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Influence of the scattered Cherenkov light on

the width of shower images as measured in

the EAS fluorescence experiments

M. Giller ∗ and G. Wieczorek

Department of Experimental Physics, University of Lodz,
Pomorska 149/153, 90-236, Lodz, Poland

Abstract

We calculate the lateral distribution of Cherenkov light at different levels of shower
development. The calculations use the universal characteristics of large showers. We
derive that the angular and lateral distributions of Cherenkov photons emitted by
a shower path element depend only on the shower age and height in the atmosphere
of this element. The width of a shower image in the Cherenkov scattered light also
depends, however, on the zenith angle and Xmax. We also show that below shower
maximum it is considerably wider than the width in the fluorescence light.

Key words: Ultra-high energy cosmic rays, extensive air showers, fluorescence
method of shower detection
PACS: 96.50.sd

1 Introduction

Extensive Air Showers (EAS) produced in the atmosphere by cosmic ray par-
ticles cause excitation of its atoms and a subsequent isotropic emission of
fluorescence light by nitrogen molecules. If the energies of cosmic particles are
large enough (above ∼ 1017 eV) this light can be detected by earth-based tele-
scopes, so that the showers can be seen from the side from tens of kilometers
away.

Another big advantage of the fluorescence technique is the possibility of reg-
istering a light image of a shower from which the shower curve – the number
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of particles or, strictly speaking, the energy deposit as a function of depth in
the atmosphere – can be deduced. This is so because experiments show that
the fluorescence light emitted by a shower path element is proportional to the
energy loss of shower particles along this element [1,2].

Having determined a shower curve one can calculate the energy of the pri-
mary particle (by simply integrating the energy deposit along the track in the
atmosphere) in a way (practically) independent of its mass and the actual
(unknown) high energy interaction characteristics [3].

The fluorescence technique was used with success by the Fly’s Eye experi-
ment [4] and by its successors, the various set-ups of HiRes (see e.g. [5,6]).

In the recently built Pierre Auger Observatory – Southern Site in Argentina [7]
this technique has also been applied, but here, apart from the optical tele-
scopes, there are 1600 shower particle detectors covering 3000 km2. As the
fluorescence detectors operate on clear nights only, in contrast with the parti-
cle detectors which are active all the time, the energies of showers registered
by the latter (obtained by another method) can be calibrated by the sample
of showers registered by both types of detectors.

The problem is that some fraction of shower particles (∼0.36 [8]) also emit
Cherenkov light (ChL). Its direction is almost the same as that of the emitting
particle velocity, so one might think that this light will not add to the fluo-
rescence flux detected by a telescope situated at a large distance (more than
a few km) from the shower. However, the number of Ch photons produced by
a high energy particle is 5 – 6 larger than its fluorescence (FL) photon count.
Thus, many Ch photons accumulate as the shower develops and those scat-
tered sideways constitute a non-negligible fraction of the total light registred
by a telescope. If not properly substracted, they might mimic a larger number
of electrons (and larger energy deposit) in the shower.

This effect has been first aknowledged and allowed for by the Fly’s Eye Col-
laboration [4]. Later some other methods to take it into account have been
proposed [9–11]. In these papers, however, it was only the total number of Ch
photons emitted from consecutive shower track elements that were taken into
consideration. Here we are concerned with their lateral distributions (with
respect to the shower axis).

A shower image (e.g. as measured in the Auger experiment ) is registered
typically by a line of hit photomultipliers on a telescope camera. The closer the
shower the broader the image line, because shower particles (mainly electrons
of both charges) have some lateral spread, due to the Coulomb scattering in
the atmosphere. The breadth of the shower image in both ChL and FL has
not been investigated – although, as we shall show in this paper, an answer
to this question is important. Góra et al [12] proposed that it is the FL that
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determines the lateral width of the shower image. In this paper we shall show
that it is true only for upper parts of a shower (above its maximum). Widths
of images below shower maxima are strongly affected by Ch scattered light.

Thus, to correctly determine the energy deposit at a given level in the atmo-
sphere (proportional to the FL emitted there), it is necessary to know exactly
how ChL is distributed over the light image, not only along but also across
the shower. Only then will one be able to subtract it properly. This is what
we shall deal with in this paper (for some preliminary results, see [13]).

It is clear that the lateral distribution of ChL (LDCh) observed at a given
level of shower development depends on the angular and lateral distributions
of electrons emitting ChL (we shall call them “Ch electrons”) at all higher
levels. We shall show that the above distributions of ChL produced at some
level of the shower development depend only on the shower age and the height
of this level. We shall derive how this follows from the uniquenes of various
electron distributions in all large showers (the similarity of showers).

2 The method of calculation of the lateral distribution of ChL
(LDCh)

We show here that due to the similarity of high energy showers [8,9,14] it is pos-
sible to calculate the lateral distribution of ChL (LDCh) without time-consuming
shower simulations, but in an analytical way (with numerical calculations of
integrals), using the various earlier determined electron distributions which
are universal.

2.1 The general idea

The similarity of different showers is based on comparing their characteristics
at levels with the same age parameter s.

The age of a particle cascade (at a given level of its development) was in-
troduced while analytically describing developments of pure electromagnetic
cascades (initiated by primary electron or photon). It was defined as

s =
3t

t + 2 ln(E0/ε)
(1)

where t is the depth in cascade units, E0 is the particle initial energy and ε is
the critical energy of the medium. The spectra of high energy electrons (with
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energies E ≫ ε) were shown to be proportional to E−(s+1)dE [15,16].

Formula (1) was first applied by Hillas [17] to cosmic ray showers, initiated
by hadrons, in the form

s =
3X

(X + 2Xmax)
(2)

where the term ln(E0/ε), being the depth of the cascade maximum, has been
replaced by Xmax – the depth of the shower maximum. He also proposed a
form of the energy distribution of electrons depending on s.

Following his idea we have analysed in the earlier papers of our group various
electron distributions in showers simulated with the CORSIKA code [18]. We
have come to the conclusion that high energy showers are similar to each other
in the following sense:

– the shape of the electron energy spectrum at a given level in the atmosphere
depends only on the stage of the shower development there, i.e. on the age
parameter s [8]; it does not depend on primary particle mass or energy (the
same conclusion was obtained by Nerling et al [10]),

– the angular distribution of electrons with a fixed energy depends on this
energy only – it is the same anywhere in the shower [9]; from the two
statements above it follows that the angular distribution of all electrons
(with any energy) depends on the shower age only,

– the lateral distribution of electrons, if distances are expressed in the Molière
unit rM at the level in consideration, depends on the shower age only [14]
(the same holds for electrons with a fixed energy [19]).

It has also been established that fluctuations of the above distributions from
shower to shower are very small, so that these distributions can be parametrised
and used to describe any individual shower. In particular, when observing a
shower with a fluorescence detector and determining the position of the shower
maximum, it is possible to asign age parameters to various depths along the
shower track. Then the distributions of energy, angle and lateral distance of
electrons, at various positions along the shower, can be predicted.

It should be noted, however, that determining shower age from Xmax only i.e.
independently of the depth of the first interaction, X1, makes sense if X1 ≪
Xmax. For the highest energy showers, when X1 ≃ 50 g cm−2 for protons (and
even smaller for heavier primaries) and Xmax > 700 g cm−2, this condition is
fulfilled. It means that in this case the actual stage of shower development
is well determinied by formula (2). It is obvious that for a neutrino initiated
shower the depth X in formula (2) must be measured from the first interaction
rather than from the top of the atmosphere.
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As we are concerned here with the Cherenkov light, emitted only by electrons
with energies above some threshold energy (dependent on the atmospheric
density and, therefore, on the height h in the atmosphere), the Cherenkov
characteristics at a given level depend not only on the age parameter but
on the height as well. However, since we have already found the angular and
lateral distributions of electrons with a given energy, we can easily calculate
these distributions for all electrons emitting Ch light, by integrating the former
above the threshold energy Eth(h).

It is convenient to assign to any electron a weight Ych(E/Eth), proportional
to the number of Ch photons it emits per unit path (in g cm−2). This weight
equals

Ych

(

E

Eth

)

= 1 −
(

Eth

E

)2

(3)

Adding up all these numbers at a given level gives what we shall call the
number of Cherenkov (Ch) electrons. Multiplying this number by the amount
of Ch light produced by an electron with E ≫ Eth per unit path, in g cm−2

(a known constant), gives the total Ch light produced at a given level per
1 g cm−2 of shower track.

2.2 Calculations

The LDCh at a given depth of shower development sobs, being at height hobs,
is a sum (integral) of lateral distributions of ChL resulting from Ch emission
at all levels above the given one. It depends on the angular, Ge

θ(θ; s < sobs, h >
hobs), and lateral, Ge

x(x; s < sobs, h > hobs), distributions of Ch electrons in
the shower above this level. Here x = r/rM . As we have just discussed these
distributions of Ch electrons depend on the age s of the considered level and
its height h (strictly speaking – on the air density).

2.2.1 Angular distribution of Ch electrons, Ge
θ(θ; s, h)

The angular distribution Ge
θ(θ; s, h) (per unit angle θ) can be calculated from

the known angular distributions of electrons with fixed energies, gθ(θ; E) (per
unit solid angle) [9], and the energy spectrum of all electrons at level s, f(E; s)
[8,10],

Ge
θ(θ; s, h) =

2π sin θ

F (s, h)

∞
∫

Eth(h)

gθ(θ; E) · f(E; s) · YCh

(

E

Eth

)

· dE (4)
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where F (s, h) equals

F (s, h) =

∞
∫

Eth(h)

f(E, s) YCh

(

E

Eth

)

dE (5)

The normalisation of Ge
θ(θ; s, h) is such that

∫

Ge
θ(θ; s, h) dθ = 1 (6)

F (s, h) is the ratio of the number of Ch electrons to the total number of
electrons at this level. It has been calculated in [8] that this number does
not change much along the shower, being equal ∼0.36. This is a result of
two competing effects: the deeper along the shower, the steeper becomes the
electron energy spectrum, but at the same time the threshold for Ch emission
diminishes. Once the electron energy spectra f(E; s) are known, F (s, h) can
be calculated and parametrized as a function of s and h [8].

Both f(E; s) and gθ(θ; E) in (4) have been obtained from a sample of simulated
showers with E = 1019 eV and 1020 eV, initiated by a primary proton or iron
nucleus. Thanks to a large number of shower particles in such showers, the
above distributions fluctuate very little from shower to shower so that the
samples of simulated showers did not have to be large (it was ∼20 showers for
each combination of E and mass).

The electron angular distributions, Ge
θ(θ; s, h), have been calculated as his-

tograms for different s and h.

2.2.2 Angular distribution of Cherenkov light (ChL), GCh
θ (θ; s, h), emitted at

level (s, h)

Having the angular distributions of electrons we can easily allow for the ChL
angle of emission and calculate the angular distribution of the ChL emitted
at a given level, GCh

θ (θ; s, h). This is a very small effect since the Cherenkov
angle is less than 1.2◦ – the emission angle at sea level by an electron with
energy E ≫ Eth = 21 MeV.

The idea of calculating GCh
θ (θ; s, h) is shown in Fig. 1. The radii of rings are

proportional to the bins of electron angle θ. The number of electrons with
angles within a given bin ∆θ equals Ge

θ(θ; s, h)∆θ. Each electron emits ChL
at an angle θCh (the small ring around an electron direction). The fraction of
Ch photons falling into a particular ring (θ, θ + ∆θ) equals the fraction of the
Ch ring circumference within that ring (the dark parts of the Ch ring). Thus,
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Fig. 1. Illustration of the method of taking into account the Cherenkov cone: the
angular distribution of Ch electrons gives the number of electrons within each an-
nular ring (θ, θ + ∆θ). Ch light is emitted at an angle θch to the electron direction.
The number of produced Ch photons, having angles to the shower axis within this
ring, is proportional to the fraction of the circumference (2πθch) lying inside this
ring (the dark shaded regions).

the angular distribution of ChL equals

GCh
θ (θi; s, h)∆θi = A

∑

j

Ge
θ(θj ; s, h) · uji ∆θj (7)

where uji is the fraction of ChL emitted by an electron with angle θj , falling
into the ring (θi,θ + ∆θi) (found from simple geometric considerations); A is
the normalization constant.

The results of our calculations are presented in Fig. 2 for several values of
s and h. We have also shown the curves obtained by Nerling et al [10] who
parametrised the results of Monte-Carlo shower simulations with CORSIKA.
The agreement is very good apart from the angles & 1 rad. Nevertheless, the
differences are in a region where the emitted flux is more than three orders of
magnitude less than that at smaller angles. What we are finally aiming at is
to calculate the scattered ChL, to which the contribution of this direct light
is very small at large angles.
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Fig. 2. Angular distributions of Ch light, GCh
θ (θ; s, h), emitted at s=1 – two upper

graphs and s=1.2, – lower graphs, left graphs – h=5 km, right graphs – h=8 km.
The analytical parametrizations are practically indiscernible from the numerical
results. Also shown are simulation results of Nerling et al [10], which are slightly
higher at large angles (dashed lines).

2.2.3 Lateral distribution (LD) of Ch electrons, Ge
r(r; s, h), at level (s, h)

In an earlier paper of our group [14] it was shown that LD of all electrons at
a given level in the shower depended on the shower age only if the distance
to the shower core was expressed in the Molière unit at this level. When one
is interested in the Ch electrons only, then it is natural to examine LD(E),
i.e. LD of electrons with fixed energies E, and then integrate them above the
corresponding threshold energy at the level’s height.

An analysis of the lateral distributions of electrons with fixed energies was
done by Giller et al [19]. It was shown that if electrons with a fixed energy
(in practice, from a narrow energy band) were considered, their LD depended
only on the shower age s at the corresponding level.

A new distance unit was used there, rE , depending on the electron energy E
and equal to

rE = X0 · 21 MeV/E (8)
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where X0 = 37 g cm−2 is the air cascade unit. Our distance unit rE differs from
the Molière radius in substituting the electron energy E for the critical energy
of the medium (∼80 MeV for air). By doing so the parameters describing
LD(E) for different energies do not vary much and are more easily described
in an analytical way.

One may wonder why LD(E), for any particular electron energy E, depends
on shower age s, while the angular distribution does not. It is because the air
density in the atmosphere is not uniform; in particular, it has smaller den-
sity higher up. The inhomegeneity of the medium does not affect the angular
distributions. For an electron with a given energy the angles of its more ener-
getic parents do not play any significant role, as the scattering angles add in
quadrature.

The same would be for distances in a uniform medium. However, in the real
atmosphere the lateral distances of the parents, as it turns out, are not neg-
ligible in comparison with those of their lower energy doughters, because of
lower densities higher up.

To see whether the LD of all Ch electrons are important in calculating the
LDCh (LD of Ch light) we first calculated the mean squares of LD(E), 〈r2(s; E)〉.

LD(E) are very well described by Nishimura-Kamata-like functions of the form

gr(r; s, E) =
1

Ne

·
dNe

d log(x)
= Cxα(1 + kx)−β (9)

where x = r/rE and the parameters α, β and k depend on E, and k depends
also on s [19]. Thus, 〈x2(s; E)〉 can be found analytically and the result is

〈

x2(s; E)
〉

= k−2 Γ(α + 2) Γ(β − (α + 2))

Γ(α) Γ(β − α)
(10)

and

〈

r2(s; E)
〉

=
〈

x2(s, E)
〉

· r2
E (11)

To calculate 〈r2(s, h)〉 of all Ch electrons at a given level (s,h) one simply
needs to integrate the above mean squares over electron energies, weighted
with their energy distribution f(E; s) and the Ch yield Ych

(

E
Eth

)

(formula 3):

r⊥ ≡
√

〈r2(s, h)〉 =

√

√

√

√

√

∫

∞

Eth(h) 〈r
2(E; s, h)〉 · f(E; s) · YCh

(

E
Eth

)

· dE
∫

∞

Eth(h) f(E; s) · YCh

(

E
Eth

)

· dE
(12)
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The LD of Ch electrons at level (s, h) equals

Ge
r(r; s, h) =

1

F (s, h)

E0
∫

Eth

gr(r; s, h)f(E; s)YCh

(

E

Eth

)

dE (13)

with the normalization

+∞
∫

−∞

Ge
r(r; s, h) d log r = 1 (14)

Of course, the LD of Ch light emitted by the electrons will be the same, so
that

GCh
r (r; s, h) = Ge

r(r; s, h) (15)

The parametrization of the above distribution is presented in the Appendix.

The results of our calculations are shown in Fig. 3. The parametrization func-
tions are also presented and it can be seen that the fit is everywhere better
than 5%.

2.2.4 A comparison of the importance of lateral and angular distributions of
electrons

To check on the influence of the two distributions (lateral and angular) on the
LDCh at some level we have compared the rms radii of the ChL distribution,
rrms, that would have resulted from each of these distributions alone. The
situation is demonstrated in Fig. 4 where such a comparison is shown. The
chosen level is at s = 1.2 (1050 g cm−2) for a typical proton shower with
E0 = 1019 eV.

The curves show rrms of the LDCh contributions produced at level X (per unit
path), as would have been observed if electrons had had no lateral spread, rθ,
and if they had had no angular spread, r⊥. rθ equals the distance between the
level X and that corresponding to s = 1.2 (X ≃ 1050 g cm−2), multiplied by
the root mean square tangent of the angle of Ch electrons at level X. These
two radii show effective spreads of ChL if only one distribution (lateral or
angular) had been responsible for it. If both distributions were independent
from each other the resulting mean square distance would be the sum of the
squares of both radii. Thus, the smaller one must be comparable to the larger,
to be important. We can see that it is the contributions from only the last
∼100 g cm−2 for which the lateral distribution of electrons plays a role.
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Fig. 3. Lateral distributions of Ch light, GCh
r (r; s, h), emitted at s=1 – two upper

graphs and s=1.2, – lower graphs, left graphs – h=5 km, right graphs – h=8 km.
Points – results of calculation, lines – best fit parametrization. Error bars represent
5% of the value.
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Fig. 4. Root mean square (in meters) of the lateral distribution of Ch light, produced
at X and observed at depth Xobs = 1050 g cm−2; rθ – if Ch electrons had only an
angular distribution (no lateral spread), r⊥ – if Ch electrons had only a lateral
distribution (no angular spread). Two curves for each case correspond to zenith
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We have also ploted a curve proportional to the number of electrons N(X)
for a typical 1019 eV proton shower. It can be seen that the region of X where
the lateral spread of electrons is important is rather small.

2.2.5 Final calculations of LDCh arriving at depth Xobs

Not withstanding the expected small influence of the LD of Ch electrons on
the LDCh arriving at some level, we do take it into account but in a somewhat
simplified way. For each slant depth element ∆X where the ChL is produced
and arrives at the considered level Xobs, we checked which of the distributions,
angular or lateral, would itself have given broader Ch lateral distribution at
this level. If rθ > r⊥ (the case for most of the shower path) then we assumed
that the ChL contribution of this element has a shape following from the
angular distribution of this light, but each distance r is increased by a factor
√

1 + (r⊥/rθ)2. Thus, the number of Ch photons, d(∆Nch), produced along a

shower path dX at angles (θ, θ + ∆θ) equals for this case

d(∆NCh(θ)) = k Ne F (s, h) GCh
θ (θ; s, h) ∆θ dX (16)

where k is the maximum number of Ch photons produced by one electron (172
photons per g cm−2 in the wave band 300 – 400 nm). These photons would
have arrived at the annular element of the core distance (r, r + ∆r) at level
Xobs, where r = y tan θ, ∆r = y ∆ tan θ and y is the distance (in length
units) between the two levels X and Xobs. However, to allow for the lateral
distribution of the emitting electrons, we assign these photons to a larger ring
(r′, r′ + ∆r′) where

r′ = r ·
√

1 + (r⊥/rθ)
2 and ∆r′ = ∆r ·

√

1 + (r⊥/rθ)
2 (17)

In the opposite case, if r⊥ > rθ then

d(∆NCh(r
′)) = k Ne F (s, h) GCh

r (r; s, h) ∆ log r dX (18)

where Ge
r(r; s, h) is the LD of Ch electrons at (s, h), r′ = r ·

√

1 + (rθ/r⊥)2

and d(∆Nch(r
′)) is the number of photons assigned to the annular distance

element (r′, r′ + ∆r′).

This procedure gives in any of these cases a lateral distribution of ChL for
which

〈

r2
〉

= r2
θ + r2

⊥
(19)
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that would ensure the correct value of 〈r2〉 if the two distributions were in-
dependent of each other. As they are not (more distant electrons have lower
energies and, what follows, larges angles) we underestimate the calculated
LDCh. We think, however, that this underestimation is rather small because,
as can be seen in Fig. 4, the region of X where both distributions have com-
parable widths (so that a correct calculation of the contribution of ChL from
there to the total LDCh at level (sobs, hobs) would be needed) is small.

To allow for extinction, the numbers of photons in (16) and (18) need to be

multiplied by a transmission factor T
[

Xobs−X

cos α

]

. It is enough to adopt that

α = arctan
(

√

〈r2〉/y
)

(20)

The atmospheric transmission properties change quite considerably, so that
the actual LDCh depends on the particular time the shower occured. How-
ever, we shall show results of LDCh calculations for some typical atmospheric
conditions in § 3.

2.3 Dependence on zenith angle

All the above considerations apply to showers with any zenith angle, i.e. the
lateral and angular distributions of ChL produced at a given level in the at-
mosphere depend only on shower age s and height h in the atmosphere, in-
dependently of the shower zenith angle z. It does not mean, of course, that
the LDCh arriving at some level and, in consequence, the LD of the Ch light
scattered at this level, does not depend on the shower zenith angle z.

Let us consider how the LDCh depends on z. For each vertical shower with
a given energy, with a cascade curve N(X), there is equally often (per unit
solid angle, time and area) an inclined shower, at some zenith angle z, with
the same N(X). It is easy to show that its maximum will be higher in the
atmosphere by

∆h = −H · ln [cos(z)] (21)

where H is the exponential scale height of the atmospheric density. The sit-
uation is shown in Fig. 5 where we have roughly sketched both showers and,
perpendicularly to shower axes, the number of particles N(X). We can obtain
N(h; z) for the inclined shower by shifting the vertical shower up by ∆h and
then projecting the number of particles horizontally on the inclined axis, so
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Fig. 5. Illustration of a geometrical situation of two showers having the same N(X)
but different zenith angles. The inclined shower can be constructed from the vertical
one by shifting it by some heigth ∆h and then projecting on the inclined line.

that

N(h; z) = N(h − ∆h; z = 0) (22)

The inclined shower is more elongated than the vertical one, when measured
in units of length. Any shower element dX(X) has a distance y to a fixed
level Xobs (where we are calculating LDCh) larger by a factor 1/cos(z) than
the corresponding element dX(X) in the vertical shower. If all electrons had
emitted ChL then the LDCh would have been the same if lateral distances
were scaled by this factor. As the Molière radius (in meters) at the level higher
by ∆h increases also by 1/ cos(z), then the LDCh expressed as a function of
x = r/rM would have been the same in the showers having the same N(X),
independent of their zenith angles.

However, the threshold energy of the element dX of the inclined shower is

higher by factor 1/
√

cos(z) so that there is less Ch light and the LDCh is
slightly steeper. This is demonstrated in Fig. 6.

Showers, however, do fluctuate, mainly due to the fluctuations of the depth of
the first interaction. Let us compare two showers, one vertical, another inclined
(as before), but now with the same N(X − Xmax). Assume that the inclined
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shower initiated deeper in the atmosphere than the vertical one, so that both
maxima are at the same height above the observation level. It is easy to show
then that the inclined shower will be more compressed than the vertical one,
in the sense that the slant distances (in length) between levels with the same
X −Xmax are smaller in the inclined shower that in the vertical one. This will
influence the LDCh making it narrower.

In conclusion, even if the atmosphere had been ideally stable with a known
dependence X(h), to calculate LDCh at some level in a shower in advance an
additional parametrization of it as a function of zenith angle z and depth of
shower maximum Xmax would be necessary (apart from that on s and h).

3 Results of calculations of LDCh

As we have already mentioned, to calculate the LDCh at a particular level in a
shower it is necessary to know the attenuation and scattering properties of the
atmosphere. As these depend on the season and may change from one night
to another, or even within one hour or so, constant atmosphere monitoring is
needed. This is being performed e.g. in the Auger experiment [7,20]. However,
to show what will be a typical width of a shower image in ChL and compare
to it with that in fluorescence light, it is enough to adopt typical atmosphere
properties.

Here we have assumed an atmosphere corresponding to the average con-
ditions at the Pierre Auger Observatory in Argentina, with the mean free
path for Rayleigh scattering λR = 18.4 km and for aerosol (Mie) scattering
λM = 14 km at the Auger level. The exponential scale heights are correspond-
ingly HR = 7.5 km and HM = 1.2 km.

In the experiments using the fluorescence technique the telescopes look at
showers from the side (at rather large angles to shower directions). Thus, to
compare both widths, in ChL and FL, of a shower image we have to calculate
the ChL scattered sideways from the shower direction. As the FL is emitted
isotropically from any shower element and the Rayleigh scattering is roughly
isotropic (∼ 1 + cos2 θ) we compare here numbers of Ch photons Rayleigh
scattered in all directions. The proportion of the two components will be
almost the same as if observed from any particular direction.

The results of calculations are presented in Fig. 6. We have chosen three levels
of shower development: s = 0.9, 1.1 and 1.3 for which a comparison of the
lateral spread of the scattered ChL with that of FL is shown. The curves are for
typical proton and iron showers, inclined at three zenith angles: 0◦, 45◦ and 60◦.
The curve representing FL does not depend on zenith angle, nor on primary
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Fig. 6. Number of Ch photons scattered at distances larger than r, (per 1 m) divided
by total number of electrons, Ne, compared with the fluorescence light (line marked
FL) produced at distances larger than r along the same path. Three graphs corre-
spond to values of age: s=0.8, 1.1, 1.3. Curves for proton showers are higher than
those for Fe; curves for larger zenith angles are lower. The importance of ChL on
the lateral width of the shower light image is evident below the shower maximum.

particle, as the lateral distribution of shower electrons depends on shower age
only, if represented as a function of r/rM (as has been discussed earlier). To
calculate the FL curves we have used the parametrisation of Góra et al [12].
In calculating widths of shower images these authors take into account FL
only. Our results show that this is proper only for widths above (in height)
shower maximum (s < 1). Fig. 6 shows that at s = 0.9 the contribution of
the ChL to the FL is small. However, when s increases the ChL contribution
increases also. For s = 1.1 (Fig.6) it starts to dominate FL above one Molière
radius, or so. Even deeper in the atmosphere (s = 1.3) it is the ChL which
practically determines the lateral spread of the image. This corresponds to the
Auger level for a 1019 eV proton shower with z = 45◦. Thus, the LDCh can
not be neglected when reconstructing the energy losses of shower particles at
these levels, which are proportional to the fluorescence intensity only.

The Rayleigh (molecular) scattering is not the only process relevant. The ChL
can also be scattered by aerosols present in the lower parts of the atmosphere,
what is called the Mie scattering. The angular distribution of light scattered
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by this process depends on the size of the aerosol droplets, but for any size
the distribution is rather strongly peaked forward. Thus, the Mie scattered
light will contribute a little to the total light from showers observed usually
at rather large angles to their axes.

However, a contribution of the Mie scattered light can be easily taken into
account:

Let us denote by λR and λM the mean free paths for Rayleigh and Mie scat-
terings respectivelly, and by fR(θ) and fM(θ) the angular distributions of the
scattered light for the two processes. If a shower is observed at an angle θ,
then the full contribution of the scattered ChL (by both processes) can be
obtained by multiplying our values from Fig. 6 by

1 +
λRfM(θ)

λMfR(θ)
(23)

For example, at 2 km above the Auger level (∼ 1450 m) the mean free paths
would be λR = 24 km and λM = 74 km, for the values given in § 3. Then the
factor (23) allowing for the Mie scattering, for fM(θ) = 0.8 · exp(−θ/26.7◦), is
equal to 1.53 for θ = 45◦. It is strongly dependent on the height as the Mie
scale height HM is only ∼ 1.2 km.

4 Discussion

A proper reconstruction of the energy losses, and in consequence, of the pri-
mary energy, depends of course on how well the shower light is recovered.
The data from a FL detector are in a form of the camera PMTs response in
consecutive time bins (100 ns in Auger). To recover the actual signals in the
consecutive time bins one looks around the direction towards the shower at
a particular time (we assume that the geometry of the shower is known) and
finds the total signal in the PMTs inside a viewing cone with an opening angle
ζ . Summing up signals over all time bins and finding the opening angle ζ for
which the signal S to noise N ratio is the largest one can hope that the signal
of the whole track is contained within the viewing cone.

However, as ζ is the same for the whole track but the track width becomes
larger when going down, it may happen that the light from lower parts of a
shower will be cut out by too small an angle ζ .

This angle depends on the distance to the shower. Barbosa et al [21] calculated
that the optimal angle ζ for a 5 km distant shower was ∼ 2.4◦. We calculate
that for a 1019 eV proton shower with z = 45◦ the signal from the level s = 1.3
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(just above the earth at Auger) would be collected from within r/rM < 2.1
cutting out almost half of ChL and ∼9% of Fl. (The same would happen
for a 10 km distant shower and ζ = 1.2◦.) If all Ch light was subtracted
from the signal this would decrease the infered FL signal from this level by
∼40%. We estimate that the primary energy of such nearby showers could be
underestimated by ∼15% or so.

5 Summary and conclusions

We have shown that the lateral spread of the scattered Ch light has an
important role in determining the width of the optical image of a shower,
particularly below shower maximum. This result has been obtained without
time-consuming simulations of extremely high energy showers dedicated to
Cherenkov light. To do this, we have used our earlier results showing univer-
sality of the properties of large showers. We have also derived that the angular
and lateral distributions of Ch electrons at some level in the atmosphere, re-
sponsible for the width of the optical image of a shower, depend on shower
age and height of this level only. Thus, the properties of the ChL produced at
a particular level in the atmosphere depend only on the height h of this level
and the stage of the shower development, measured by the age parameter s.
It is advisable to parametrize the angular distribution of ChL at this stage,
as the parametrization of the image width would have to depend on another
two parameters Xmax and z.

A full understanding of the optical shower image is nessesary to correctly infer
the energy losses of shower particles along their propagation in the atmosphere.
If the LDCh was broader than it is aknowledged then too much ChL could be
subtracted from the total signal, leading to an underestimation of the shower
primary energy.
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7 Appendix

7.1 Parametrization of the angular distribution of the emitted Ch light, GCh
θ (θ; s, h)

Having found numerically GCh
θ (θ; s, h) we have parametrized it (similarly as

in [9] for all electrons) as follows

GCh
θ (θ; s, h) =

1

NCh

dNCh

dθ
=



























a1 · e
−(c1·θ+c2·θ

2) for θ < θ0

a2 · θ
−α for θ > θ0

(24)

Parameters of the distribution (24) are dependent on s and h (in km, above
sea level) in the following way:

b(s, h) = p0 · e
p1·s+p2·h + p3 (25)

where b = θ0, a1, c1 and α,

and:

c2(s, h) = p0 · e
p1·s

2+p2·h + (p3 · s
2 + p4 · s) (26)

for parameter c2.

a2 can be obtained from the condition of continuity of the angular distribution
at θ0.

The values of the parameters have been found by a minimization procedure,
to fit best the numerical values. They are given in the table below.

pi θ0 a1 c1 c2 α

p0 6.058e+00 2.905e+00 7.320e+00 -2.754e+00 2.620e+00

p1 -1.103e-03 -3.851e-02 -3.778e-01 -4.242e-01 6.837e-02

p2 -2.886e-03 1.072e-01 7.202e-02 1.084e-01 -2.247e-02

p3 -5.447e+00 1.066e+01 7.143e+00 3.344e+00 1.110e+00

p4 -4.294e+00
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The deviation of the parametrization functions from the numerically calcu-
lated values reach ∼ 10% at large angles. They are, however, a few percent
for small angles.

7.2 Parametrization of the lateral distribution of the emitted Ch light, GCh
r (r; s, h)

We have parametrized the lateral distribution GCh
r (r; s, h) as follows:

GCh
r (r; s, h) = C ·

(

r

rM

)α

·
(

1 + k
r

rM

)−β

(27)

where C guarantees the correct normalisation, and equals:

C = ln(10) · kα Γ(β)

Γ(α)Γ(β − α)
(28)

The dependence on s and h (in km, above sea level) is as follows:

α(s, h) = (p0 · s
3 + p1 · s + p2 · h + p3 · s · h + p4) · (h + p5) + p6 (29)

k(s, h) = ep0·s
2+p1·h+p2·s · (p3 · h

2 + p4 · s · h + p5 · s) + p6 (30)

β(s, h) = ep0·s
2
·h+p1·h

2+p2 + p3 · s + p4 (31)

The values of the parameters are:

pi α k β

p0 -6.087e-04 -9.864e-01 1.206e-01

p1 5.619e-02 1.599e-01 9.075e-03

p2 3.428e-03 1.947e+00 -6.902e+00

p3 -2.618e-03 7.696e-05 5.509e-01

p4 -6.003e-02 -4.462e-03 2.757e+00

p5 8.200e+00 6.259e-02

p6 1.235e+00 5.858e-01
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