist parameters of the curve α, for the decomposition {α}, and
by (l′, τ ′) the length and twist parameters of the curve α′, for the decomposition
{α′}. We need a formula relating these values. This was done by Okai ([8]) in the
case where the hole is a boundary component, but we also need similar formulae
for the case of a cusp. In the following proposition we obtain this with a continuity
argument. In these formulae, the case where l0 = 0 means that at the hole the
surface has a cusp.

Proposition 3.1. With the above notation we have, for all l0 ≥ 0,

cosh(l′/2) = sinh−1(l/2) cosh(τ/2)

(

cosh(l) + cosh(l0/2)

2

)1/2

cosh(τ ′/2) = cosh(l/2)
{

cosh2(τ/2)(cosh(l) + cosh(l0/2))− 2 sinh2(l/2)
}1/2

{

cosh2(τ/2)(cosh2(l/2) + cosh2(l0/2)) + sinh2(l/2) cosh(l0/2)
}1/2

.

Proof. When l0 > 0, these formulae are proved in [8]. To see that they also hold
when l0 = 0 (the case of a cusp) we use the shear coordinates relative to an ideal
triangulation. We recall that in the case of a torus with one hole equipped with a
complex structure (and the corresponding intrinsic metric), an ideal triangulation
has three edges, say a, b, c, and associated to every edge there is a real number,
called the shear parameter. Thus, we have three numbers, sa, sb, sc. The boundary
length l0 can be read from the shear coordinates: l0 = |sa + sb + sc| (see [10, Prop.
3.4.21]), and the cusp corresponds to the case where sa + sb + sc = 0. Here we
need the property that the parameters l, |τ |, l′, |τ ′| can also be written as continuous
functions of the shear coordinates. To see this one can show that for every element γ
of the fundamental group of the surface, the coefficients of the matrix corresponding
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to γ in the holonomy representation can be written as continuous functions of the
shear coordinates. The length of the corresponding closed geodesic in the surface
is a continuous function of the trace of this matrix, hence all simple closed curve
lengths are continuous functions of the shear coordinates. For the twist parameters,
we note that their absolute values can be written as a continuous function of the
lengths of some simple closed curves.

To show that the above formulae are valid for l0 = 0, we just need to note that
both the left hand side and the right hand side of the equations are continuous
functions of the shear coordinates. It is known that shear coordinates extend to
the case of surfaces with cusps (see [10, Chapter 3]), see also [9]). Then as these
functions are equal when l0 > 0, i.e. when sa + sb + sc 6= 0, and as this subset is
dense in the space of shear coordinates, these functions are equal everywhere, that
is, including the case where l0 = 0. �

For simplicity, we choose a complex structure X on the torus with one hole
such that its intrinsic metric has the property that the two closed geodesics in the
homotopy classes of α and α′ meet perpendicularly. To see that such a choice is
possible, we can start with an arbitrary complex structure on S (equipped with its
intrinsic metric) and we cut this surface along the closed geodesic α; in this way α′

is cut into an essential geodesic arc, which is homotopic to a unique geodesic arc β
that is perpendicular to the two boundary components of Y \ {α} that arise from
cutting the surface along α. Then we glue back the two components in such a way
that in the resulting surface the two endpoints of β match. We obtain a complex
structure with the desired property. Such a complex structure corresponds to the
case τ = 0 in the notation of Okai [8].

Performing a Fenchel-Nielsen twist of magnitude t along α, we obtain from X a
new complex structure Xt that has Fenchel-Nielsen coordinates denoted by (l, τt)
in the coordinate system associated to {α} and (l′t, τ

′
t) in the coordinate system

associated to {α′}. The coordinates of the complex structure X that we have
chosen are (l, 0) and (l′, 0) in the bases {α} and {α′} respectively.

Since Xt is obtained by a time-t twist along the curve α, we have τt = t for all t.
We need to estimate l′t and τ ′t .
By the formula for length in Proposition 3.1, we have

cosh(l′/2) = sinh−1(l/2)

(

cosh(l) + cosh(l0/2)

2

)1/2

and

cosh(l′t/2) = sinh−1(l/2) cosh(t/2)

(

cosh(l) + cosh(l0/2)

2

)1/2

.

Thus, we have

cosh(t/2) =
cosh(l′t/2)

cosh(l′/2)
=

el
′

t/2−l′/2 + e−l′t/2−l′/2

1 + e−l′
.

Using the fact that x ≤ ex, we obtain

0 ≤ l′t/2− l′/2 ≤ el
′

t/2−l′/2 ≤ cosh(t/2)(1 + e−l′)

which implies

0 < l′t/2 ≤ l′/2 + cosh(t/2)(1 + e−l′).
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As a result, and using l′t ≥ l′ (which follows from our hypothesis that α and α′

meet perpendicularly for t = 0), we have

0 ≤ log
l′t
l′

≤ log
l′/2 + cosh(t/2)(1 + e−l′)

l′/2

= log

(

1 +
2 cosh(t/2)(1 + e−l′)

l′

)

≤
2 cosh(t/2)(1 + e−l′)

l′
.

Now we estimate the twist parameter, using the formula for the twist in Propo-
sition 3.1. For the purpose of the computations, we use the following notation:

A = cosh2(l/2)
(

cosh2(t/2) (cosh(l) + cosh(l0/2))− 2 sinh2(l/2)
)

and

B = cosh2(t/2)
(

cosh2(l/2) + cosh(l0/2)
)

+ sinh2(l/2) cosh(l0/2).

The quantities A and B are functions of t and l, and we have

cosh2(τ ′t/2) =
A

B
.

We shall focus on the case where l is small and t, l0 are bounded.
Consider the second order expansions near l = 0.

cosh2(l/2) = 1 + l2/4 +O(l4),

cosh(l) = 1 + l2/2 +O(l4),

sinh2(l/2) = l2/4 +O(l4).

Then we have

A =
(

1 + l2/4 +O(l4)
)

×

×
((

cosh2(t/2)
(

1 + l2/2 +O(l4) + cosh(l0/2)
)

−
(

l2/4 +O(l4)
)))

= cosh2(t/2) (1 + cosh(l0/2))

+
(

3 cosh2(t/2)− 2 + cosh2(t/2) cosh(l0/2)
) l2

4
+O(l4)

and

B = cosh2(t/2)
(

1 + l2/4 +O(l4) + cosh(l0/2)
)

+
(

l2/4 +O(l4)
)

cosh(l0/2)

= cosh2(t/2) (1 + cosh(l0/2)) +
(

cosh2(t/2) + cosh(l0/2)
) l2

4
+O(l4).

This gives

A−B =
(

2 cosh2(t/2)− 2 + cosh2(t/2) cosh(l0/2)− cosh(l0/2)
) l2

4
+O(l4)

=
1

4
(2 + cosh(l0/2)) sinh

2(t/2)l2 +O(l4).

Note that the term O(l4) in the previous formula depends on l0 and |t| only via
continuous functions of l0, |t|. In particular, there exists an ǫ > 0 such that for l < ǫ
we have

A−B ≤ Cl2

where C is a constant that depends only on ǫ and the upper bound of l0, |t|.
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Note that A ≥ B > 1. From this and the properties of the logarithm function
we obtain

log cosh2(τ ′t/2) = log
A

B
= logA− logB ≤ A−B.

Thus, we have
log cosh2(τ ′t/2) ≤ Cl2.

From the continuity of the cosh function, if |τ ′t | is bounded, then there is a con-
stantK that depends only on the upper bound for |τ ′t | such that |τ ′t | ≤ K log cosh(τ ′t/2).
Therefore,

|τ ′t | ≤ Ml

where M is a constant that depends only on the upper bound of l, l0, |t|.
We record the above results for the length and twist parameters in the following

proposition.

Proposition 3.2. Let X be a complex structure on S1,1 with the following proper-
ties:

(1) X has either geodesic boundary of length l0, or a cusp (and in the latter
case we write l0 = 0);

(2) there exist a pair of perpendicular simple closed geodesics α, α′ on X with
i(α, α′) = 1.

Let Xt be the complex structure obtained from X by performing a Fenchel-Nielsen
twist of magnitude t along α. Let (l, τt) and (l′t, τ

′
t) be the Fenchel-Nielsen coor-

dinates of Xt in the coordinate systems associated to {α} and {α′} respectively.
(Note that l′0 = l′.)

Assume l0 and |t| are bounded above by some constant L > 0. Then there exist
constants M and ǫ0 > 0, both depending only on L, such that for all l ≤ ǫ0, we
have

(2) log
l′t
l′

≤
2 cosh(t/2)(1 + e−l′)

l′
≤

4 cosh(t/2)

| log l|

and
|τ ′t | ≤ Ml.

Note that the second inequality in (2) follows from one version of the Collar
Lemma, which says that there exists ǫ > 0 such that for l ≤ ǫ0, we have l

′ ≥ | log l|.

4. The effect of an elementary move on the sphere with four holes

In this section, the surface S = S0,4 is the sphere with four holes, where each
hole can be either a boundary component or a cusp. We equip S with two pair
of pants decompositions {α}, {α′}, defined by two essential simple closed geodesics
satisfying i(α, α′) = 2.

Let X be a complex structure on S equipped with its intrinsic metric. Near
each of the four holes, X can have a geodesic boundary, or a cusp. We denote by
l1, l2, l3, l4 the lengths of the boundary components (as before with the convention
that li is zero if the corresponding hole is a cusp); see Figure 2. We denote by l, τ
the length and twist parameter respectively of the curve α, for the decomposition
{α}, and by l′, τ ′ the length and twist parameter respectively of the curve α′, for
the decomposition {α′}. We need a formula relating these values. Like in the case
of the torus with one hole, Okai wrote such formulae in [8] in the case where all the
holes are boundary components, and we need to see that the formulae also hold in
the case where some of the holes are cusps. In the following proposition we deduce
this by a continuity argument, as we did in the previous section for the case of the
one-holed torus.
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Proposition 4.1. With the above notation we have

cosh(l′/2) = sinh−2(l/2){cosh(l1/2) cosh(l2/2) + cosh(l3/2) cosh(l4/2)

+ cosh(l/2) [cosh(l1/2) cosh(l3/2) + cosh(l2/2) cosh(l4/2)] + cosh(τ)[cosh2(l/2)

+2 cosh(l1/2) cosh(l4/2) cosh(l/2) + cosh2(l1/2) + cosh2(l4/2)− 1]1/2[cosh2(l/2)

+2 cosh(l2/2) cosh(l3/2) cosh(l/2) + cosh2(l2/2) + cosh2(l3/2)− 1]1/2}

and

cosh(τ ′) = {cosh2(l1/2) + cosh2(l2/2) + 2 cosh(l1/2) cosh(l2/2) cosh(l
′/2)

+ sinh2(l′/2)}−1/2{cosh2(l3/2) + cosh2(l4/2) + 2 cosh(l3/2) cosh(l4/2) cosh(l
′/2)

+ sinh2(l′/2)}−1/2{sinh2(l′/2) cosh(l/2)−cosh(l1/2) cosh(l4/2)−cosh(l2/2) cosh(l3/2)

− cosh(l′/2)[cosh(l1/2) cosh(l3/2) + cosh(l2/2) cosh(l4/2)]}

Proof. When all the boundary lengths are positive (l1, l2, l3, l4 > 0) these formulae
are proved in [8]. To see that they also hold when some li is zero, we proceed as in
the proof of Proposition 3.1. We fix an ideal triangulation, now having 6 edges, so
we have 6 shear coordinates. For i = 1 . . . 4 the length li can be expressed as the
absolute value of the sum of the shear coordinates relative to the edges adjacent
to the hole involved (see [10, Prop. 3.4.21]), and the cusp corresponds to the case
where this sum is zero. With exactly the same argument as in Proposition 3.1 we
can see that the parameters l, |τ |, l′, |τ ′| can be written as continuous functions of
the shear coordinates. Hence both the left hand side and the right hand side of
the equations are continuous functions of the shear coordinates. As these functions
are equal when l1, l2, l3, l4 > 0, and as this subset is dense in the space of shear
coordinates, the functions are equal everywhere, including on the set where the
values li are zero. �

Like in the case of the torus with one hole, we choose X such that α and α′

intersect perpendicularly, in order to simplify the computations. Performing a
Fenchel-Nielsen twist of magnitude t along α, we obtain from X a new complex
structure Xt and we denote its Fenchel-Nielsen coordinates (l, τt) in the coordinate
system associated to {α} and (l′t, τ

′
t) in the coordinate system associated to {α′}.

As before we have τt = t. Then we also have the following proposition.

l1

α′

α

l2 l3

l4

Figure 2. An elementary move on the sphere with four holes replaces

one of the interior curves drawn by the other one.

Proposition 4.2. Let X be a complex structure on S0,4 with the following proper-
ties:
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(1) every hole of X is a geodesic boundary component or a cusp, with lengths
denoted by l1, l2, l3, l4 (with the convention that li is zero if the corresponding
hole is a cusp);

(2) there exist a pair of perpendicular simple closed geodesics α, α′ on X with
i(α, α′) = 2.

Let Xt be the complex structure obtained from X by performing a Fenchel-Nielsen
twist of magnitude t along α. Let (l, τt) and (l′t, τ

′
t) be the Fenchel-Nielsen coor-

dinates of Xt in the coordinate systems associated to {α} and {α′} respectively.
(Note that l′0 = l′.)

Then, if l1, l2, l3, l4 and |t| are bounded from above by some constant L, there
exist constants K,M, ǫ0 > 0, all of them depending only on L, such that for l ≤ ǫ0
we have

(3) log
l′t
l′

≤
K(1 + e−l′)

l′
≤

2K

| log l|
.

and

|τ ′t | ≤ Ml.

Proof. We note as in the case studied before that the second inequality in (3) follows
from the Collar Lemma.

To prove the proposition, we use the formulae in Proposition 4.1. Setting

A = cosh(l1/2) cosh(l2/2) + cosh(l3/2) cosh(l4/2)

+ cosh(l/2) [cosh(l1/2) cosh(l3/2) + cosh(l2/2) cosh(l4/2)]

and

B = [cosh2(l/2)+2 cosh(l1/2) cosh(l4/2) cosh(l/2)+cosh2(l1/2)+cosh2(l4/2)−1]1/2

[cosh2(l/2) + 2 cosh(l2/2) cosh(l3/2) cosh(l/2) + cosh2(l2/2) + cosh2(l3/2)− 1]1/2,

the formula for the length parameter l′ becomes

cosh(l′t/2) = sinh−2(l/2) (A+ cosh(t)B) .

For t = 0, this formula becomes

cosh(l′/2) = sinh−2(l/2) (A+B) .

Thus, we have
cosh(l′t/2)

cosh(l′/2)
=

(A+ cosh(t)B)

(A+B)
≤ K,

where K is a constant that depends only on L. Using the same estimates as in
Section 3, we obtain

log
l′t
l′

≤
2K(1 + e−l′)

l′
.

Now we estimate the twist τ ′t . We assume that the twist is positive, to avoid
taking absolute values. The formula in Proposition 4.1 gives

(4) cosh(τ ′t) =
E

F
,

where

E = sinh2(l′t/2) cosh(l/2)− cosh(l1/2) cosh(l4/2)− cosh(l2/2) cosh(l3/2)

− cosh(l′t/2)[cosh(l1/2) cosh(l3/2) + cosh(l2/2) cosh(l4/2)]
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F = {cosh2(l1/2)+cosh2(l2/2)+2 cosh(l1/2) cosh(l2/2) cosh(l
′
t/2)+sinh2(l′t/2)}

1/2

{cosh2(l3/2) + cosh2(l4/2) + 2 cosh(l3/2) cosh(l4/2) cosh(l
′
t/2) + sinh2(l′t/2)}

1/2.

Note that E > F for all t 6= 0. Let E1 = E/ sinh2(l′t/2), and F1 = F/ sinh2(l′t/2).
As l → 0, we have l′ → ∞, and E1, F1 → 1. As a result, we can assume that l

is sufficiently small, so that E1 and F1 are not less than 1/2. Then

log cosh(τ ′t) = log
E

F
= log

E1

F1

≤ 2(E1 − F1).

(We used the fact that log x− log y ≤ 2(x− y) for 1
2
≤ x ≤ y.)

Now we need to estimate E1 − F1. To do this, note that by the first formula of
Proposition 3.1, we have

cosh(l′t/2) ≥ 8 sinh−2(l/2).

Using the fact that sinh2(x) = cosh2(x) − 1 we conclude that if l is small, there
exists a constant C depending only on ǫ0 such that

sinh(l′t/2) ≥
C

l2
.

First we estimate E1 − cosh(l/2):

|E1 − cosh(l/2)| = |
− cosh(l1/2) cosh(l4/2)− cosh(l2/2) cosh(l3/2)

sinh2(l′t/2)

−
cosh(l′t/2)[cosh(l1/2) cosh(l3/2) + cosh(l2/2) cosh(l4/2)]

sinh2(l′t/2)
| ≤ Hl2

where H is a constant depending only on L and ǫ0.
Then we estimate F1 − 1:

|F1 − 1| = |{1 +
cosh2(l1/2) + cosh2(l2/2) + 2 cosh(l1/2) cosh(l2/2) cosh(l

′
t/2)

sinh2(l′t/2)
}1/2

{1 +
cosh2(l3/2) + cosh2(l4/2) + 2 cosh(l3/2) cosh(l4/2) cosh(l

′
t/2)

sinh2(l′t/2)
}1/2 − 1|

= |(1 +Rl2 +O(l4))(1 +Rl2 +O(l4))− 1| ≤ 2Sl2

where R and S are constants depending only on L and ǫ0.
Then, finally:

|E1 − F1| ≤ |E1 − cosh(l/2)|+ |F1 − 1|+ | cosh(l/2)− 1|

≤ Hl2 + SL2 +
l2

2
+ 0(l4).

Now if |τ ′t | is small, then there is a constant K such that (τ ′t)
2 ≤ K log cosh(τ ′t).

(We use the formula log coshx = x2/2 +O(x4).) Therefore,

|τ ′t | ≤ Ml.

This proves Proposition 4.2. �
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5. Comparing Fenchel-Nielsen distances

We reformulate Proposition 3.2 and Proposition 4.2 in the following.

Proposition 5.1. Let X be a complex structure on S1,1 or S0,4 that satisfies the
assumptions in Proposition 3.2 or Proposition 4.2 respectively. Assume that |t|,
l0 (in the case where S = S1,1) and l1, l2, l3, l4 (in the case where S = S0,4) are
bounded above by some constant L. Then there exist constants K, M and ǫ0 > 0,
all depending only on L such that for l ≤ ǫ0, we have

log
l′t
l′

≤
K

| log l|

and

|τ ′t | ≤ Ml.

For S = S1,1 or S0,4, let dFN1
and dFN2

denote the Fenchel-Nielsen coordi-
nates on T(S) associated to {α} and {α′} respectively. As above, for any complex
structure X on S, we denote by Xt the complex structure obtained by the time-t
Fenchel-Nielsen twist of X along α. We have the following:

Proposition 5.2. Suppose that S is either the torus with one hole S1,1 or the
sphere with four holes S0,4, with α and α′ being homotopy classes of closed curves
in S satisfying i(α, α′) = 1 in the case S = S1,1 and i(α, α′) = 2 in the case
S = S0,4. Then, there exist a sequence of points Xn ∈ T(S) such that

dFN1
(Xn, X

t
n) = |t|, while lim

i→∞
dFN2

(Xn, X
t
n) = 0.

Proof. Let Xn, n = 1, 2, . . . be a sequence of complex structures on S satisfying the
following properties:

(1) for any n = 1, 2, . . . the geodesics in the classes of α and α′ intersect per-
pendicularly;

(2) the hyperbolic length lXn
(α) = ǫn tends to 0 as n → ∞;

(3) the hyperbolic length of the holes of the torus with one hole S1,1 or of the
sphere with four holes S0,4 is bounded by some fixed constant L.

It is clear that dFN1
(Xn, X

t
n) = |t|. By Proposition 5.1, we have

0 ≤ log
l′t
l′

≤
K

| log ǫn|
,

and

|τ ′t | ≤ Mǫn.

As a result,

dFN2
(Xn, X

t
n) = max{| log

l′t
l′
|, |τ ′t |} → 0,

as ǫn → 0. �

We conclude with the following

Corollary 5.3. With the notation of Proposition 5.2, the identity map between the
metrics dFN1

and dFN2
is not Lipschitz. More precisely, there does not exist any

constant C satisfying dFN1
(x, y) ≤ CdFN2

(x, y) for all x and y in T(S).
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6. General surfaces

The aim of this section is to prove Theorem 1.1, which is the analogue of Corol-
lary 5.3 for an arbitrary surface S of finite or infinite type.

The idea is to start with an arbitrary pair of pants decomposition P = {Ci} of
S, to take in it an embedded subsurface of type S1,1 or S0,4 with boundary curves
belonging to the system {Ci}, and to modify the pair of pants decomposition P

into a pair of pants decomposition P
′ by an elementary move α → α′ performed

inside this subsurface, according to the scheme used in Sections 3 and 4.
There is one complication in doing this. Even though in the new pair of pants

decomposition P
′ the length parameters of all the non-modified curves for the com-

plex structure Xt obtained by twisting along the curve α is the same in the systems
P and P

′, the situation is not the same for the twist parameters. Performing the
Fenchel-Nielsen twist along the curve α does not modify the twist parameters of
the closed curves in the system P that are different from α, but in the system P

′,
the twist parameters of the curves that are on the boundary of the subsurface S1,1

or S0,4 do not remain constant. This is the main question that we deal with now.
Let X be a complex structure on S equipped with a geodesic pair of pants

decomposition P, and let α ∈ P be a closed geodesic in the interior of X .
The closed geodesic α is either in the interior of a torus with one hole or of a

sphere with four holes that is defined by the pair of pants decomposition P. We
denote such a one-holed torus or a four-holed sphere by Y .

Let P′ be the pair of pants decomposition ofX obtained from P by an elementary
move on α, replacing this curve with a curve α′ which is contained in Y and which
has minimal intersection number with α.

C4

C3

α

α′

C1

C2

β

Figure 3.

We take a sequence Xi of complex structures on S satisfying lXi
(α) → 0. By

the collar lemma, we then have lXi
(α′) → ∞.

We assume that the curve α is adjacent to two distinct pairs of pants in the
decomposition P. The other case can be dealt with in the same way. We shall use
the notation of Figure 3.
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We shall apply Proposition 4.2, and for this we assume that X is a complex
structure such that lX(α) is sufficiently small.

Let Xt be as before the time-t twist of X along α. Then, dFN (X,Xt) = |t|.
To estimate the distance dFN ′(X,Xt), first apply Proposition 5.1:

log
lXt(α′)

lX(α′)
≤

K

| log lX(α)|
,

|τ ′Xt(α′)− τ ′X(α′)| ≤ MlX(α).

For any β ∈ P
′, β 6= α′, the length is unchanged:

log
lXt(β)

lX(β)
= 0.

However, the equality τ ′Xt(β) = τ ′X(β) is not necessarily true. Indeed, let C1, . . . , C4

be the boundary components of the sphere with four holes that is the union of the
two pairs of pants of P that contain α (notation of Figure 3). In the Fenchel-Nielsen
coordinates of P′, the length of α′ is changed under the twist along α, and for each
j = 1, . . . , 4, τ ′Xt(Cj) may be not be equal to τ ′X(Cj).

However, we have the following:

Lemma 6.1. For i = 1, . . . , 4, |τ ′Xt(Ci)− τ ′X(Ci)| → 0, as lX(α) → 0.

Proof. For the proof, we take i = 1.
Choose a simple closed curve β as in Figure 3, contained in the 4-holed sphere

that is the union of the pair of pants with boundary curves α′, C1, C2 and the other
pair of pants adjacent to C1, such that β satisfies i(C1, β) = 2 and is disjoint from
any other curve in P \ {C1}, as in Figure 3.

We may assume that the angles at the intersection points of C1 with β satisfy
cos θ ≥ 1

2
. To achieve this we can choose a sufficiently large integer N , and replace

β with its image under an N -order positive Dehn twist along C1.
We now apply the first variational formula of Wolpert [12].
For s > 0, we denote by ls(β) the hyperbolic length of β under the twist of

amount s along C1. Denoting the intersection angles of C1 with β by θ1,s and θ2,s,
we have

dls(β)

ds
= cos θ1,s + cos θ2,s.

By the mean value theorem, for each s > 0, there exists a ξ ∈ [0, s], such that

(5) ls(β) − l0(β) = (cos θ1,ξ + cos θ2,ξ)s.

Since cos θj,s, j = 1, 2 are strictly increasing functions of s (Proposition 3.5 of
Kerckhoff [5]), we have

(6) cos θi,ξ ≥ cos θi,0 ≥
1

2
,

by assumption. Combining (5) and (6), we have

(7) ls(β) − l0(β) ≥ s.

We show that |τ ′Xt(C1)−τ ′X(C1)| → 0 as lX(α) → 0. Note that lX(C1) = lXt(C1)
and β also intersects α′.

Suppose first that the length of β is decreased by an amount of xt > 0 under
the twist of distance t′ = τ ′Xt(α′) − τ ′X(α′) along α′. Then this length should be
increased by the same amount xt under the action of the twist along C1. Note that
xt ≤ 2|t′|.

Applying the inequality (7), we have

(8) |τ ′Xt(C1)− τ ′X(C1)| ≤ 2|t′| = 2|τ ′Xt(α′)− τ ′X(α′)|.
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By Proposition 5.1, t′ → 0 as lX(α) → 0. As a result, |τ ′Xt(C1) − τ ′X(C1)| → 0 as
lX(α) → 0.

The case where the length of β is increased under the twist along α′ can be dealt
with by the same argument. �

Now we are ready to prove the various statements of Theorem 1.1.
Let us summarize the setting. S is an orientable surface which is either of infinite

topological type or of finite topological type with negative Euler characteristic and
which is not homeomorphic to a pair of pants. Let P be a pair of pants decom-
position of S. Let α ∈ P be a curve which is not a boundary component of S,
and consider the pair of pants decomposition P

′ obtained from P by an elementary
move about α. We denote by α′ the curve replacing α in P

′. Let Y be the one-holed
torus or four-holed sphere containing α in its interior. If X is a complex structure
on S, and t a real number, we denote by Xt the structure obtained by a time-t
Fenchel-Nielsen twist of X along α.

Theorem 6.2. For every base complex structure X0 on S we have TFN,P(X0) =
TFN,P′(X0) as sets, but the identity map between these two spaces is not Lipschitz
with respect to the metrics dFN,P and dFN,P′ respectively. More precisely, there
exists a sequence of points Xn ∈ TFN,P(X0) such that

dFN,P(Xn, X
t
n) = |t|, while lim

n→∞
dFN,P′(Xn, X

t
n) = 0.

Proof. Let Xn, n = 1, 2, . . . be a sequence of complex structures on S satisfying the
following properties:

(1) for any n = 1, 2, . . . the geodesics in the classes of α and α′ intersect per-
pendicularly;

(2) the hyperbolic length lXn
(α) = ǫn tends to 0 as n → ∞;

(3) the hyperbolic length of the boundary curves of the pairs of pants containing
α and α′ is bounded by some fixed constant L.

It is clear that dFN,P(Xn, X
t
n) = |t|. By Proposition 5.1, there exists a constant K

such that for all n

| log
lXt

n
(α′)

lXn
(α′)

| ≤
K

| log ǫn|

and

|τ ′Xt
n
(α′)− τ ′Xn

(α′)| ≤ Kǫn.

It follows from Lemma 6.1 that for each Cj ∈ P
′ \ {α},

lim
n→∞

sup
Cj∈P′\{α}

|τ ′Xt
n
(Cj)− τ ′Xn

(Cj)| = 0.

As a result,

lim
n→∞

dFN,P′(Xn, X
t
n) = 0.

�

Theorem 6.3. For every base complex structure X0 on S, consider the space T =
Tqc(X0) ∩ TFN,P′(X0). Then the identity map from (T, dFN,P′) to (T, dqc) is not
Lipschitz. More precisely, there exists a sequence of points Xn ∈ T and a constant
C > 0 such that

dqc(Xn, X
t
n) ≥ C|t|, while lim

n→∞
dFN,P′(Xn, X

t
n) = 0.

Proof. We use the same sequence as in the previous theorem. We claim that there
exists a constant C, depending only on the constants L and |t|, and such that
dqc(Xn, X

t
n) ≥ CdFN,P(Xn, X

t
n) = C|t|. This essentially follows from Theorem 7.6

in [1], but some special care is needed because, in the form that theorem is stated,
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one of the hypotheses is not satisfied: that the surfaces Xn are upper bounded, i.e.
that there exists a constantM such that for every curve C ∈ P we have lX0

(C) ≤ M .
This is not satisfied in general. The point is that here we are performing the twist
on surfaces Xn along the single curve α (while in Theorem 7.6 in [1] we allowed a
multi-twist around many curves), so we only need to check that the lengths of the
curves of the pairs of pants containing α are bounded by a constant. This is true
in this case, because we are assuming that the lengths are bounded above by L. To
apply the theorem we also need to check that the lengths dqc(Xn, X

t
n) are bounded

above by a constant that depends only on L and |t|. This is given by Lemma 8.3
in [1], again by paying attention to the fact that, even if the surfaces are not upper
bounded, we are twisting only around α, and the lengths of the boundary curves
of the pairs of pants containing α are bounded by L. �

Now assume that S is an orientable surface of infinite topological type and let
P be a pair of pants decomposition of S. We choose a sequence of curves αi ∈ P

such that the one-holed tori or four-holed spheres Yi containing αi in their interior
are all disjoint. We also consider another pair of pants decomposition P

′, obtained
from P by performing elementary moves about all the curves αi. For every i, let
α′
i be the curve replacing αi in P

′. Finally, we choose a base complex structure X0

on S satisfying the following:

(1) lX0
(αi) → 0 as i → ∞;

(2) for all i the geodesics in the classes of αi and α′
i intersect perpendicularly;

(3) the lengths of all the curves of the decomposition P are bounded above by
some global constant M .

For a real number t, we denote by Xi the surface obtained by a time-t Fenchel-
Nielsen twist of X0 along αi.

We have the following:

Theorem 6.4. If T is the space Tqc(X0)∩TFN,P(X0), then the identity map from
(T, dFN,P′) to (T, dFN,P) is not continuous. More precisely, using the above nota-
tion, the surfaces Xi are in T , and they satisfy

dFN,P(X0, Xi) = |t|, while lim
i→∞

dFN,P′(X0, Xi) = 0.

Proof. Assume that lX0
(αi) = ǫi → 0. It is clear that dFN,P(X0, Xi) = |t|. Apply-

ing Proposition 5.1, we have

| log
lXi

(α′
i)

lX0
(α′

i)
| ≤

K

| log ǫi|
,

and

|τ ′Xi
(α′

i)− τ ′X0
(α′

i)| ≤ Kǫi,

where K is a constant depending on M . It follows from Lemma 6.1 that for each
Cj ∈ P

′ \ {αi},

lim
i→∞

sup
Cj∈P′\{αi}

|τ ′Xi
(Cj)− τ ′X0

(Cj)| = 0.

As a result,

lim
i→∞

dFN,P′(X0, Xi) = 0.

�

Theorem 6.5. If T is the space Tqc(X0)∩TFN,P′(X0), then the identity map from
(T, dFN,P′) to (T, dqc) is not continuous. More precisely, the surfaces Xi defined
above are in T , and there exists a constant C > 0 such that

dqc(X0, Xi) ≥ C|t|, while lim
i→∞

dFN,P′(X0, Xi) = 0.
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Proof. As before, we claim that there exists a constant C, depending only on the
constant M and on |t|, such that dqc(Xi, X

t
i ) ≥ CdFN,P(Xi, X

t
i ) = C|t|. This

follows from Theorem 7.6 in [1]. This time all the hypotheses of that theorem are
satisfied, and we only need to check that dqc(Xi, X

t
i ) is bounded by something that

depends only on L and |t|. This is given by Lemma 8.3 in [1]. �
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