On the algebraic numbers computable by some generalized Ehrenfest urns

Abstract : This article deals with some stochastic population protocols, motivated by theoretical aspects of distributed computing. We modelize the problem by a large urn of black and white balls from which at every time unit a fixed number of balls are drawn and their colors are changed according to the number of black balls among them. When the time and the number of balls both tend to infinity the proportion of black balls converges to an algebraic number. We prove that, surprisingly enough, not every algebraic number can be ''computed'' this way.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2012, 14 (2), pp.271-284
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00589621
Contributeur : Lucas Gerin <>
Soumis le : vendredi 29 avril 2011 - 15:44:44
Dernière modification le : vendredi 6 février 2015 - 13:42:47
Document(s) archivé(s) le : samedi 30 juillet 2011 - 02:27:56

Fichiers

AlbenqueGerinHAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00589621, version 1
  • ARXIV : 1104.5643

Collections

Citation

Marie Albenque, Lucas Gerin. On the algebraic numbers computable by some generalized Ehrenfest urns. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2012, 14 (2), pp.271-284. <hal-00589621v1>

Partager

Métriques

Consultations de
la notice

84

Téléchargements du document

98