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A Recursive Sparse Learning Method: Application
to Jump Markov Linear Systems

Dulin Chen, Laurent Bako and Stephane Lecceuche

* Univ Lille Nord de France, F-59000 Lille, France
** EMDouai, 1A, F-59500 Douai, France

Abstract: This paper addresses the problem of identifyimggak multi-variable models from the input-
output data which is corrupted by an unknown, non-centeaad, sparse vector error sequence. This
problem is sometimes referred to as error correcting pmbfecoding theory and robust estimation
problem in statistics. By taking advantage of some recem¢ldpments in sparse optimization theory,
we present here a recursive approach. We then show that dpeged identification method can be
adapted to estimate parameter matrices of Jump Markov L8ystems (JMLS), that is, switched linear
systems in which the discrete state sequence is a statidenkov chain. Some numerical simulation
results illustrate the potential of the new method.

Keywords: Sparse estimation; Recursive identificatiompEcorrection; Robust identification; Jump
Markov Linear Systems (JMLS).

1. INTRODUCTION this problem has numerous applications in various engiimger
fields [1, 5].Whilebatchsparse estimation has been extensively
In this paper, we consider the problem of identifying a lineatreated in the existing literature [6, 7ecursivesparse esti-
multi-variable model, subject to sparse vector errors. dlormation is a problem that has not received much attention so
specifically, given a collectioy = {z (t) ,y (t)}i\il (with N far. And yet there are many practical situations where arrecu

possibly infinite) of data generated by a model of the folluyi SiVe processing of the measurements is desirable. For dgamp
form, when we are interested in monitoring on-line a physical pssc

y(t) =Hz () + f () +e(t) (1) with the objective of detecting abrupt changes, the datsare
; ;  mxn quentially sampled, hence calling for a recursive treatnf@n
the problem is to estimate the matrbt € R . Here, when the number of data available for parameter identificati

y (t) € R™ is the output of the modek; (t) € R™ is referred . : ; o
to as an explanatory variable and sometimes as a regresE‘ﬁtroo large, it may be computationally difficult to proceissrn
at once using batch algorithms. In such a situation,nseel

\é?s(;tr?t:u{tleo(rg\}/'éz aUnQL;nI;nown I.1.d noise sequence with a norma;r;stimation is an attractive alternative. Despite the miee of
) e-m)-

the problem of recursive sparse estimation, only a few itecen
In equation (1), the sequengg (t)} C R™ is assumed to be works brought it up [8, 9]. Note however that the solutions
an unknown but sparse sequence of possibly gross errorsect@roposed in those papers appeared to be a recursive extensio
By sparse sequence of vectors, it is meant here that thenesrdi of the well-known LASSO algorithm [10] which applies to a
ity of the set{t : f (t) = O}, is very large compared to the total different framework from the one of the present work. To em-
numberN of data. In other words, only a few number of vectorphasize the differences, note first that the data-gengratodel
f(@®),t=1,..., N,arenonzero vectors. Those nonzero vectotis (1) is a multi-variable one so that the unknown variablb&o

in the sequencé f (¢)} can in principle have arbitrarily large computed is a parameter matrix instead of a vector as islysual
magnitudes. Typically, the sequengg(¢)} can be thought of the case in related works [1, 5-7]. Second, while the LASSO
as occasional errors occurring in data measuring deviees. Beeks to estimate a parsimonious vector of parametergdne s
example, it can be viewed as accounting for data transmisity constraint is imposed here on a sequence of error \&ector
sion/reception errors over communication networks [1]esr-s This comes with an additional challenge specially when the
sor/actuator faults in linear dynamical systems. A paldidy data are also corrupted by zero-mean noise as in model (1). To
interesting application of the above problem concerns, ills wthe best of our knowledge, our work is the first one to address
be suggested later in the paper, the identification of swich the problem of identifying a multi-variable model such a} (1
linear models. In this case, if one focuses on the problem @hvolving a sparse error sequence) in a recursive framewor

recovering a specific linear multi-variable submodel, thes I . : ,
data generated by the other submodels can be regarded a‘léhg contribution of this paper is twofold. In the first part,

sparse sequence of errors [2—-4]. We will elaborate moreien tf§: €W _metho%lls preselzjte% for solving the rtra]cursw_et:eparse
point in Section 3. estimation problem stated above. Our approach consiskein t

optimization of anfs-norm based cost function. For the sake
The objective of this paper is to providerecursiveestimate of easy recursive update, we approximate the solution gtrou
of the matrixH in model (1) as the datdz (¢),y (t)} are a Weighted Recursive Least Squares (W-RLS) algorithm. The
getting sequentially acquired in time. In doing so, no addiway the weights are selected is inspired by the idea usectin th
tional information other than that of sparsity is available re-weighting¢;-minimization algorithm of [6] which, recall,
the vector sequencéf (¢)}. As argued earlier in the paper, applies to a different setting from the one treated here. The



second contribution of this work is an application of thelnoet  problem as above is nonconvex and generally NP-hard, becaus
developed in the first part to the identification of Jump Markoits solution requires an intractable combinatorial sedfjh
Linear Systems (JMLS). I denotes the number of subsystemd he idea of recasting this nonconvex optimization probleta i
composing the JMLS under consideration, we show that tteeconvex one has been developed in the past several decades
submodels can, following a similar procedure as in [4], b§s, 7], by changing thé, norm into the/; norm in the objective
recursively identified using W-RLS identifiers operating in function (5). Here, we pursue the same approach to obtain,

parallel. Hhin ||f||1

The rest of this paper is organized as follows. The novel otkth .

is outlined in Sepctﬁ)n 2. IngSection 3, we show that this métho subject toy (t) =Hx (t) + f (1), =1,.... N
can be applied for the identification of IMLS from input-auttp where || f||, = S, [If (t), is the £;-norm of f. From
data. Numerical simulation results are reported in Seetigdl  now on, we assume thdt= 2. Note that we can then drop
of the simulation results, on linear models as well as on JML$he constraints in the above problem and view it as the one
reveal an excellent behavior of our algorithm. In the ené, thof computing the parameter matri% by minimizing the cost
conclusion and future work are discussed in Section 5. function

(6)

N
2. THE RECURSIVE SPARSE LEARNING METHOD J(H) =" |lyt) = Hz (1) ||, )
t=1

In this section we propose a solution to the identificatiasbpr It is important to notice that the cost function (7) consists

lem stated in the previous section. Recalling the multialde  sum of norms (on the fitting errors) instead of the usual sum of
model (1), our goal is to identify the parameter matdixre- squared normé. This detail is crucial in promoting a solution
cursively, from the experimental measuremehigt),y (t)}, H such that the vector sequend¢(t) = y(t) — Hz(t)} is
which are corrupted by unknown noise and sparse error sgparse [11]. To see why, note that (7) can be rephrased as
quences{e(t)} and {f(¢t)}. For the sake of clarity in the

presentation, we will assume that the noise sequdnce)} J(H) = Zw(t) ly(t) — Ha(t)|12, (8)

is identically equal to zerb. =

where the weighw (t) = 1/ ||y (t) — Hz(t)]|, has been intro-
duced. In factw(t) = 1/ f(t)|, if f(t) # 0 andw(t) = oo

f(t) = 0. Here the cost function (8) shows the exact be-
avior of the objective function (7). Comparing (8) with the
standard least squares, we can see that the objective (7) (or
8)) behaves as if infinite weights were assigned to the dittin

2.1 The main idea

We start by emphasizing that no other prior information i%
available, except the sparsity condition on the error secgie
{f (t)}. Standing on this point, the solution to our problem is t
minimize the number of non-zero vectors in the error seq@ieng, .o < for whichf() = 0. Hence this cost function tends to

{f ()}, subject to (1). Itis formulated as, assign an infinitely high contribution to the errors for whic
min [{t: f (1) # 0}, @ f(t) = 0 and to annihilate the effects of the errors for which
: . . f(t) # 0. As a consequence, provided the cardinality of the set
subject t?‘y (*) - Ha (1) + (1) ’_t =L N {t( :>f(t) # 0} is reasonably small, minimizing (7) may result
where the notationS| with S representing a set, stands for thein the exact matrixH, despite the presence of the sparse error
cardinality of the se&. The optimization problem (2) attempts vector sequence.
to find the matrixH fitting the data record(z(t),y(t)} to ) L o
model (1) and also making the error sequefitét)} as sparse In practice, one can compute a minimizer of (7) by considgrin
as possible. Sparsity is reinforced here by minimizing thie objective (8). This latter cost function (8) would cepend
cardinality of the seft : f(t) # 0}. Noting thatf (t) # 0 if simply to a weighted least squares problem {f) were known

and only if|| f ()]|, # 0, where stands for any norm, problem for any ¢. Unfortunately, this is not the case here since the
(2) can be reformulated as weightsw(t) depend on the unknown matrid. In the fol-

. lowing, an approximate solution is computed in a recursive
min|{t: | (£)], # 0] Sork, T P

3) framework.
subjecttoy (t) = Hz (¢t) + f (¢t),t =1,...,N.
In principle, / can be any type of norm. For example, one ca@.2 Derivation of the recursive estimator
take/ to be the2-norm or thecxo-norm. But in practice, the type
of norm is of critical importance in the quality of the resutine  As already emphasized before, our goal here is to obtain the

can hope for. By now defining matrix H in a recursive fashion. To this end, denote with
F=UrQl, ... ||f(N)||€)T7 (4) H(0) the initial value assigned to the estimatedfand let
problem (3) is equivalent to P(0) € R™*™ be a positive-definite matrix. Defirté¢ (¢) to be

the estimate oH at timet¢ based on the data paifs(k), y(k))

mHin HfHO (5) sampled up to time. H (t) can be viewed as the matrix(t)
subjecttoy (t) = Hz (¢) + f (¢t),t =1,...,N. that minimizes the cost function

Here and in the following,||z||, refers to thely-norm of ‘ Tk 2

z defined by||z||, = |i: z(i)o;é 0}| for any vectorz = J(H(®)) = Z)‘t w (k) [y (k) = H (t) 2 (k) Hz 9)

k=1

T . . .
(z(1) ... z(N)) . Itis well known that an/,-minimization AU [(H(E) — H(0)) TP~ (0)(H(t) — H(0))]

1 However the method to be presented still works in the presefteise. This
is illustrated in Section 4. 2 The sum of squared norms correspond to the ordinary leastesjua




where A €]0, 1] is a forgetting factor. Here, the weights areD;, j € S, as well as the transition probabilities defined in (15).

approximated as Moreover, all of the identification process will be-linein our
1 work.
w(k) = - : (10)
ly (k) =H (k=1 z (k) |, +n Let us set
with n being a small positive number. With this approximation, z(t) = (x (t)T u (t)T )T (17)
the weight sequencéw (k)}fc:1 is now completely known. A B
As a result, the criterion defined in (9)-(10) can be regarded Hy() = (C"(t) D"(t) > (18)
as a Weighted-Recursive Least Squares (W-RLS) criterign. A o(t) He®) .
is well known, the matrixH (¢) that minimizes (9) can be gt)=(zt+1)" y@®)") - (19)
computed fromH (¢ — 1) by applying the following update Then we can rewrite the model (14) as,
les [12]: _ _
el e e §(t) = Hoyz (1). (20)
K((t) = - (11) The application of the previous method to the estimatioref t
R At w(t)at (P R Da () matrices{H,};_, from model (20) is based on the following
Ht)=H(t-1)+ (y@®) —H({¢-1)x(t))K" (t) (12) observation. For anye S, model (20) can be rewritten as
P()=1 (PU-1)~K@®)a" (OPG-1), (13 g(t) =Hiz (1) + (How) —Hi) 7 (1) 21)

=Hiz (t) + fi (1),

with f/(t) = (H,) —H;) Z(t). Now by assuming that the
discrete staté is visited by the JMLS frequently enough, we
can see that the vector sequeg¥(¢) } in (21) is sparse since
3. APPLICATION TO JUMP MARKOV LINEAR fi(t) = 0 whenevers(t) = i. Therefore, if we focus on the
SYSTEMS identification of a specific submodel with indéxwe get a
similar model as (1), under noise-free assumption. Stanain

In the previous section, we presented a method for idengfyi thiS point, we can adapt the method proposed in the previous
the parameter matrix recursively from a collection of meaS€Ction to identify the parameter matrices of the JMLS model
surements which are corrupted by unknown sparse error aff?)- In fact, if there exists one submodebf the JMLS that
white noise sequences. In this section, we will show that th|S activated very often over time, then running directly tie
method can be interestingly applied to the identification oRLS identifier of Section 2 on the data generated by model
Jump Markov Linear Systems (JMLS). 20) may yield tht_a corres_pondlng mattl . However, this may

not be the case in practice. For example, when the number of
A JMLS corresponds to the behavior that results from switchsubmodels is relatively large, it may happen that none of the
ings among a set of linear subsystems, the transitions ketwesubmodels is frequently activated.
subsystems being determined by a finite state Markov chain.

wherew (t) is defined as in (10), the initial valud$ (0) can
be chosen randomly, arfél(0) = al,, with a > 1, I, is an
identity matrix with the dimension of.

JMLS can be represented by To deal with this type of situation, the recursive sparsarest
tion method can be applied efficiently as follows. We estamat

{ z(t+1) = Aoy (1) + Bopyu (t) (14) all the submodels simultaneously by runnindifferent recur-

y(t) = Cowz (t) + Dogyu (t) ’ sive identifiers in parallel, one identifier for each submodée

wherez (t) € R"= stands for the continuous state, with ~ each timet, the discrete state(t) is estimated as the index
representing the order of the system (i.e, the dimensiohef tof the submodel which, based on the prior estimates of the
state space). This order is assumed to be the same for alldifferent parameter matrices, appears to be the most ¢ensis
the submodelsu (t) € R™, y(t) € R™, o(t) € S = with the data paifz(t),(t)). Then the submodel associated
{1,...,s} are respectively the input, the output and the discrewith the estimated discrete state has to be updated. To see
state (which will be also called the modd), ;) € R"=>*"=, why this procedure is likely to yield the sought matrides
Byry € R™X™, Cypy € RWX" Dy € R™X™ are i € S, note that each of the recursive sparse identifiers has
the parameter matrices associated with the discretestaje [0 correct only wrong mode assignments (which are expected
It is assumed that (), t > 1, is a discrete-time, first-order © be rare). Therefore, thanks to the error correction tgbili
stationary Markov chain with constant transition probisiss  Of the identifiers, this algorithm is, as will be confirmed by
defined as simulations results, able to recover the JMLS parameters.

wij =P{o(t)=io(t—1)=j} (15)  In more details, we follow a similar idea as in [4, 13] and stle
foranyi,j € S = {1,2,...,s}. Hence, the transition probabil- &(t) to coincide with the index of the matrii; (¢t — 1),i € S
ity matrix 7r is ans x s constant matrix, with the componentsthat minimizes the relative fitting error i.e,
satisfyingz;; > 0 and)_;_, m;; = 1, for eachj € S. The _ 3 ~
initial probability distributions are denoted as, 3 (1) = argmin Hy () -Hit-1)z (t)H2

7y =P {0 (0) = j} (16) ies H (lnﬁ% A, (t— 1)) H ’

forall j € S and are such that? > 0, and}_"_, =} = 1. :

(22)

whereH; (t — 1) is the estimated matrix associated with the
Given the measurements Sequeﬁcgp (t), u (t)’ y(t)}iv:p d!screte_ staté € S att — 1; Inw+ny is an identity matrix of
our objective is to identify the parameter matriges B;, C;, dimensionn; + ny.

3 The continuous state(t) is assumed completely measurable while theln the followir]g part of this §§'Cti0n, we are g_oing tO.fOCUS
discrete state (¢) is unknown. on how to estimate the transition probabilities-line Define




two sets Zj (t) and Z; (t) as follows: Zj (t) records the aso
time indices when the system switched from submagdéd

submodel: while Z(t) records the time indices when the
system is switched into submodeirom any submodel. More
specifically, let

Zy()={1<k<tlg(k)=ic(k—-1)=j}, (29 ° L L N N
Zi(t)={1<k<tlg(k)=i}. (24)
Then, the transition probability from staeto statei can be ool @
evaluated as R I
e e | AL

Here & (1) is the estimated transition probabily at time = - ﬂnhmhﬂnlnh‘l lml“hmm l“lhhnl“llm nﬂlh“l“m hhl Mﬂnlﬂl“'i
t; |Zi;(t)| and |Z;(t)| represent the cardinality of the sets = e e o0
Zj (t) and Z; (t) respectively. Furthermore, we can derive th

@)

Norm of Sparse Ermor ||f(t)H2

Norm of Sparse Ermor ||t(t)|\2

samples

Figure 1.4, norm lf ()|, of the sparse error sequence in

following update rule for the transition probability,
. |Z‘ (t—1)]

ﬂ-”(t): — = %ij (t*l)‘i’
|Zi(t = 1)| + 6 (t) - (26)
5 (t)d;(t —1)
+ —= =
| Zi(t — 1) +6:(t)
where

5, (1) = {1 tol)=q 27)

0 if () # q.

model (28): (a) over 1500 samples; (b) over the first 200
samples.

sequenced f (t)}ivzl, with V = 1500, is chosen such thato0
vectors out of1500 are strictly equal to zero. The remaining
error vectors are generated from a non-centered normal dis-
tribution, N'(fi1, 03 1,,), in = 5(1,...,1)7, 02 = 100. For

an overview on the temporal distribution of this sparse rerro
sequence, we plot ité;-norm over1500 samples in Fig.1.(a)
and over the firse00 samples in Fig.1.(b). Notice that tife

Finally, we summarize in Table 1 the complete algorithm fororm of non-zero sparse error, as reported in Fig. 1, can be
recursively identifying the parameter matrides i € S, along  arbitrarily large as stated before. The noisét)} in (28) is

with the transition probabilities; ; (¢) of the JMLS model.
Table 1. Algorithm for Identifying JMLS.

Algorithm for Identifying JIMLS

Initialization:

Provide the matricegi(o), the covariance matricd®; (0),¢ € S, as
well as the transition probabilities; ; (0), (i, j) € S.

For any incoming data pair (i(t)7 gj(t)):

(1) Select the activated discrete statét) as in (22).

(2) Update the parameter matrix associated with the actiwdited
crete stater (¢) by (11)-(13). For anyi such thati # & (),
Hi(t) =H; (t — 1).

(3) Update the transition probability matrix using (26).

4. NUMERICAL RESULTS

In this section we illustrate the whole identification prdase

generated as a Gaussian white noise so as to achieve a Signal-
to-Noise-Ratio (SNR) of 30 dB.

Our learning method is implemented in MATLAB. Related
parameters are given as follows. The forgetting factor ts se
to be 0.95. The positive number, appearing in (10) should,
in principle, be extremely small as its role consists only in
preventing division by zero. We sgtto be 1e—6. The initial
covariance matrix is chosen @(0) = al3, with « = 10. And

H (0) is a zero matrix.

The mean and the standard deviation of estimated values for
100 independent simulations with SNR=30 dB, are shown in
Table 2. Compared to the true value, these numerical results
show that our method achieves a good estimate for the parame-
ter matrix of model (28).

Table 2. Empirical mean and standard deviation of

the estimatedd for model (28), with an SNR=30
dB.

on synthetic data generated by a model with the form (1) anda Mean Standard Deviation

JMLS model respectively. 1.5846  0.3942 —0.8046 0.0051 0.0056 0.0051
—0.6355 0.6337 —0.2392 + | 0.0061 0.0044 0.0043

4.1 Identification results for a model of the fo(f) —0.1956 —0.9009 —0.7516 0.0047 0.006 0.0047

Firstly, we test our identification method on the data geteera 14 f,rther analyze the properties of the proposed method, we

by a linear multi-variable model of the type (1). With the , . . N .
dimensionsn — 3 andn = 3, the “true” model that generates define a set of relative errofs (t)},_, to assess the quality of
the estimates over time,

the data is defined as follows:

15847 0.3944 —0.8044 Hﬁ (t) — HH
y () = <—O.6355 0.6342 —0.2397) c()+f) +e(t). 0 — ) (29)
—0.1957 —0.9011 —0.7516 HIl 7

(28) where ||-|| represents thé-robeniusnorm. We apply both
Here, the input data sequen¢e (¢)} is generated randomly the standard RLS algorithm and the new method proposed in
following a normal distribution, A/ (0, I,,). The sparse error Section 2 to solve the identification problem. During all the
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0 The conditions of our experiment are set so as to meet this
as 1 requirement. The non-zero vectors in the sequdnie)} are
= 1 generated randomly from the non-centered normal distdbut
| N(jig,031,), iz = 5(1,...,1)7, 03 = 100. For every
sparsity level,100 simulations are carried out with = 1500
pairs of noisy data (the SNR being equal to 30 dB). The average
' of the final relative errors over all of the simulations focka
T sameles 1990 e sparsity level are reported in Table 4. It shows that our okth
Figure 2. Trajectories of the relative errar&) over time when ﬁ%nh F;igg%ﬁ dramatically well even for a level of sparsity as
standard RLS is applied to model (28): SNR=30 dB.

Judging from all of the results displayed in this subsectioa

° 7 are prompted to conclude that the proposed method is reliabl
016 ] for identifying a model of the form (1), which is subject to
o 1 occasional gross errors.
2o L ] 4.2 Identification results for a JMLS model
ol 00 2000 = Finally, we apply our algorithm to identify JMLS parameter

Samples

matrices, as well as the transition probabilities. We takexa

Figure 3. Trajectories of the relative erraré) over time when ample of JMLS composed of three submodels, i.e., the discret

our method is applied to model (28): SNR=30 dB. stateo(t) lives in S = {1,2,3}. With the dimensions., = 2,
n, = 1 andn, = 1, all of the “true” parameter matrices are

100 simulations, the trajectories of the relative erfar§t)},, ~ Presented in Table 5, together with the transition profitgbil
varying over time are reported in Fig.2 for the RLS and irmatrix. The matricesi; are defined as in (18) for allc S.
Fig.3 for our method._ln these figures, the red t_JoId Ilneslme_t Table 5. “True” JMLS parameter matrices.
averages of the relative errors over the 100 simulatiorgs 2Fi

shows clearly that the standard RLS fails to provide correct Matrix “True” Value
estimates. Note that convergence occurs for that algoratiign —0.7901 —0.0458 —1.0834
over the time intervals on which the error sequefi¢ét)} is Hy (—0.0458 —0.7544 04504)
equal to zero. In contrast, we can see from Fig.3 that, detyst —2.8025 0 0

accurate estimates. In all the simulations carried outglagive —0.3092 0.3868 —2.3072

presence of the errdrf(¢)}, the method of this paper achieves ( —0.5742 —0.3092 0.6379)
Ho
errors drop off rapidly during the first dozens of steps, drad t —1.5833 —1.0135 —1.0293

algorithm almost converges aft& steps. Hence, the proposed —0.6389 —0.1516 0.9488
method successfully recovers the parameter matrix, aittnou Hs (—0.1516 —0.5814 0.7786>
the sparse error sequence is completely unknown and hag a ver 0.0005 0 0
large magnitude. Note that the small bias which is visible in 0.2818 0.2594 0.4589
Fig.3 is induced only by the noise(¢)}. This is confirmed by ™ (0.2500 0.2606 0.4867)
the results of Table 3, where the final estimation egfdY) is 0.2687 0.2410 0.4917

shown to be strictly equal to zero whdi(¢)} is identically
null. The input sequencéu (t)}f/:l, with N = 1500 for each

In order to analyze the robustness of our method with respedifnulation here, is generated randomly following the ndrma

to noise, we test it on model (28) with different noise levelsdistribution, N'(0, I, ). (0) is also given as a random value.

In this experiment, the sparse error sequefit@)} has the A certain amount of Gaussian white noise is added to the
profile given in Fig.1. For each noise level, 100 simulatiaits ~ Output data, so that we get an SNR of 30 dB. The user-defined
N = 1500 data pairs each, are carried out. The average of ti&rameters of the learning method are chosen to be the same as
final relative errors (that is, the error after convergermsey all N the previous subsection. And foe S, the initial parameter

of the simulations are given in Table 3. As already mentignedhatricesH; (0), are drawn at randon®; (0) = a;ls, with

when there is no noise (that is, when SNR), the relative ¢ = 10. The numerical average and standard deviation of the

error is equal to zero. And the relative errors logicallyremse €stimated parameter matrices over 100 simulations aretezpo
when the SNR decreases. in Table 6. It can be noticed that there is a little bias appgar

in the result.This is due to the fact that the data are affelote

Now, we propose to verify up to what extent of sparsity of thehe noise, as argued in Subsection 4.1.
sequence f(t)} our method is able to identify model (28). To ) .
this end, we test it for different sparsity levels{of(¢)}. Here, Moreover, all of the simulation examples have already shown

the sparsity is defined as the number of the non-zero vectord)e effectiveness of the proposed Weighted-RLS. The mesult
divided by the number of data, i.e., reveal that the method proposed in this paper is feasible and

HfH efficient in solving identification problem of JMLS.
=120 % 100%, 30
) P=N ! (30) 5. CONCLUSION
wheref is defined as in (4). For this sparsity measure to make
sense in the present recursive context, the temporaltdissh  In this paper we treated the problem of identifying on-line a
of nonzero vectors in the sequencét) } needs to be uniform. linear multi-variable model, subject to a sparse vectoorerr



Table 3. Relative Errors when our method is applied to mda) with different noise levels.

SNR (dB) | oo 50 40 30 20 10 5
e (N) 0 | 0.0012| 0.0045| 0.0144 | 0.0449 | 0.1293 | 0.2592
Table 4. Relative Errors when our method is applied to mdeg)lWith different sparsity levels—SNR=30
dB.
sparsityp (%) 20 30 40 50 70 80 90 95 96
e (N) 0.0088 | 0.0092 | 0.0102 | 0.0108 | 0.0133 | 0.0165 | 0.0236 | 0.1806 | 13.1917

Table 6. Empirical mean and standard deviation of estimeafdes for IMLS: SNR=30 dB.

Estimated Matrix Mean Standard Deviation

N —0.7901 —0.0458 —1.0834 0.0000 0.0000 0.0000
Hi: —0.0458 —0.7544 0.4504 =+ (1.0e—0) x | 0.0000 0.0000 0.0000
—2.8051 0.0034 —0.0052 0.0543 0.0305 0.0318

R —0.5744 —0.3013 0.6243 0.0428 0.0554 0.1512
Hs : —0.3041 0.3636 —2.2492 + (1.0e—0) x 0.0506 0.1627 0.4068
—1.5617 —0.9812 —1.0114 0.1564 0.2324 0.1352

N —0.6389 —0.1516  0.9488 0.0000 0.0000 0.0000
Hs : —0.1516 —0.5814 0.7786 + (1.0e—5) x | 0.0000 0.0000 0.0000
0.0005  0.0000 —0.0000 0.6261 0.2900 0.1770

0.301 0.2129 0.4854 0.0593 0.0844 0.0864

T 0.2688 0.2635 0.4654 +(1.0e—0) x | 0.0764 0.0552 0.0899
0.2939 0.2347 0.471 0.0802 0.0713 0.0651

sequence. This is an important and generic problem havifig]

applications in many engineering fields. For example, as-ill

trated in the paper, the identification problem for switchird

ear systems can be viewed as a particular instance of thiat pr¢o]
lem. We showed that by appropriately setting some weights, a
simple recursive weighted least squares algorithm can é& us

to efficiently address this problem. Although the effeatiess

of the proposed method has been extensively verified on soifi®]

numerical examples, convergence analysis is still lackirtis
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first work. This will be considered in future research.
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