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ABSTRACT

It is well known that the main objective of conceptual re-
trieval models is to go beyond simple term matching by
relaxing term independence assumption through concept
recognition. In this paper, we present an approach of seman-
tic indexing and retrieval of biomedical documents through
the process of identifying domain concepts extracted from
the Medical Subject Headings (MeSH) thesaurus. Our in-
dexing approach relies on a purely statistical vector space
model, which represents medical documents and MeSH con-
cepts as term vectors. By leveraging a combination of
the bag-of-word concept representation and word positions
in the textual features, we demonstrate that our mapping
method is able to extract valuable concepts from documents.
The output of this semantic mapping serves as the input
to our relevance document scoring in response to a query.
Experiments on the OHSUMED collection show that our
semantic indexing method significantly outperforms state-
of-art baselines that employ word or term statistics.

Keywords
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1. INTRODUCTION

Traditional Information Retrieval (IR) systems rely on
matching keywords from queries to those from documents
under the basic assumption of term independence. This
leads to the well known bag-of-word based indexing and re-
trieval models that provide poor search results. Conceptual
indexing and retrieval models, i.e., the use of concepts in
ontologies or thesauri, is the extension of bag-of-word based
models. The centerpiece of conceptual approaches is that
independent words are not able to capture the document
semantic content and that a suitable solution to this prob-
lem is to reach the conceptual level of information contents.
Several types of knowledge could be exploited for deriving se-
mantic document representations such as knowledge about
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the search task, knowledge about the problem, knowledge
about the user’s intent, knowledge about the domain, etc.
We focus here on the use of this latter to derive the se-
mantic kernels of biomedical documents. In the biomedical
domain, such knowledge bases (e.g., Medical Subject Head-
ings (MeSH), Unified Medical Language System (UMLS),
International Classification of Diseases (ICD), etc.) exist
and are so far maintained by several biomedical research
groups. They entail generally domain concepts at various
levels of specificity. In biomedical IR, there have been many
works dealing with conceptual indexing by mapping free text
to medical ontologies leading to the challenging problem of
concept identification or extraction [1-7,10].

In this paper, we propose a novel method for extracting
key concepts from biomedical documents using the MeSH re-
source. More specifically, we use an IR-based approach [10]
for both MeSH concept categorization and document rele-
vance estimation. Our main contribution consists in repre-
senting the document’s semantic kernel as the top relevant
concepts extracted by measuring the concept relevance for
the document. Our basic assumption behind concept rele-
vance is that a list of document words is more likely to map
a concept that (1) both shares a maximum number of words
either among its preferred or non-preferred terms derived
from all of its possible entries; (2) the words tend to ap-
pear in the same order so to cover the same meaning. Thus
we propose to combine two features: content-based similar-
ity and word order similarity between a document and each
MeSH concept using the cosine measure and the Spearman
rank correlation. We incorporate the semantic indexing ap-
proach into the semantic retrieval model by (1) adopting our
semantic-based method to extract the most representative
concepts from documents; (2) expanding documents with
keywords extracted from identified concepts; (3) computing
the document relevance score.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes related work. Section 3 details our se-
mantic document indexing and retrieval framework. Exper-
iments and results are presented in section 4. Section 5
concludes the paper and outlines directions for future work.

2. RELATED WORK

Automatic concept extraction from medical text is a chal-
lenging task because of many reasons. First, terms repre-
senting biomedical concepts are usually comprised of multi-
ple words that lead to a more specific meaning as a whole.
For instance, “cancer of brain” is a neoplasm of the intracra-
nial components of the central nervous system but the word



“cancer” alone could be any type of malignant growth or tu-
mour. Second, there are several synonymous terms applied
to the same concept. For example, terms such as “avian flu”,
“avian influenza”, “fowl plague”... can be used to indicate
the concept “Influenza in Birds” as defined in MeSH. Third,
many abbreviations/acronyms can be used to refer to differ-
ent concepts, e.g, “APS” may refer to a gene or protein in
UMLS. This work focuses on the two first challenging points
of automatic concept extraction for indexing and document
retrieval purposes. Automatic indexing can be basically re-
ferred to as the assignment of a number of terms denoting
concepts to a document. Each concept is represented by a
unique preferred term, used for indexing, and one or many
non-preferred terms, used for retrieval. Intuitively speaking,
the document concept extraction within a thesaurus can be
defined as a classification problem as follows:

e classify document D into a ranked list of n con-
cepts Ci1,Cizy...,Cin, C  C1,Co,...,Cn where
C1,Ca,...,CnN is a set of semantic categories belong-
ing to the thesaurus;

e the meaning of each semantic category is defined by the
labels along the path from the root to the corresponding
node in a poly-hierarchical structure;

e document D consists of textual features of words.

Works on biomedical concept extraction have been exten-
sively studied in the literature [1-7,10]. Current approaches
to concept extraction for identifying biomedical concepts can
be subdivided into four categories: rule-based [4,5], ma-
chine learning [2,7], dictionary-based [1,8] and statistical
approaches [6,10]. Rule-based approaches generally rely on
formation patterns naming structures for specific concept
classes using lexical and morphological properties [4,5]. Such
approaches are known to be extremely time-consuming for
development, and moreover their application to other enti-
ties is usually difficult. Machine learning (ML) methods use
manually annotated corpus for training classifiers, which ba-
sically try to learn several features for binding terms from
free text to predefined classes. The work cited in [2] use Hid-
den Markov models (HMM) and specific orthographic fea-
tures for discovering terms belonging to a set of ten classes.
Each term candidate was assigned a class of the most sim-
ilar term from the training set, with respect to the ortho-
graphic similarity. Support vector machines (SVM) have
been a powerful tool for supervised ML. The work cited
in [7] trained multi-class SVMs on the manually annotated
GENIA corpus for the task of named entity recognition.
More precisely, their method aims at predicting composite
tags indicating named entities based on position-dependent
features (e.g., POS, prefix and suffix features), as well as a
word cache capturing similarities of patterns with a common
keyword, and HMM state features in order to address the
data sparseness problem. However, ML methods are faced
to some difficulties when training data are not available,
e.g., instances of RNAs in the GENIA corpus. Dictionary-
based methods for concept extraction use existing termino-
logical resources to map free text to entries in a dictionary.
MTI (Medical Text Indexer) [1] integrates several methods
of concept recommendation for indexing MEDLINE docu-
ments. MTI uses a knowledge intensive approach based on
symbolic, and computational linguistic techniques for iden-
tifying biomedical concepts. It provides at the first stage

a list of UMLS concepts and then restricts to MeSH con-
cepts, which are finally used to represent the semantics of
the document. The work cited in [8] suggested a method
based on an approximate string matching to recognize gene
and protein names and their variations. In their approach,
both protein dictionaries and target text are encoded using
the nucleotide code (a four-letter encoding over the A, C, G,
T alphabet). Statistical approaches have been proposed to
address the recognition of general terms. For example, the
work cited in [3] has proposed a method called C/NC value
for recognizing technical terms used in Digital Libraries. It
has been also used to recognize terms from biomedical liter-
ature [6]. The C/NC value is a domain-independent method
combining statistical and linguistic information for the ex-
traction of multi-word and nested terms. The work cited
in [10] introduced a retrieval-based system for MeSH classi-
fication. For each MeSH term, its synonyms and description
are indexed as a single document in a retrieval index. A
piece of text, the query to the retrieval system, is classified
with the best ranked MeSH documents.

Our work presented in this paper belongs to this last cat-
egory of work. Our approach differs from previous works in
two important ways: first, using an IR point of view, we esti-
mate concept relevance for a document by combining docu-
ment/query concept matching degree and document/query
concept correlation, as clues for achieving concept extrac-
tion accuracy. Besides, we propose to expand the documents
with words belonging to the extracted concepts.

3. OUR CONCEPTUAL INDEXING AND
RETRIEVAL APPROACH

In this work, we design a conceptual indexing and re-
trieval framework that incorporate identified terms denoting
concepts from MeSH in an attempt to highlight the subject
matter(s) of documents for improving the IR effectiveness.
Our system architecture consists of three main components
detailed below: (1) MeSH categorization, (2) document-to-
concept mapping and (3) Document expansion and retrieval.

3.1 MeSH categorization

We suppose that a MeSH concept can be thought of as a
document containing biomedical terms. Indeed, in MeSH,
each concept is described by a main heading (preferred
term), one or many concept entries (non-preferred terms),
qualifiers, scope notes, etc. Main headings and concept en-
tries constitute together the most common indexing and re-
trieval features used in the domain.

Let’s denote Enitries(C) the set of preferred and non-
preferred terms denoting concept C. According to our ap-
proach, MeSH is viewed as a collection of textual concepts
that can be indexed according to the vector space model [11].
Formally, each concept C' is represented as a basic keyword
vector: C = (c1,c2,...¢n,), where N, is the number of
unique words in MeSH, ¢; is a weight measuring the about-
ness of word w; in C. We propose to adapt the BM25 weight-
ing schema [9] for concept weighting as follows:
log =i t05

n;+0.5

fer % (1= b) +b—L) + tfe;

avgcel

c; =tfc; *

(1)

where tfc; is the number of occurrences of word w; in con-
cept C, N is the total number of concepts in MeSH the-



saurus, n; is the number of concepts containing at least one
occurrence of word wj; in its textual fields, cl is the length of
concept C' (i.e. total number of distinct words occurring in
its textual features), and avcl is the average concept length
in MeSH thesaurus, k1, and b are tuning parameters.

3.2 Document-to-concept mapping: how to
extract key concepts?

In our approach, the document-to-concept mapping is
formalized as an IR task. In other words, given a document,
the mapping leads to the selection of the most relevant
MeSH concepts using a content-based similarity measure.
Furthermore, in order to take into account the importance
of the word order while matching an entry to a bounded
multi-word terms issued from a document, we propose to
leverage the content-based similarity between document
and concept using a rank correlation based matching.
Our strategy, which is mainly based on ranking concepts
extracted from documents using a combined score, involves
three steps detailed below: (1) computing a content-based
matching score, (2) computing a rank correlation based
score, (3) selecting the document semantic kernel by ranking
the concepts according to their combined score.

1. Computing a content-based matching score. Ac-
cording to our IR based approach, the top-ranked relevant
concepts issued from MeSH are assigned to the document.
Formally, we compute for each concept vector C' (cf. sec-
tion 3.1) a content-based cosine similarity w.r.t the docu-
ment D, denoted Sim(C, D), as follows:

Sim(C, D) = —dZL o 2)
’ VI 3/, a2

where N, is the total number of concepts in MeSH, ¢; is the
weight of word w; in concept C' computed using formula 1,
d; is the weight of word w; in document D computed using
an appropriate weighting schema.

2. Computing a rank correlation coefficient. The
candidate concepts extracted from step 1 are re-ranked ac-
cording to a correlation measure that estimates how much
the word order of a MeSH entry is correlated to the or-
der of words in the document. For this aim, we propose
to measure the word order correlation between the con-
cept entry and the document both represented by word po-
sition vectors. Formally, the correlation measure is com-
puted using the Spearman operator as follows: let docu-
ment D = (wq,,Wd,,-..,wq, ) be the ranked word based
vector according to the average position of related occur-
rences in document D, i.e., wq; is the document word in D
such that pos(occs(wq,)) < pos(oces(wa,,,)) Vi=1...L—1,
where ocecs(wg;) is the set of occurrences of word wg, in
document D, L is the total number of unique words in doc-
ument D. Similarly, let E = (we,,Wey,--.,We,,) be the
ranked word based vector according to the average position
of related occurrences in concept entry E, where L’ is the
concept entry length. We denote the set of words in D as
words(D) = {wq,,Wa,, ... waq, } and in concept entry E as
words(E) = {wel yWegs - -+ s We,,

First, in order to avoid false rank bias, when measur-
ing the word order correlation, a portion of the document
window bounded by the first and last word occurrences
shared by the concept entry £ and the document is captured

and normalized as follows: D,, = (wdw,wdwﬂ, e, Wy, )
where words(Dy) C words(D), wa,, € words(E), way,,, ¢
words(E). Afterwards, the Spearman correlation coefficient
is used to compute the word rank correlation between words
in document D and concept entry E:

6+ T [rank w;,Dqy)—rank(w;,E 2
p(B, D) = 1 — St pp) ot HE - (3)

where rank(w;, D) (resp. rank(w;, E)) is the word order
or rank of word w; according to pos(occs(wa,)) in Dy, (resp.
E), T = |words (D) N (words (E))| is the number of shared
words between document D and concept entry E. We sim-
ply assume that the rank of an absent word in D,, or E is
assigned a default value ro > T. The coefficient p(E, D) al-
lows measuring the degree of agreement between two word
rankings in E and D,,. If the agreement between two rank-
ings is perfect (i.e., the two rankings are the same) the co-
efficient has value 1. If the disagreement between them is
perfect (i.e., one ranking is the reverse of the other) the co-
efficient has value —1. For all other arrangements the value
lies in between —1 and 1, and increasing values imply in-
creasing agreement between them. In order to consider each
significant entry separately, we practically compute:

p(C7 D) - MaxEEEntries(C) P(E7 D) (4)

where Entries(C) refers to both preferred terms or non-
preferred terms belonging to concept C'.

3. Selecting the semantic document kernel. Finally
the content based similarity score and the correlation score
between concept C' and document D are combined in order
to compute the overall relevance score Rel(C, D) as follows:

Rel(C, D) = (1+ Sim(C,D)) * (1 + p(C,D))  (5)

The N top-ranked concepts with the highest scores are se-
lected as the semantic index kernel of document D. The
optimal value of the parameter N is experimentally tuned.

3.3 Document expansion and retrieval

The document expansion stage aims at increasing the de-
gree of word overlap between user queries and observed doc-
uments. Here, we use words figuring in the main entries for
normalizing the document content in an attempt to resolve
the synonymy problem. Next, our objective is to compute
the relevance score of the expanded documents with respect
to each query. We hypothesize that expanded terms denot-
ing concepts are somehow less relevant than original terms
in the document (namely hypothesis H) because terms iden-
tified using the IR approach may return some irrelevant in-
formation (noise) w.r.t the query, thus the score of a given
term in the document D is computed as:

(1 — ) *wo(t, D)

if ¢ is an expanded term
score(t, D) = { wo(t, D) P

otherwise
(6)

where wo(t, D) is the original document term score com-
puted by the BM25 weighting model. « € [0..1) is a decay
factor by which the score of the expanded terms is reduced.
Finally, the relevance score of the document D with re-
spect to the query @, namely RSV (Q, D), is given by:

RSV(Q, D) > t,eq score(ti, D) (7)

where ¢; is the query term, score(t;, D) is the final document
term score computed using formula 6.

}



4. EXPERIMENTAL EVALUATION

4.1 Test Collection

We used the OHSUMED test collection, which is a MED-
LINE subcollection used for biomedical IR, under the Ter-
rier IR platform (http://terrier.org/). Each document
has been annotated by human experts (physicians) with a
set of MeSH concepts revealing the subject matter(s) of the
document. Some statistical characteristics of the collection
are depicted in Table 1. For measuring the IR effectiveness,
we used PQ@Q10, P@20 representing respectively the mean
precision values at the top 10, 20 returned documents and
MAP representing the Mean Average Precision calculated
over all topics.

Number of documents 348,566
Average document length 100 tokens
Number of queries 63
Average query length 12 terms
Average number of relevant docs/query 50

Table 1: Test collection statistics

4.2 Experimental Setup

The purpose of our experimental evaluation is to deter-
mine the utility of our MeSH concept extraction method
by measuring the impact of exploiting them for document
expansion on the retrieval effectiveness. Therefore, we car-
ried out two series of experiments: the first one is based
on the classical indexing of titles and/or abstracts using the
state-of-the-art weighting scheme OKAPI BM25 [9], as the
baseline, denoted BM25. The second one concerns our con-
ceptual indexing approach and consists of four scenarios:

1. the first one concerns the document expansion using
concepts’ manually assigned by human experts, de-
noted Manual,

2. the second one concerns the document expansion using
concepts identified by the MTTI tool [1], denoted MTI,

3. the third one concerns the document expansion using
concepts identified by the cosine content-based text-
to-concept mapping, denoted Cosine,

4. the last one concerns the document expansion using
concepts identified by the combination of the cosine
content-based and the Spearman rank correlation be-
tween word occurrences in document and concept en-
tries (see formula 5), denoted Combination.

4.3 Results and discussion

We now present the experimental results of four doc-
ument expansion strategies: Manual, MTI,Cosine and
Combination. At the first stage, we aim to measure the
impact of the document kernel size on the IR effectiveness
by tuning the number of extracted concepts; and at the sec-
ond stage, we will measure the IR effectiveness using the
optimal number of extracted concepts and our proposed se-
mantic term weighting schema (see formula 6).

Lonly preferred terms are used for document expansion

4.3.1 Impact of the document kernel size

As mentioned in section 3.2, the number of identified con-
cepts, namely N, has an important impact on the IR effec-
tiveness and must be tuned experimentally. At this stage,
terms, both original or those derived from the extraction
method (expanded terms), are weighted using the state-of-
the-art BM25 model [9]. In the Manual approach, a dozen
terms or descriptors among more than 24,000 MeSH main
headings (e.g. “Affective Symptoms”, “Life Style”, etc.) rep-
resenting the subject matter(s) of the article were manu-
ally selected by the NLM human indexers for assigning to
each abstract. We don’t aim to vary the number of de-
scriptors that have been appropriately selected by human
indexers. In an automatic setting, we firstly tuned the num-
ber of identified concepts from 0 to 50, with a step of 5.
MTI took two months for achieving the concept extraction
task on the OHSUMED collection while extracting only 25
concepts maximum by default for each abstract. Our con-
cept extraction methods are able to extract any given num-
ber of concepts from the document. The concept extrac-
tion task using one of our two methods on the OHSUMED
collection only took around four days and nights. Table 2
shows the MAP results achieved for three document expan-
sion methods (MTI,Cosine and Combination) when vary-
ing the number of concepts used for document expansion.
The results of the M anual method are presented in Table 4.
MT1I is not appropriate for document expansion when N is
linearly increased because the IR effectiveness are dramati-
cally decreased after expanding a limited number of concepts
to documents. This may be due to the term over-generation
problem suffered by the MetaMap approach when trying to
increase the recall by generating a set of lexical variants of a
given term and then map to the UMLS concepts before re-
stricting to MeSH concepts. Therefore, we only retain N = 5
for MT1I in the next experiments. The Cosine method is
better than the baseline BM25 in terms of MAP by 3.24%
at N = 25. In addition, the Combination method shows an
improvement of 9.48% in terms of MAP over the baseline at
the same value N = 25. The performance is decreased when
N gets over 25 concepts. This could be explained by the
fact that the more the number of valuable terms expanded
to the document is, the higher the probability that query
terms match the document ones will increase. However, we
could not expand an unlimited concepts to the document
because the semantics of the document will be dramatically
changed by adding irrelevant terms to the document.

N MTI Cosine Correlation

0 0.2595 0.2595 0.2595

5 0.2448 (-5.66) 0.2424 (-6.59) 0.2609 (+0.54)
10 0.2395 (-7.71) 0.2497 (-3.78) 0.2677 (+3.16)
15 0.2344 (-9.67) 0.2566 (-1.12) 0.2735 (+5.39)
20 0.2331 (-10.17)  0.2626 (+1.19) 0.2800 (+7.90)
25 0.2316 (-10.75) 0.2679 (+3.24) 0.2841 (+9.48)

30 N/A 0.2561 (-1.13)  0.2682 (+3.35)
35 N/A 0.2537 (-2. 24) 0.2536 (-2.27)
40 N/A 0.2499 (-3.69)  0.2501 (-3.62)
45 N/A 0.2473 (-4.70)  0.2417 (-6.86)
50 N/A 0.2447 (-5.70)  0.2405 (-7.32)

Table 2: MAP (% change) by varying N € [0..50]



4.3.2  Retrieval effectiveness evaluation

After determining the optimal value of parameter N, we
aim to measure the IR effectiveness of each indexing method.
Here, we consider weighting terms in the original document
with a higher score than those figuring in the expanded doc-
ument by adopting hypothesis H (see formula 6). Table 3
shows the MAP values obtained by varying parameter « in
the interval [0..1] with step of 0.1. Our best results are ob-
tained at acosine = 0.10, acorreiation = 0.10. The selected
value of a could be interpreted as some of the expanded
terms are not relevant for expanding the document. Thus,
their score should be reduced by 10% of the original score.

a MTI Cosine Combination
0.0 0.2448 (-5.56) 0.2679 (+3.24) 0.2841 (+9.48)
0.1 0.2347 (-9.16) 0.2758 (+6.28) 0.2910 (+12.14)
0.2 0.2220 (-14.45) 0.2739 (+5.55) 0.2905 (+11.95)
0.3 0.2086 (-19.61)  0.2696 (+3.89) 0.2864 (+10.37)
0.4 0.1947 (-24.97)  0.2653 (+2.24)  0.2810 (+8.29)
0.5 0.1814 (-30.10) 0.2635 (+1.54) 0.27.66 (+6.59)
0.6 0.1677 (-35.38) 0.2575 (-0.77) 0.2724 (44.97)
0.7  0.1537 (-40.77)  0.2541 (-2.08)  0.2684 (+3.43)
0.8 0.1416 (-45.43) 0.2506 (-3.43) 0.2661 (+2.54)
0.9 0.1303 (-49.79) 0.2481 (-4.39) 0.2634 (+1.50)

Table 3: MAP (% change) by varying a € [0..1)

Table 4 depicts the IR effectiveness of the Manual, MTI
and our two semantic indexing approaches. We observe
that in an automatic setting, our best indexing method,
namely Combination, gives the highest improvement rate
(+12.14%) while the Cosine method only gives +6.28% in
terms of MAP over the baseline BM25. This proves the in-
terest to take into account the word order correlation during
the concept extraction process. The MTI concept extrac-
tion method does not help to improve the IR effectiveness
in the case of document expansion. Furthermore, we see
that the Manual, Cosine and Combination methods con-
sistently outperform the baseline. Although the gain of the
Combination method is a little bit smaller than the Manual
method in terms of MAP (12.14% wvs. 13.87%), the former
is better than the latter in terms of P@Q10 and P@20.

searching in conjunction with an efficient way of identify-
ing an appropriate number of concepts would significantly
improve the biomedical IR performance.

5. CONCLUSION

In this paper, we have proposed two methods of con-
cept identification from the MeSH thesaurus for improv-
ing biomedical information indexing and retrieval. Our ap-
proach relies mainly on turning the concept mapping into a
concept retrieval task by means of concept relevance scor-
ing. The best scoring method combines the content-based
similarity and the word order correlation between word oc-
currences in documents and concept entries. It shows that
the word order correlation is a potential source of evidence
that could be incorporated into a conceptual indexing and
retrieval process. Future work will focus on improving the
concept weighting schema using evidence issued from specific
semantic features derived from the centrality of the concepts
in the poly-hierarchical structure. Besides, we aim to decline
the mapping score of concepts in the weighting schema in
order to enhance the best concepts in the retrieval step.
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