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Abstract: This paper addresses the problem of identifying linear multi-variable models from the input-
output data which is corrupted by an unknown, non-centered,and sparse vector error sequence. This
problem is sometimes referred to as error correcting problem in coding theory and robust estimation
problem in statistics. By taking advantage of some recent developments in sparse optimization theory,
we present here a recursive approach. We then show that the proposed identification method can be
adapted to estimate parameter matrices of Jump Markov Linear Systems (JMLS), that is, switched linear
systems in which the discrete state sequence is a stationaryMarkov chain. Some numerical simulation
results illustrate the potential of the new method.
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1. INTRODUCTION

In this paper, we consider the problem of identifying a linear
multi-variable model, subject to sparse vector errors. More
specifically, given a collectionDN = {x (t) , y (t)}Nt=1 (with N
possibly infinite) of data generated by a model of the following
form,

y (t) = Hx (t) + f (t) + e (t) , (1)
the problem is to estimate the matrixH ∈ R

m×n. Here,
y (t) ∈ R

m is the output of the model,x (t) ∈ R
n is referred

to as an explanatory variable and sometimes as a regressor
vector;{e (t)} is an unknown i.i.d noise sequence with a normal
distributionN (0, σ2

eIm).

In equation (1), the sequence{f (t)} ⊂ R
m is assumed to be

an unknown but sparse sequence of possibly gross error vectors.
By sparse sequence of vectors, it is meant here that the cardinal-
ity of the set{t : f (t) = 0}, is very large compared to the total
numberN of data. In other words, only a few number of vectors
f (t), t = 1, . . . , N , are nonzero vectors. Those nonzero vectors
in the sequence{f (t)} can in principle have arbitrarily large
magnitudes. Typically, the sequence{f (t)} can be thought of
as occasional errors occurring in data measuring devices. For
example, it can be viewed as accounting for data transmis-
sion/reception errors over communication networks [1] or sen-
sor/actuator faults in linear dynamical systems. A particularly
interesting application of the above problem concerns, as will
be suggested later in the paper, the identification of switched
linear models. In this case, if one focuses on the problem of
recovering a specific linear multi-variable submodel, thenthe
data generated by the other submodels can be regarded as a
sparse sequence of errors [2–4]. We will elaborate more on this
point in Section 3.

The objective of this paper is to provide arecursiveestimate
of the matrix H in model (1) as the data{x (t) , y (t)} are
getting sequentially acquired in time. In doing so, no addi-
tional information other than that of sparsity is availableon
the vector sequence{f (t)}. As argued earlier in the paper,

this problem has numerous applications in various engineering
fields [1, 5].Whilebatchsparse estimation has been extensively
treated in the existing literature [6, 7],recursivesparse esti-
mation is a problem that has not received much attention so
far. And yet there are many practical situations where a recur-
sive processing of the measurements is desirable. For example,
when we are interested in monitoring on-line a physical process
with the objective of detecting abrupt changes, the data arese-
quentially sampled, hence calling for a recursive treatment. Or
when the number of data available for parameter identification
is too large, it may be computationally difficult to process them
all at once using batch algorithms. In such a situation, recursive
estimation is an attractive alternative. Despite the relevance of
the problem of recursive sparse estimation, only a few recent
works brought it up [8, 9]. Note however that the solutions
proposed in those papers appeared to be a recursive extension
of the well-known LASSO algorithm [10] which applies to a
different framework from the one of the present work. To em-
phasize the differences, note first that the data-generating model
in (1) is a multi-variable one so that the unknown variable tobe
computed is a parameter matrix instead of a vector as is usually
the case in related works [1, 5–7]. Second, while the LASSO
seeks to estimate a parsimonious vector of parameters, the spar-
sity constraint is imposed here on a sequence of error vectors.
This comes with an additional challenge specially when the
data are also corrupted by zero-mean noise as in model (1). To
the best of our knowledge, our work is the first one to address
the problem of identifying a multi-variable model such as (1)
(involving a sparse error sequence) in a recursive framework.

The contribution of this paper is twofold. In the first part,
a new method is presented for solving the recursive sparse
estimation problem stated above. Our approach consists in the
optimization of anℓ2-norm based cost function. For the sake
of easy recursive update, we approximate the solution through
a Weighted Recursive Least Squares (W-RLS) algorithm. The
way the weights are selected is inspired by the idea used in the
re-weightingℓ1-minimization algorithm of [6] which, recall,
applies to a different setting from the one treated here. The



second contribution of this work is an application of the method
developed in the first part to the identification of Jump Markov
Linear Systems (JMLS). Ifs denotes the number of subsystems
composing the JMLS under consideration, we show that the
submodels can, following a similar procedure as in [4], be
recursively identified usings W-RLS identifiers operating in
parallel.

The rest of this paper is organized as follows. The novel method
is outlined in Section 2. In Section 3, we show that this method
can be applied for the identification of JMLS from input-output
data. Numerical simulation results are reported in Section4. All
of the simulation results, on linear models as well as on JMLS,
reveal an excellent behavior of our algorithm. In the end, the
conclusion and future work are discussed in Section 5.

2. THE RECURSIVE SPARSE LEARNING METHOD

In this section we propose a solution to the identification prob-
lem stated in the previous section. Recalling the multi-variable
model (1), our goal is to identify the parameter matrixH re-
cursively, from the experimental measurements{x (t) , y (t)},
which are corrupted by unknown noise and sparse error se-
quences,{e(t)} and {f(t)}. For the sake of clarity in the
presentation, we will assume that the noise sequence{e (t)}
is identically equal to zero1 .

2.1 The main idea

We start by emphasizing that no other prior information is
available, except the sparsity condition on the error sequence
{f (t)}. Standing on this point, the solution to our problem is to
minimize the number of non-zero vectors in the error sequence
{f (t)}, subject to (1). It is formulated as,

min
H

|{t : f (t) 6= 0}| ,

subject toy (t) = Hx (t) + f (t) , t = 1, . . . , N
(2)

where the notation|S| with S representing a set, stands for the
cardinality of the setS. The optimization problem (2) attempts
to find the matrixH fitting the data record{(x(t), y(t)} to
model (1) and also making the error sequence{f (t)} as sparse
as possible. Sparsity is reinforced here by minimizing the
cardinality of the set{t : f(t) 6= 0}. Noting thatf (t) 6= 0 if
and only if‖f (t)‖ℓ 6= 0, whereℓ stands for any norm, problem
(2) can be reformulated as

min
H

|{t : ‖f (t)‖ℓ 6= 0}|

subject toy (t) = Hx (t) + f (t) , t = 1, ..., N.
(3)

In principle,ℓ can be any type of norm. For example, one can
takeℓ to be the2-norm or the∞-norm. But in practice, the type
of norm is of critical importance in the quality of the results one
can hope for. By now defining

f̄ = (‖f (1)‖ℓ . . . ‖f (N)‖ℓ)
⊤
, (4)

problem (3) is equivalent to,

min
H

∥∥f̄
∥∥
0

subject toy (t) = Hx (t) + f (t) , t = 1, ..., N.
(5)

Here and in the following,‖z‖0 refers to theℓ0-norm of
z defined by‖z‖0 = |{i : z (i) 6= 0}| for any vectorz =(
z (1) . . . z (N)

)⊤
. It is well known that anℓ0-minimization

1 However the method to be presented still works in the presenceof noise. This
is illustrated in Section 4.

problem as above is nonconvex and generally NP-hard, because
its solution requires an intractable combinatorial search[6].
The idea of recasting this nonconvex optimization problem into
a convex one has been developed in the past several decades
[6, 7], by changing theℓ0 norm into theℓ1 norm in the objective
function (5). Here, we pursue the same approach to obtain,

min
H

∥∥f̄
∥∥
1

subject toy (t) = Hx (t) + f (t) , t = 1, ..., N
(6)

where
∥∥f̄
∥∥
1

=
∑N

t=1 ‖f (t)‖ℓ is the ℓ1-norm of f̄ . From
now on, we assume thatℓ = 2. Note that we can then drop
the constraints in the above problem and view it as the one
of computing the parameter matrixH by minimizing the cost
function

J (H) =
N∑

t=1

∥∥y(t)− Hx (t)
∥∥
2
. (7)

It is important to notice that the cost function (7) consistsin a
sum of norms (on the fitting errors) instead of the usual sum of
squared norms2 . This detail is crucial in promoting a solution
H such that the vector sequence{f(t) = y(t)− Hx(t)} is
sparse [11]. To see why, note that (7) can be rephrased as

J (H) =
N∑

t=1

ω(t) ‖y(t)− Hx(t)‖22 , (8)

where the weightω (t) = 1/ ‖y (t)− Hx(t)‖2 has been intro-
duced. In fact,ω(t) = 1/ ‖f(t)‖2 if f(t) 6= 0 andω(t) = ∞
if f(t) = 0. Here the cost function (8) shows the exact be-
havior of the objective function (7). Comparing (8) with the
standard least squares, we can see that the objective (7) (or,
(8)) behaves as if infinite weights were assigned to the fitting
errors for whichf(t) = 0. Hence this cost function tends to
assign an infinitely high contribution to the errors for which
f(t) = 0 and to annihilate the effects of the errors for which
f(t) 6= 0. As a consequence, provided the cardinality of the set
{t : f(t) 6= 0} is reasonably small, minimizing (7) may result
in the exact matrixH, despite the presence of the sparse error
vector sequence.

In practice, one can compute a minimizer of (7) by considering
the objective (8). This latter cost function (8) would correspond
simply to a weighted least squares problem ifω (t) were known
for any t. Unfortunately, this is not the case here since the
weightsω(t) depend on the unknown matrixH. In the fol-
lowing, an approximate solution is computed in a recursive
framework.

2.2 Derivation of the recursive estimator

As already emphasized before, our goal here is to obtain the
matrix H in a recursive fashion. To this end, denote with
Ĥ (0) the initial value assigned to the estimate ofH and let
P(0) ∈ R

n×n be a positive-definite matrix. DefinêH (t) to be
the estimate ofH at timet based on the data pairs(x(k), y(k))
sampled up to timet. Ĥ (t) can be viewed as the matrixH(t)
that minimizes the cost function

J
(
H(t)

)
=

t∑

k=1

λt−kω (k)
∥∥y (k)− H (t)x (k)

∥∥2
2

+ λttr
[
(H(t)− H(0))⊤P−1(0)(H(t)− H(0))

]
(9)

2 The sum of squared norms correspond to the ordinary least squares.



whereλ ∈]0, 1] is a forgetting factor. Here, the weights are
approximated as

ω (k) =
1∥∥y (k)− Ĥ (k − 1)x (k)

∥∥
2
+ η

, (10)

with η being a small positive number. With this approximation,
the weight sequence{ω (k)}tk=1 is now completely known.
As a result, the criterion defined in (9)-(10) can be regarded
as a Weighted-Recursive Least Squares (W-RLS) criterion. As
is well known, the matrixĤ (t) that minimizes (9) can be
computed fromĤ (t− 1) by applying the following update
rules [12]:

K (t) =
ω (t)P(t− 1)x (t)

λ+ ω (t)x⊤ (t)P(t− 1)x (t)
(11)

Ĥ (t) = Ĥ (t− 1) +
(
y (t)− Ĥ (t− 1)x (t)

)
K⊤ (t) (12)

P(t) =
1

λ

(
P(t− 1)−K (t)x⊤ (t)P(t− 1)

)
, (13)

whereω (t) is defined as in (10), the initial valueŝH (0) can
be chosen randomly, andP(0) = αIn with α ≫ 1, In is an
identity matrix with the dimension ofn.

3. APPLICATION TO JUMP MARKOV LINEAR
SYSTEMS

In the previous section, we presented a method for identifying
the parameter matrix recursively from a collection of mea-
surements which are corrupted by unknown sparse error and
white noise sequences. In this section, we will show that this
method can be interestingly applied to the identification of
Jump Markov Linear Systems (JMLS).

A JMLS corresponds to the behavior that results from switch-
ings among a set of linear subsystems, the transitions between
subsystems being determined by a finite state Markov chain.
JMLS can be represented by{

x (t+ 1) = Aσ(t)x (t) + Bσ(t)u (t)
y (t) = Cσ(t)x (t) + Dσ(t)u (t)

, (14)

wherex (t) ∈ R
nx stands for the continuous state, withnx

representing the order of the system (i.e, the dimension of the
state space). This order is assumed to be the same for all of
the submodels.u (t) ∈ R

nu , y (t) ∈ R
ny , σ(t) ∈ S =

{1, . . . , s} are respectively the input, the output and the discrete
state (which will be also called the mode).Aσ(t) ∈ R

nx×nx ,
Bσ(t) ∈ R

nx×nu , Cσ(t) ∈ R
ny×nx , Dσ(t) ∈ R

ny×nu are
the parameter matrices associated with the discrete stateσ (t).
It is assumed thatσ (t), t ≥ 1, is a discrete-time, first-order
stationary Markov chain with constant transition probabilities
defined as,

πij = P {σ (t) = i|σ (t− 1) = j} (15)
for anyi, j ∈ S = {1, 2, . . . , s}. Hence, the transition probabil-
ity matrix π is ans × s constant matrix, with the components
satisfyingπij ≥ 0 and

∑s

i=1 πij = 1, for eachj ∈ S. The
initial probability distributions are denoted as,

π
0
j = P {σ (0) = j} (16)

for all j ∈ S and are such thatπ0
j ≥ 0, and

∑s

j=1 π
0
j = 1.

Given the measurements sequence3 {x (t) , u (t) , y (t)}Nt=1,
our objective is to identify the parameter matricesAj , Bj , Cj ,
3 The continuous statex(t) is assumed completely measurable while the
discrete stateσ(t) is unknown.

Dj , j ∈ S, as well as the transition probabilities defined in (15).
Moreover, all of the identification process will beon-linein our
work.

Let us set

x̄ (t) =
(
x (t)

⊤
u (t)

⊤
)⊤

(17)

Hσ(t) =

(
Aσ(t) Bσ(t)

Cσ(t) Dσ(t)

)
(18)

ȳ (t) =
(
x (t+ 1)

⊤
y (t)

⊤
)⊤

. (19)

Then we can rewrite the model (14) as,

ȳ (t) = Hσ(t)x̄ (t) . (20)

The application of the previous method to the estimation of the
matrices{Hi}

s

i=1 from model (20) is based on the following
observation. For anyi ∈ S, model (20) can be rewritten as

ȳ (t) = Hix̄ (t) +
(
Hσ(t) − Hi

)
x̄ (t)

= Hix̄ (t) + f ′
i (t) ,

(21)

with f ′
i(t) =

(
Hσ(t) − Hi

)
x̄(t). Now by assuming that the

discrete statei is visited by the JMLS frequently enough, we
can see that the vector sequence

{
f ′
i(t)
}

in (21) is sparse since
f ′
i(t) = 0 wheneverσ(t) = i. Therefore, if we focus on the

identification of a specific submodel with indexi, we get a
similar model as (1), under noise-free assumption. Standing on
this point, we can adapt the method proposed in the previous
section to identify the parameter matrices of the JMLS model
(20). In fact, if there exists one submodeli of the JMLS that
is activated very often over time, then running directly theW-
RLS identifier of Section 2 on the data generated by model
(20) may yield the corresponding matrixHi. However, this may
not be the case in practice. For example, when the number of
submodels is relatively large, it may happen that none of the
submodels is frequently activated.

To deal with this type of situation, the recursive sparse estima-
tion method can be applied efficiently as follows. We estimate
all the submodels simultaneously by runnings different recur-
sive identifiers in parallel, one identifier for each submodel. At
each timet, the discrete stateσ(t) is estimated as the index
of the submodel which, based on the prior estimates of the
different parameter matrices, appears to be the most consistent
with the data pair

(
x̄(t), ȳ(t)

)
. Then the submodel associated

with the estimated discrete state has to be updated. To see
why this procedure is likely to yield the sought matricesHi,
i ∈ S, note that each of thes recursive sparse identifiers has
to correct only wrong mode assignments (which are expected
to be rare). Therefore, thanks to the error correction ability
of the identifiers, this algorithm is, as will be confirmed by
simulations results, able to recover the JMLS parameters.

In more details, we follow a similar idea as in [4, 13] and select
σ̂(t) to coincide with the index of the matrix̂Hi (t− 1), i ∈ S
that minimizes the relative fitting error i.e,

σ̂ (t) = argmin
i∈S

∥∥∥ȳ (t)− Ĥi (t− 1) x̄ (t)
∥∥∥
2∥∥∥

(
Inx+ny

Ĥi (t− 1)
)∥∥∥

2

, (22)

where Ĥi (t− 1) is the estimated matrix associated with the
discrete statei ∈ S at t − 1; Inx+ny

is an identity matrix of
dimensionnx + ny.

In the following part of this section, we are going to focus
on how to estimate the transition probabilitieson-line. Define



two sets Ẑij (t) and Ẑi (t) as follows: Ẑij (t) records the
time indices when the system switched from submodelj to
submodeli while Ẑi(t) records the time indices when the
system is switched into submodeli from any submodel. More
specifically, let

Ẑij (t) = {1 < k ≤ t|σ̂ (k) = i, σ̂ (k − 1) = j} , (23)

Ẑi (t) = {1 < k ≤ t|σ̂ (k) = i} . (24)
Then, the transition probability from statej to statei can be
evaluated as

π̂ij (t) =

∣∣Ẑij(t)
∣∣

∣∣Ẑi(t)
∣∣ . (25)

Here π̂ij (t) is the estimated transition probability at time
t;
∣∣Ẑij(t)

∣∣ and
∣∣Ẑi(t)

∣∣ represent the cardinality of the sets

Ẑij (t) andẐi (t) respectively. Furthermore, we can derive the
following update rule for the transition probability,

π̂ij(t) =

∣∣Ẑi(t− 1)
∣∣

∣∣Ẑi(t− 1)
∣∣+ δ̂i (t)

π̂ij (t− 1)+

+
δ̂i(t)δ̂j(t− 1)∣∣Ẑi(t− 1)

∣∣+ δ̂i(t)

(26)

where

δ̂q (t) =

{
1 if σ̂ (t) = q
0 if σ̂ (t) 6= q.

(27)

Finally, we summarize in Table 1 the complete algorithm for
recursively identifying the parameter matricesHi, i ∈ S, along
with the transition probabilitiesπij(t) of the JMLS model.

Table 1. Algorithm for Identifying JMLS.

Algorithm for Identifying JMLS
Initialization:
Provide the matriceŝHi(0), the covariance matricesPi (0), i ∈ S, as
well as the transition probabilitieŝπij (0), (i, j) ∈ S2.
For any incoming data pair

(
x̄(t), ȳ(t)

)
:

(1) Select the activated discrete stateσ̂ (t) as in (22).

(2) Update the parameter matrix associated with the activateddis-
crete statêσ (t) by (11)-(13). For anyi such thati 6= σ̂ (t),

Ĥi(t) = Ĥi (t− 1).

(3) Update the transition probability matrix using (26).

4. NUMERICAL RESULTS

In this section we illustrate the whole identification procedure
on synthetic data generated by a model with the form (1) and a
JMLS model respectively.

4.1 Identification results for a model of the form(1)

Firstly, we test our identification method on the data generated
by a linear multi-variable model of the type (1). With the
dimensionsm = 3 andn = 3, the “true” model that generates
the data is defined as follows:

y (t) =

(
1.5847 0.3944 −0.8044
−0.6355 0.6342 −0.2397
−0.1957 −0.9011 −0.7516

)
x (t) + f (t) + e (t) .

(28)
Here, the input data sequence{x (t)} is generated randomly
following a normal distribution,N (0, In). The sparse error
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Figure 1. ℓ2 norm ‖f (t)‖2 of the sparse error sequence in
model (28): (a) over 1500 samples; (b) over the first 200
samples.

sequence{f (t)}Nt=1, with N = 1500, is chosen such that1000
vectors out of1500 are strictly equal to zero. The remaining
error vectors are generated from a non-centered normal dis-
tribution, N (µ̄1, σ

2
1Im), µ̄1 = 5(1, . . . , 1)⊤, σ2

1 = 100. For
an overview on the temporal distribution of this sparse error
sequence, we plot itsℓ2-norm over1500 samples in Fig.1.(a)
and over the first200 samples in Fig.1.(b). Notice that theℓ2
norm of non-zero sparse error, as reported in Fig. 1, can be
arbitrarily large as stated before. The noise{e(t)} in (28) is
generated as a Gaussian white noise so as to achieve a Signal-
to-Noise-Ratio (SNR) of 30 dB.

Our learning method is implemented in MATLAB. Related
parameters are given as follows. The forgetting factor is set
to be 0.95. The positive numberη appearing in (10) should,
in principle, be extremely small as its role consists only in
preventing division by zero. We setη to be1e−6. The initial
covariance matrix is chosen as,P(0) = αI3, with α = 10. And
Ĥ (0) is a zero matrix.

The mean and the standard deviation of estimated values for
100 independent simulations with SNR=30 dB, are shown in
Table 2. Compared to the true value, these numerical results
show that our method achieves a good estimate for the parame-
ter matrix of model (28).

Table 2. Empirical mean and standard deviation of
the estimated̂H for model (28), with an SNR=30

dB.

Mean Standard Deviation(
1.5846 0.3942 −0.8046
−0.6355 0.6337 −0.2392
−0.1956 −0.9009 −0.7516

)
±

(
0.0051 0.0056 0.0051
0.0061 0.0044 0.0043
0.0047 0.006 0.0047

)

To further analyze the properties of the proposed method, we
define a set of relative errors{ε (t)}Nt=1 to assess the quality of
the estimates over time,

ε (t) =

∥∥∥Ĥ (t)− H
∥∥∥
F

‖H‖F
, (29)

where ‖·‖F represents theFrobenius norm. We apply both
the standard RLS algorithm and the new method proposed in
Section 2 to solve the identification problem. During all the
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Figure 2. Trajectories of the relative errorsε (t) over time when
standard RLS is applied to model (28): SNR=30 dB.
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Figure 3. Trajectories of the relative errorsε (t) over time when
our method is applied to model (28): SNR=30 dB.

100 simulations, the trajectories of the relative errors{ε (t)}Nt=1
varying over time are reported in Fig.2 for the RLS and in
Fig.3 for our method. In these figures, the red bold lines are the
averages of the relative errors over the 100 simulations. Fig.2
shows clearly that the standard RLS fails to provide correct
estimates. Note that convergence occurs for that algorithmonly
over the time intervals on which the error sequence{f(t)} is
equal to zero. In contrast, we can see from Fig.3 that, despite the
presence of the error{f(t)}, the method of this paper achieves
accurate estimates. In all the simulations carried out, therelative
errors drop off rapidly during the first dozens of steps, and the
algorithm almost converges after80 steps. Hence, the proposed
method successfully recovers the parameter matrix, although
the sparse error sequence is completely unknown and has a very
large magnitude. Note that the small bias which is visible in
Fig.3 is induced only by the noise{e(t)}. This is confirmed by
the results of Table 3, where the final estimation errorε(N) is
shown to be strictly equal to zero when{e(t)} is identically
null.

In order to analyze the robustness of our method with respect
to noise, we test it on model (28) with different noise levels.
In this experiment, the sparse error sequence{f(t)} has the
profile given in Fig.1. For each noise level, 100 simulationswith
N = 1500 data pairs each, are carried out. The average of the
final relative errors (that is, the error after convergence)over all
of the simulations are given in Table 3. As already mentioned,
when there is no noise (that is, when SNR =∞), the relative
error is equal to zero. And the relative errors logically increase
when the SNR decreases.

Now, we propose to verify up to what extent of sparsity of the
sequence{f(t)} our method is able to identify model (28). To
this end, we test it for different sparsity levels of{f(t)}. Here,
the sparsityρ is defined as the number of the non-zero vectors
divided by the number of data, i.e.,

ρ =

∥∥f̄
∥∥
0

N
× 100%, (30)

wheref̄ is defined as in (4). For this sparsity measure to make
sense in the present recursive context, the temporal distribution
of nonzero vectors in the sequence{f(t)} needs to be uniform.

The conditions of our experiment are set so as to meet this
requirement. The non-zero vectors in the sequence{f(t)} are
generated randomly from the non-centered normal distribution
N (µ̄2, σ

2
2Im), µ̄2 = 5(1, . . . , 1)⊤, σ2

2 = 100. For every
sparsity level,100 simulations are carried out withN = 1500
pairs of noisy data (the SNR being equal to 30 dB). The average
of the final relative errors over all of the simulations for each
sparsity level are reported in Table 4. It shows that our method
can perform dramatically well even for a level of sparsity as
high as90%.

Judging from all of the results displayed in this subsection, we
are prompted to conclude that the proposed method is reliable
for identifying a model of the form (1), which is subject to
occasional gross errors.

4.2 Identification results for a JMLS model

Finally, we apply our algorithm to identify JMLS parameter
matrices, as well as the transition probabilities. We take an ex-
ample of JMLS composed of three submodels, i.e., the discrete
stateσ(t) lives inS = {1, 2, 3}. With the dimensionsnx = 2,
nu = 1 andny = 1, all of the “true” parameter matrices are
presented in Table 5, together with the transition probability
matrix. The matricesHi are defined as in (18) for alli ∈ S.

Table 5. “True” JMLS parameter matrices.

Matrix “True” Value

H1

(
−0.7901 −0.0458 −1.0834
−0.0458 −0.7544 0.4504
−2.8025 0 0

)

H2

(
−0.5742 −0.3092 0.6379
−0.3092 0.3868 −2.3072
−1.5833 −1.0135 −1.0293

)

H3

(
−0.6389 −0.1516 0.9488
−0.1516 −0.5814 0.7786
0.0005 0 0

)

π

(
0.2818 0.2594 0.4589
0.2500 0.2606 0.4867
0.2687 0.2410 0.4917

)

The input sequence{u (t)}Nt=1, with N = 1500 for each
simulation here, is generated randomly following the normal
distribution,N (0, Inu

). x(0) is also given as a random value.
A certain amount of Gaussian white noise is added to the
output data, so that we get an SNR of 30 dB. The user-defined
parameters of the learning method are chosen to be the same as
in the previous subsection. And fori ∈ S, the initial parameter
matricesHi(0), are drawn at random;Pi (0) = αiI3, with
αi = 10. The numerical average and standard deviation of the
estimated parameter matrices over 100 simulations are reported
in Table 6. It can be noticed that there is a little bias appearing
in the result.This is due to the fact that the data are affected by
the noise, as argued in Subsection 4.1.

Moreover, all of the simulation examples have already shown
the effectiveness of the proposed Weighted-RLS. The results
reveal that the method proposed in this paper is feasible and
efficient in solving identification problem of JMLS.

5. CONCLUSION

In this paper we treated the problem of identifying on-line a
linear multi-variable model, subject to a sparse vector error



Table 3. Relative Errors when our method is applied to model (28) with different noise levels.

SNR (dB) ∞ 50 40 30 20 10 5
ε (N) 0 0.0012 0.0045 0.0144 0.0449 0.1293 0.2592

Table 4. Relative Errors when our method is applied to model (28) with different sparsity levels–SNR=30
dB.

sparsityρ (%) 20 30 40 50 70 80 90 95 96
ε (N) 0.0088 0.0092 0.0102 0.0108 0.0133 0.0165 0.0236 0.1806 13.1917

Table 6. Empirical mean and standard deviation of estimatedvalues for JMLS: SNR=30 dB.

Estimated Matrix Mean Standard Deviation

Ĥ1 :

(
−0.7901 −0.0458 −1.0834
−0.0458 −0.7544 0.4504
−2.8051 0.0034 −0.0052

)
± (1.0e−0)×

(
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0543 0.0305 0.0318

)

Ĥ2 :

(
−0.5744 −0.3013 0.6243
−0.3041 0.3636 −2.2492
−1.5617 −0.9812 −1.0114

)
± (1.0e−0)×

(
0.0428 0.0554 0.1512
0.0506 0.1627 0.4068
0.1564 0.2324 0.1352

)

Ĥ3 :

(
−0.6389 −0.1516 0.9488
−0.1516 −0.5814 0.7786
0.0005 0.0000 −0.0000

)
± (1.0e−5)×

(
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.6261 0.2900 0.1770

)

π̂ :

(
0.301 0.2129 0.4854
0.2688 0.2635 0.4654
0.2939 0.2347 0.471

)
± (1.0e−0)×

(
0.0593 0.0844 0.0864
0.0764 0.0552 0.0899
0.0802 0.0713 0.0651

)

sequence. This is an important and generic problem having
applications in many engineering fields. For example, as illus-
trated in the paper, the identification problem for switchedlin-
ear systems can be viewed as a particular instance of that prob-
lem. We showed that by appropriately setting some weights, a
simple recursive weighted least squares algorithm can be used
to efficiently address this problem. Although the effectiveness
of the proposed method has been extensively verified on some
numerical examples, convergence analysis is still lackingin this
first work. This will be considered in future research.
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