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November 7, 2011

Abstract

We consider minimizers of a Ginzburg-Landau energy with a discontinuous and
rapidly oscillating pinning term, subject to a Dirichlet boundary condition of degree
d > 0. The pinning term models an unbounded number of small impurities in the do-
main. We prove that for strongly type II superconductor with impurities, minimizers
have exactly d isolated zeros (vortices). These vortices are of degree 1 and pinned by
the impurities. As in the standard case studied by Bethuel, Brezis and Hélein, the
macroscopic location of vortices is governed by vortex/vortex and vortex/ boundary
repelling effects. In some special cases we prove that their macroscopic location tends
to minimize the renormalized energy of Bethuel-Brezis-Hélein. In addition, impurities
affect the microscopic location of vortices. Our technics allows us to work with impu-
rities having different size. In this situation we prove that vortices are pinned by the
largest impurities.
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1 Introduction

In this article we let Q C R? be a smooth simply connected domain and let a. : Q —
{b,1}, b € (0,1) be a measurable function. We associate to a. the pinned Ginzburg-Landau
energy

B = [ {0l + o (0o - o))} . (1)
Q £
Here, u : Q — C is in the Sobolev space H'(Q, C) and ¢ > 0 is the inverse of the Ginzburg-
Landau parameter.

Our goal is to consider a discontinuous and rapidly oscillating pinning term (the pinning
term is az : Q@ — {b,1}). Our pinning term is periodic with respect to a ¢ x d-grid with
0 =10(s) = 0 as € — 0 (in some cases we drop the periodic hypothesis).

We are interested in the minimization of (L)) in H'(£2, C) subject to a Dirichlet bound-
ary condition: we fix g € C>°(9Q,S!) and thus the set of the test functions is

H; = {u e H(Q,C)|troqu = g}.

The situation where d = degyn(g) = 0 was studied in detail in [I2]. The non zero
degree case (d = degyqn(g) > 0) is the purpose of the present article. Recall that for
I' € R? a Jordan curve and g € H'/2(T',S'), the degree (winding number) of g is defined
as

1
degr(g) = 5- /F g% Orgdr.

Here "x” stands for the vectorial product in C, i.e. 21 X zo = Im(Z722), 21,22 € C, 7 is
the direct unit tangent vector of I' (7 = v+ where v is the outward normal unit vector of
int(I"), the bounded open set whose boundary is I') and 0, is the tangential derivative on
r.

This energy is a simplification of the full Ginzburg-Landau energy (see Eq. (L2)
below) whose minimizers model the state of a Type II superconductor (the parameter
corresponds to a material parameter, this parameter is small for Type II superconductor)
[23], [20]. The pinning term allows to model a heterogenous superconductor (see [I5] or
Introduction of [I1]).

Physical informations which can be obtained with the simplification of the full Ginzburg-
Landau energy are quantization and location of zeros of minimizers. Their zeros represent
the centers of small areas where the superconductivity is destroyed. These areas are called
vorticity defects. Here the superconductor is a cylinder whose cross section is 2 and the
vorticity defects (under some special conditions) takes the form of small wires parallel to
the superconductor [23], [20].

Before going further, let us summarize two previous works in related directions [17],
[1]. In these works, the role of the pinning term is identified: its points of minimum attract
the vorticity defects.

In [I7], Lassoued and Mironescu considered the case where a. = a. Here, the pinning

term a = boinw ,0<b< 1, and w is a smooth inner domain of 2. These authors
1 inQ\w
proved that the vorticity defects are quantified by degyg(g), localized in w and that their
position is governed by a renormalized energy (in the spirit of [4]).
In [1], Aftalion, Sandier and Serfaty considered a smooth and e-dependent pinning term
a.. Their study allows to consider the case where the pinning term has fast oscillations: it

is a perturbation of a fixed smooth function b: Q — [b,1] s.t. a. > b.



In contrast with [I7], [I] is dedicated to the study of a full Ginzburg-Landau energy
G L. with the pinning term a.

GL.(u, A) = % /

Q

We denoted by A € R? the electromagnetic vector potential of the induced field and
by hex > 1 the intensity of the applied magnetic field (see [20] for more details).
They considered the following hypotheses on a., b:

o |Va.| < Chex

1
{]curlA — hex? + |(V — iA)u)? + 2—82(ag - \u!2)2} : (1.2)

e thereis 0. € Rs.t. 0. = o ((In|In e[)71/2) and for all x € Q, we have

min {aE — B} =0.
B(z,0¢)

In the study of the full Ginzburg-Landau functional without pinning term GLY (GL? is
obtained from (L2) by taking a. = 1), the vorticity defects appear for large apply magnetic
field. They are characterized by two facts: the presence of isolated zeros x; of a map u with
a non zero degree around small circles centered in x; and the existence of a magnetic field
inside the domain (curl(A) ~ hey inside small discs). The nature of the superconductivity
makes that both facts appear together. Assume that the intensity of the applied field hey
depends on 0 < € < 1 and that hec/|Ine| — A € R%. For the full Ginzburg-Landau energy
without pinning term G LY, it is well known (see e.g. [20]) that there is an inner domain wy
(non decreasing w.r.t. A) s.t., when € — 0, the vorticity defects are "uniformly located"
by wa (in this situation the number of vortices is unbounded).

In [I] (study of a full Ginzburg-Landau functional with a pinning term), the authors
proved the existence of wy, an inner set of {2, where the penetration of the magnetic field
is located. In contrast with the situation without pinning term, the presence of a. makes
that, in general, the vortices are not uniformly located in wy. Although in the proofs of
the main results of [I], the minimal points of b seem play the role of a pinning site, this
fact is not proved. They expect that the most favorable pinning sites should be close to
the minima of b : wy should be located close to the points of minimum of b.

One of our goals is to prove that the minimum points of a rapidly oscillating and
discontinuous pinning term attract the vorticity defects.

Before going further, we construct our (periodic) pinning term a.

Construction 1. The periodic pinning term
Consider

e §=10(c) € (0,1), A= \e) € (0,1];

e wCY =(-1/2,1/2)% be a smooth bounded and simply connected open set s.t. (0,0) €
wand W C Y (here Y is the unit cell).

For k,l € Z we denote

6 . incl _ Ve A
Y7, = 38-Y + (6k,4l), A = Uys co ¥ W= w,

wlg\or = U {w)‘ + (k,l)} and w, = U {(5 w4 (5k,6l)} .
(k,1)ez? (k,)EZ? s.t.
Ye,cQ



For b € (0,1), we define

a*: R? — {b,1} a.: R? — {b,1}
. b ifzew), and . b ifx € w.
1 otherwise 1 otherwise

The values of the periodic pinning term are represented Figure [Il The connected compo-
nents of {a. = b} = w. are called inclusions or impurities.

0

(a) The pining term is periodic on a § x d-grid (b) The parameter A controls the size of
an inclusion in the cell

Figure 1: The periodic pinning term

In the rest of this article A = A(¢) and § = d(e) are functions of e. We assume that
6 — 0 as ¢ — 0. In addition, we assume that either A =1, or A — 0 as ¢ — 0. The case
A — 0 is the diluted case.

We make the (technical) assumption
I\

hgn ne = 0. (1.3)

Remark 2. o This is slightly more restrictive than asking that \d > ¢ for all a € (0, 1).

e Hypothesis (L3) is technical, a more natural hypothesis should be Ad > & or A\ > &
for some a € (0,1).

e In [I] and in the situation where we have a bounded number of zeros (the applied
magnetic field is not too large), the smooth pinning term a? satisfies the condition
|Val| < C|lne|. In order to compare this assumption with (I3, we may consider a
regularization of our pinning term by a mollifier p;(z) = t~2p(z/t). A suitable scale t
to have a complete view of the variations of a. is t = Ad. Thus, |V (pys * ac)| is of order

1
Vi Consequently, the condition (I3)) allows to consider a more rapidly oscillating than



the condition in [I]. Indeed, we have In|Va?| < In|ln¢e| and on the other hand (L3) is
equivalent to In |V(pys * a:)| < [In(Ad)| = of] lng‘1/3)_

The goal of this article is to study the minimizers of

1 1 2
E.(u) = 5 /Q {!VU\Q to2 (a2 — |ul?) }7 ueH,

in the asymptotic £ — 0. A standard method (initiated in [I7]) consists in decoupling
FE. into a sum of two functionals. The key tool in this method is U, the unique global
minimizer of E. in H{ (see [17]). Clearly, U. satisfies

1
AU, = 6—2Ug(a§ ~U2) inQ

) (1.4)
U.=1 on 0f)

From the uniqueness of U, by construction of a test function, it is easy to get that b <
U. <1.

This special solution may be seen as a regularization of a.. For example, one may easily
prove that U, is exponentially close to a. far away from Ow. (a more complete description
of Ue is done Appendix [D.1)). Namely, we have

Proposition 3. There are C,a > 0 independent of e, R > 0 s.t.

lae — U] < Ce™ " in Vi == {z € Q| dist(z, dw.) > R}, (1.5)
Ce " . .
|VU,| < o Wg = {z € Q| dist(z, dw.), dist(x,0) > R}. (1.6)

A similar result was proved in [I3] (Proposition 2). The above proposition yields by
the same arguments.
As in [17], we define

1 1
r) =5 [ {oawop + Luta - pep ).

Then we have for all v € H;, (see [17])
E.(U.v) = E.(Us) + F.(v).

Therefore, u. is a minimizer of E. if and only if u. = U.v. where v, is a minimizer of F;

in H gl. Consequently, the study of a minimizer v, = U.v. of E. in H, gl (location of zeros

and asymptotics) can be performed by combining the asymptotic of U. with one of v,.
Our main result is the following

Theorem 1. Assume that X\, 6 satisfy (L3]) and that A — 0.

Quantization. There are g > 0, ¢ > 0 and 19 > 0 s.t. for 0 <e < ep:

1. ve has exactly d zeros x5, ..., x5,

2. B(x5,cA0) C we,



3. forp=p(e) L 0 s.t. |Inp|/|Ine| — 0, there is C > 0 independent of £ satisfying

In . _
o) 2 1= 01l in 0\ UBTaE. ),

4. fore < ¢gq

e There are two repulsive effects: |x5 — x§| > o for i # j and dist(x$,09Q) > no;

o degyp(az 5)(ve) = 1.

Location.

e The macroscopic location of the zeros tends to minimize the renormalized energy of

Bethuel-Brezis-Hélein Wy : {{x1,...,xq} C Q|x; # xj fori# j} — R (defined in [{],
Chapter I Eq. (47)):
limsup Wy(z5,...,z5) = min _ Wy(a, ..., aq)

at,...,age)
a;F#a;

e The microscopic location of the zeros inside w. tends to depend only on w and b:

— since o5 € we, we have x5 = (k.0,1.0) + \oyS with ke,le € Z and y5 € w;

— foren, 10 s.t. Yo — &i, we have a; € w which minimizes a renormalized energy
Wi :w — R (given in [13] Eq. (90)) which depends only on w and b € (0,1).

Remark 4. 1. The renormalized energy defined in [4]

Wy {{z1,...,2q} CQ|a; #zxjfori#j} - R

governs the location of the zeros in the situation where a. = 1 (homogenous case):
the zeros tend to minimize W,. In [4] (Chapter 1), the authors defined a renormalized
energy in a more general setting

x; €80, x; # xj for i # j
Wt {{(m,dl)’---a(xN’dN)} . - } o

di € Zisst. SN di=d

Here Wy(x1,...,2q) = WgBBH({(:El, 1),...,(z4,1)}), i.e., in this article we will consider
only the renormalized energy with the degrees equal 1 and thus we do not specify
the degrees in its notation.

. From smoothness of W, (see [4] and [10]), Location part of Theorem [l implies that
up to pass to a subsequence, the zeros converge to a minimizer of Wj.

. This macroscopic location is strongly correlated with the Dirichlet boundary condi-

tion g € C*™(99,St).

. The result about the macroscopic position of the periodic and diluted pinning term
may be sum up as: the macroscopic position of the zeros tends to be the same than
in the homogenous case (a: =1).

. The microscopic location of the zeros (position inside an inclusion) is independent
of the boundary condition. For example, in the situation w = B(0,rg), i.e., the
inclusions are discs, this location should be the center of the inclusion. This fact is
not proved yet.

. In Assertion 4. of Quantization part, degyp(ye 5)(ve) = degyp(ze 5)(Ve/|vel).



2 Main results

We present in this section several extensions of the above result dropping either the
dilution of the inclusion (A = 1 instead of A — 0) or the periodic structure. The main
results of this section are obtained under the condition: Ad satisfies (L3)).

Our sharper results are shared into four theorems:

The first theorem (Theorem [2) gives informations on the zeros of minimizers u., v,
(quantization and location).

The second theorem (Theorem [3)) establishes the asymptotic behavior of v,.

The third theorem (Theorem [) establishes, under the additional hypothesis A — 0, that
the microscopic position of the zeros is independent of the boundary condition g.

The last theorem (Theorem [l gives an expansion of Fg(v.).

The technics developed in this paper allows to consider either the case A — 0 or A = 1.
The results in the diluted case are more precise. One may drop the periodic structure for
the pinning term and consider impurities (the connected components of w. = {a. = b})
with different sizes (adding the hypothesis A — 0).

More precisely we may consider the pinning term defined as follow:

Construction 5. The general diluted pinning term

e Fix Pe N* je€{1,..,P} and 1 > ¢ > 0. We consider M7 € N and

J

{(Z) if M5 =0
{1,.., M} if MF € N

e The sets M5’s are s.t. (for sufficiently small ) one may fix y ; € Qs.t. for (i,7) # (¢',5'),
i € M5, i" € M5, we have

5 — 5 ;| > 07+ 67 and dist(yS ;, 09) > 67 (2.1)

We denote .K/l\i = {y; ;i € M5}
For sake of simplicity, we assume that there is n > 0 s.t. for small €, we have M| > d =
degpo(g) and

min § min dist(y;;,00), min |yiy —yi,| e > 0. (2.2)
i=1,..., ’ ii'=1,..., ’ ’

it

e We now define the domain which models the impurities:

wezLPJ U {yf,j+5j-w’\},wA:)\-w.

j=lieMs



Figure 2: Representation of the general diluted pinning term with P = 2

The pinning term is

a.: R?2 — {b,1}
. 1 ifzé¢w
b if z € w,

The values of the pinning term are represented Figure 2

Our main results are

Theorem 2. Assume that \,0 satisfy (L3) and if the pinning term is not periodic (repre-
sented Figure[3) then we assume also that X — 0.
There is g9 > 0 s.t.:

1. for 0 < e < eq, ve has evactly d zeros x5, ..., 13,

2. there are ¢ >0 and ng > 0 s.t. for e < g9, B(z5,c\d) C we and

min {min |z; — :n§|,dist(:nf,8ﬂ)} > 1p.
i |

In particular, if the pinning term is not periodic, then the zeros are trapped by the
largest inclusions (those of size AJ).

3. for p=p(e) 1 0 s.t. |Inp|/|Ine| — 0, we have for e < ey,

Inp| . S —
||lnz—:|| in Q\ UB(25, p).

lve] >1-C

Here C is independent of €.

4. Jor e <o, degyp(us 5)(ve) = 1.



Remark 6. Hypothesis (2.2]) is used to simplify the statements. Without this hypothesis,
some of the results are subject to technical considerations on 6, A, b... For example if we
consider the pinning term a. defined in 2 = B(0,2) by

ac: B(0,2) — {b1}
{b if 2 € B(0,\6) U B(1, A6?)

1 otherwise

x 9

and g € C®(99Q,S!) s.t. degyn(g) = 2, then Hypothesis (2.2) is not satisfied. In this
situation, we may prove that, for sufficiently small €, v. has exactly two zeros and if
2(1—26%)|In A| + (1 — 3b)| In 6| — +o0 (resp. —oc), then the zeroes are in B(0, \6) (resp.
there is one zero inside B(0,Ad) and one zero inside B(1,\5?)).

Theorem 3. Assume that \,d satisfy (L3)) and if the pinning term is not periodic (repre-
sented Figure[3) then we assume also that X — 0.

Let e, | 0, up to a subsequence, we have the existence of ay,...,aq € Q, d distinct points
s.t. 5" — a; and

|ve,| = 1 and ve, — vy in Hlloc(ﬁ\ {aq, ...,ad},Sl)
where v, solves

—div(AVv,) = (AVu, - Voo, in Q\ {a1,...,aq}

Ve =g on 02 '

Here A is the homogenized matriz of a® (5) Idgz if A\=1 and A = Idg2 if A — 0.

In addition, for each M > 0, v;:l() = e (xf + %) converges, up to a subsequence, in
CY(B(0,M)) to f(|x|)%e“9" where f : RY — RY is the universal function defined in [19/
and 0; € R.

Theorem 4. Assume, in addition to the hypotheses of Theorem [3, that A — 0.

Let [x] = [(x1,22)] = ([z1], [72]) € Z? be the vectorial integer part of the point x € R?.
For % a zero of v., let

8

€
%

- [%]

Then, as € — 0, up to pass to a subsequence, we have y; — 4 € w. Here, a; minimizes a
renormalized energy Wi : w — R (given in [13] Eq. (90)) which depends only on w and b.
In particular, a; is independent of the boundary condition g.

Theorem 5. Assume that \,0 satisfy (L3) and if the pinning term is not periodic (repre-
sented Figure[3) then we assume also that A — 0.
We have the following expansion

F.(ve) = Jee + db*(mInb + ) + 0:(1)

where Jg . is defined in B6) and v > 0 is the universal constant defined in [4] Lemma
IX.1.

This article is divided in two parts:

10



e In the first one (Section [3]) we consider two auxiliary minimization problems for weighted
Dirichlet functionals associated to S!-valued maps.

e The second part (Section ) is devoted to the proofs of Theorems[Il 2 Bl @ B The main
tool is an n-ellipticity result (Lemma [I9). This lemma reduces (under the assumption
that A, ¢ satisfy (L3])) the study of F. to the one of the auxiliary problems considered
Section [3

3 Shrinking holes for weighted Dirichlet functionals

This section is devoted to the study of two minimization problems and it is divided in
three subsections.

The first and the second subsections are related with minimizations of weighted Dirich-
let functionals among S'-valued maps. In both subsections, the considered weights are the
more general one: o € L>(R?,[b2,1]). The third subsection deals the weight o = U2 in
the situation where U, is the minimizer of E. in H 11 with a. represented Figure [I (the
periodic case with or without dilution) or Figure 2] (the general diluted case).

Notation 7. In Section [l we fix :

e a smooth simply connected domain Q C R?;

e a boundary condition g € C*°(9%,S') s.t. d := degyg(g) > 0;

e a smooth and bounded open subset Q' < R? s.t. Q C ';

e an extension of g which is in C>°(€’\ ©2,S!) (this extension is also denoted by g).

We will also consider (uniformly bounded) families of points/degres {(z1,d1), ..., (xn,dN)} =
{x,d} s.t.

o 1, €0 x; £xy fori#7;
e d;ares.t. d; € N*and ) . d; = d (thus N < d).

According to the considered problems, for 0 < p < 87! min;£y |z; — x| we will use the
following perforated domains

o Q,:=Q,(x)=Q\UiB(z4,p) ;

o Q= (x) =\ U;B(z;,p).

3.1 Existence results

In this subsection we prove the existence of solutions of two minimization problems
whose studies will be the purpose of the rest of Section B (Subsections B2 & B.3]).
3.1.1 Existence of minimal maps defined in a perforated domain

Let x = (21, ...,2x5) be 1 < N < d distinct points of Q and let d = (dy, ..., dy) € (N*)V
s.t. Zz dl =d.
For 0 < p < 8 'min;; |#; — |, we denote Q, = Q\ UB(x;, p).

11



We define
Z,(x,d) =T, : —{wGHl(Qp,Slﬂw—gon 0N and degyp(y, ) (W ):di}
and for 0 < p < 87! min {min;; |z; — x|, min; dist(z;, 9Q)}
Tp(x,d) =T, = {w € H'(Q,,S)|w = g on 9Q and w(z; + pe?) = ! di0+0:) g ¢ R} .

From the compatibility condition degyn(g) = d = > d;, we have Z,(x,d), J,(x,d) # 0
and it is clear that J,(x,d) C Z,(x,d).

In SubsectionB:2] we compare the minimal energies corresponding to a weighted Dirich-
let functional in the above sets. Here, we just state existence results.

Proposition 8. Let a € L>®() be s.t. b*> < a < 1. Consider the minimization problems

1
Z,a(x,d) = inf —/ a|Vw]?
Qp

wel,

and

jpa(x d) = inf —/ o|Vwl|?.
2 Jo,

’LUEp

In both minimization problems the infima are attamed

Moreover, if a € WL(Q), then, denoting wpa (resp. ler) a global minimizer of
1
5/ alV - |2 in Iy(x,d) (resp. in Jy(x,d)) we have wdcg € H*(Q,,SY) (resp. whr €
Q

Py
P
H*(Q,,S')) and

de,

—div(aVw)E) = | VusEPwse in Q,
S andwp,a X &,wgﬁjg{ =0 on 0B(z,p),i=1,..,N

Lo : (3.2)
Dlr € Jp,and faB ozler X 0, ler =0,i=1,...,N

{ dlv(anDlr) = a\VwD“ 2D in Q,
p,

The proof of this standard result is postponed to Appendix [Al
In the special case a = U2, we denote

~ 1 ~ . 1
I,e(x,d) = wnel%p 3 /Qp UZ|Vw[? and J,.(x,d) = wlélgp 3 /Qp U2|Vw|?.

3.1.2 Existence of an optimal perforated domain

For a € L>®(R2,[b?,1]) we define

. 3 1

I, = inf inf = a|Vw|? (3.3)

{‘El,...,LE]NGQ wEH;(Q;ﬁSl) 2 /

zi—x;|>8p de - (w)=d;
R 808 (a;,0) (W)

and

1
Joa = inf inf —/ o Vwl?. 3.4
e T1,..., 84 €N weH}(Q,,S) 2 Q, | | (34)

|zi—z;|>8p

. 10\ _a2(046;) g.
dist(z:,00)>8p W (TiTPeT) =TT 0:E€R

12



Here Q), = Q' \ UB(z;, p).

In the special case a = U2, we denote

1
I,.:= inf inf — | UAVuw|? 3.5
pe z1,.,wNEQ weH}(Q,,81) 2 /Q/ e[Vl (3.5)
|lzi—2;|>8p ’

de -y (w)=d;
di,.oydn>0,5"d;=d 8o5(a;,0) (W)

and
o : : 1 219, 2
Jpe = inf inf — | UZ|Vwl|. (3.6)
@1, g €9 weHL(Q,,51) 2 Ja,
|7i=25|28p (0 4 perf)—er(0+0) g, cR

dist(z;,002)>8p

We have the following result

Proposition 9. For a € L™ (R?,[b?, 1]), there are xgﬁ%,xag € Q% andd,, € (NN (with

dyo = (di,...,dn), > di =d) s.t. {xgﬁ%, d,} minimizes I, and xgg minimizes Jp o .

The proof of this result is in Appendix [Bl

3.2 Dirichlet Vs Degree Conditions in a fixed perforated domain

Let 7stop > 0 be s.t. Nstop < 1075 -9_d2diam(Q) and let N € {1,...,d}.

Consider z1,...,zn € £, N distinct points of {2 satisfying the condition 7siop < 1073 -
9~ min dist(z;, ), and let p > 0 be s.t. min {Mstop, min;z; |z; — x|} > 8p. Roughly
speaking 7stop controls the distance between the points and 9€).

The main result of this section is

Proposition 10. There is Co > 0 depending only on ¢, nsop and b s.t. for a €
L*(, [b2,1]) we have

o~

Tpa(%,d) < Jpa(x,d) <L, 4(x,d) + Co.
Here, ip@ and :7;7(1 are defined Proposition[8.

The rigorous proof of Proposition [I0 is presented in Appendix [Cl Here, we simply
present the main lines of the proof.
Two situations are possible:

1. N =1 or the points z1, ..., zx are well separated: %mini# |zi — 2] > Nstops
2. The points 21, ..., zn are not well separated: %mini# |zi — 2] < Nstop-

If the points are well separated (or N = 1), Proposition [I0] can be easily proved: it is a
direct consequence of Proposition [45] and Lemma [44] in Appendix These results, whose
statements and proofs are postponed in Appendix [C] give essentially the existence of test
functions into two kinds of domains.

The domains are

e the thin domain Qy9-1,,,  (x) = Q\ UB(z;, 10~ )s0p) obtained by perforating Q2 by
"large", "well separated" and "far from 00" discs,

e the thick annulars B(z;, 10~ ns0p) \ B(w4, p)-

13



The proof is made in three steps:

Step 1: Using Lemma (4] we obtain a constant C (depending only on g, 2, 7stop) S-t.
jloilnstopva(x’ d) é Ol'

Step 2: With the help of Proposition @5 we obtain the existence of a constant Cj (de-
pending only on b) s.t. for d € N, denoting Az = B(z4,10 ' 0st0p) \ B(ws,p), we

have
. 1 . 1 -
inf — a|Vu|? < inf = a|Vw|? + Cyd?.
weH" (A}, S) 2 Al weH' (AL,S1) 2 Al
w(wl+10*1175mp029):Cst102d9 degaB(zi,p):J

w(z1 -i—pe“9 ):Cstge“ie

~ 1

Step 3: By extending a minimizer of J;g-1 (x,d) by the ones of 5/ a|V - |2 with
Ap

Dirichlet conditions, we can construct a map which proves the result taking Cy =

Cy + d3Cy,.

Nstop ;&

3.3 Optimal perforated domains for the degree conditions

Recall that we fixed ' D © a smooth bounded domain s.t. dist(9€',) > 0 and a
smooth S!'-valued extension of g to '\ Q (still denoted by g).
In this section, we study the minimization problem

1
I,.:= inf inf — [ U|Vuw)? 3.7
pe z1,.,eNEQ weH(Q,,81) 2 /Q/ e[Vl (3.7)
|lzi—x;|>8p ’

de, . w)=d;
d1yeendn>0,5 di=d 808 (z;,p) (W) =di

where

Q, = Q" \ UB(x, p)

and

Hgl(Q;,Sl) = {w € HI(Q;,SI) |w=gin Q’\QUB(mi,p)};

here, we extended U, with the value 1 outside 2. We recall that we denoted by U, the
unique global minimizer of E. in H{.

In this subsection we assume that Hypothesis (L3)) holds (|In(A\d)|?/|Ine| — 0). This
is not optimal for the statements but it makes the proofs simpler (this hypothesis may be
relaxed, but it appears as a crucial and technical hypothesis for the methods developed

Section []).

A first purpose of this section is the study of the behavior of I, when p = p(e) — 0
as € — 0. In view of the application we have in mind we suppose that A6+ > p(e) > ¢
but this is not crucial for our arguments (here P = 1 if U, is associated associated with
the periodic pinning term) .

A second objective of our study is to exhibit the behavior of almost minimal configu-
rations {(z7,...,2% ), (d},....,d})}.

For fixed p, e, the existence of a minimal configuration of points x, . is the purpose of
Proposition @ In this section we consider only almost minimal configurations.

14



Notation 11. For €, | 0, we say that {(z7,...,2%),(d},...,d%)} is an almost minimal
configuration for p = p(e,) | 0 when a7, ..., 2% € Q, |2} — 27| > 8p, df,...,d};, >0, d} =
d and there is C' > 0 (independent of n) s.t.
inf 1/ U2 |\Vw|? — I, <C.
weH (8 2J)qr "
ngaB(x?,ﬂ)(w):d?

Roughly speaking, we establish in this section two repelling effects for the points:
point/point and point/9€ ; and an attractive effect for the points by the inclusions wy.

3.3.1 The case of the periodic pinning term

The main result of this section establishes that when ¢,,p | 0, an almost minimal
configuration {(z7,...,z%), (d},...,d%)} is s.t. (for sufficiently large n)

e the points z}'’s cannot be mutually close,

e the degrees d}'’s are necessarily all equal to 1,
e the points z}'’s cannot approach 02,

e there is ¢ > 0 s.t. B(z},c\d) C w, for all i.

These facts are expressed in the following proposition (whose proof is postponed to Ap-
pendix [D]).
Proposition 12. [The case of a periodic pinning term/

Assume that \, ¢ satisfy (L3) and let a. be the periodic the pinning term (represented
Figure[T).

Let e, 1 0, p = plen) 4 0, 2¥,....2% € Q be s.t. |27 — 2| > 8p, p > &, and let

T, dy € N* be st Y d =d.
1. Assume that there is ip € {1,..,N} s.t. di # 1 or that there are ig # jo s.t.
|zfy, — 2% | — 0. Then

1
inf —/ U2 [Vw* = I,., ¢ — oo.
wEH;(le,Sl) 2 le

deg@B(m;L ) (w):d?

2. Assume that there is igp € {1,..., N} s.t. dist(z},0Q) — 0. Then

70

1
inf — | U2 |Vw]? -1 — 00.
weH; (2),,5) { 2 /Q; vl p’gn}

ngOB(x? 0 (’Ll)):d;L

3. Assume that % — 0 and that there is ig € {1,..., N} s.t. o} ¢ w. or s.t. x] € we
dist(z? , Owe)

20

and — — 0. Then
inf 1/ U2 |Vw|? = I,e, ¢ — o0.
weH(Q,,S) 2 Q, " ’

ngOB(x? 0 (’Ll)):d;L
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A straightforward consequence of Proposition [I2]is the following
Corollary 13. 1. Consider an almost minimal configuration {X,c,d,.} € QN x N*V,

ie., assume that there is w,. € H} (Y \ UB(z!°, p),S") verifying

1
degop(ure ) (w) = dP*° and 3 / U2\ Vuw|* < I,. + C.
T Q

N\UB( p)

(Here, C' is independent of €.)

Then, there is some 1y independent of € s.t., for small €, we have
|z — :E§’€|,dist(:nf’€,8§2) >mno and d; =1 for alli # j, i,5 € {1,...,N}.
In particular, we have N = d.
2. If, in addition, p = p(e) is s.t. p > € and % — 0, then there is ¢ > 0 (independent
of €) s.t., for small £, we have B(a:ip’a,c)\é) C we.

Proof of Corollary[I3. We prove the first part. Let C' > 0. We argue by contradiction and
we assume that for all n € N* there are 0 < &, < p=p(en) < 1/n, Xy =Xy, (d1, ..., dN)
and wy, = w,, satisfying the hypotheses of Corollary [L3] and s.t.

min {|z} — 2}, dist(z}, Q) } — 0 or s.t. there is ¢ € {1,..., N} for which we have d; # 1.

By construction we have that {x,.,,d} is an almost minimal configuration for I,., with
p = p(en) > &y. Clearly from Proposition [[2 we find a contradiction.
The proof of the second part is similar. O

We end this subsection by the following direct consequence of Corollary [I3]

Corollary 14. For sufficiently small €, p, an almost minimal configuration (x1,...,xq) for
Jpe is an almost minimal configuration for I, ..
Moreover, there is Cy > 0 s.t. J,. < 1,.+ Cy, Cp is independent of small e, p.

Proof. Let C >0 and let (71, ..., 74), (7], ..., 7)) € Q¢ be s.t.
jp75(1’1, ...,a:d) § Jp7g + C

and
Lpe(xh,naly) <I,.+C.

From Corollary @3] there is 7y = n9(C') > 0 s.t. for ¢ < p < g, min; dist(z}, OQ) > no.
Using Proposition [0 we have the existence of Cj s.t.

fp,s(:nl, oy Tg) < jp,e(:nl, ey Tq) Joe +C < jpﬁ(x'l, )+ C
Lye(2],.nzly) + C+ Cy

I,. +2C + Cp.

VAN VAN VAN
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3.3.2 A more precise result for the case of the periodic pinning term with
dilution

In this section we focus on the periodic pinning term (represented Figure [I]) with
dilution: A — 0.
Notation 15. We define two kinds of configuration of distinct points of §2:

e We say that for ¢, | 0 and p = p(e,) = 0, d distinct points of Q, x,, = (27, ...,2])
form a quasi-minimizer of J,., when 7, (xn) — J,c, — 0.

e We say that for , | 0 and p = p(e,) — 0, d distinct points of Q, x,, = (z7,...,x})
form a quasi-minimizer of W, the renormalized energy of Bethuel-Brezis-Hélein (see

[4]) when Wy (x,) — min W,,.

Proposition 16. [Asymptotic location of optimal perforations/

Assume that \,0 satisfy (L3]) and that A — 0.

Lete, 10, p=plen) =0, p>e, and x, = (27, ..., 2]]) be d distinct points of Q.

If the points x, form a quasi-minimizer of J,.,, then x, = (27,...,x])) form a quasi-
minimizer of W.

This proposition is proved Appendix [El

3.3.3 The case of a general pinning term with variable sizes of inclusions

We assume that a. is the general pinning term represented Figure 2l with the hypothesis
on the dilution: A — 0.

Proposition 17. [The case of a non-periodic pinning term/
Assume that X\, ¢ satisfy (L3) and X\ — 0.

Let p = p(e) s.t. p>¢€ and

52 — 0. If {xpe,d,c} is an almost minimal configura-

tion for I,., then N = d (thus d; =1 for all i) and there are c¢,n9 > 0 (independent of €)
s.t. for sufficiently small £:

1. |z — x§’€|,dist(xf’€,89) > foralli#j, 4,5 €{1,...,N}.
2. B(xfF,c\8) C we (the centers of the holes are included in the largest inclusions).

Moreover, there is Cy > 0 s.t. J,. < 1, + Co, Cqg is independent of small €, p. And thus
an almost minimal configuration X, . for J,. is an almost minimal configuration for I, .

This proposition is proved Appendix [E] (Subsection [E.3]).

4 The pinned Ginzburg-Landau functional

In this section, we turn to the main purpose of this article: the study of minimizers of
E. (defined in (L)) in H;.

The pinning term is the periodic one (represented Figure [Il) or the non periodic one
(represented Figure [2)).

Recall that we fix § = d(), 6 — 0, A = A(¢), A = 1 or A — 0 satisfying (L3]). If the
pinning term is not periodic then we add the hypothesis A — 0.
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4.1 Sharp Upper Bound, 7n-ellipticity and Uniform Convergence
4.1.1 Sharp Upper Bound and an n-ellipticity result
We may easily prove the following upper bound.

Lemma 18. Assume that L — 0 (or —= — 0 if the pinning term is not periodic), then

Ad )\53/ 2

we have

. bp
2
vel;?(fﬂ,(:) F.(v) <db*(mln ~ +7) + Jpe +0:(1), (4.1)

where vy > 0 is a universal constant defined in [{|/, Lemma IX.1.

Proof. We construct a suitable test function w, € H, gl (for sufficiently small ).
From Proposition @ one may consider (27, ...,25) = x° € Q¢ a minimal configuration
for J,..

P p
Note that since SV 0 (or 5372

laries [[3] & [I4] (or Proposition [I7]if the pinning term is not periodic), there are n > 0 and

¢ > 0s.t. for small € we have B(z5,cA\d) C w, and min; {min;; |z; — x;|, dist(x;, 0Q)} > n.
Let w. be a minimal map in J,.(x%,1) (Proposition ). We denote 1 := (1,...,1) € N4
Let u. ;@) € H'(B(0,1),C) be a global minimizer of

— 0 if the pinning term is not periodic), from Corol-

1 b2p?
B (1) = 5/B(O ! {|v 1+ ez (1= |u|2)2} we H, ), (B(0,1),C).

We consider the test function

We in Q,
N . ‘
e(e) O Ue  (bp) <$ xl) in B(z5, p)
p

0

Here the constants of € S! are s.t. w.(z + pe¥?) = a5e?.
Estimate (L1 is obtained by using the fact that Eo(ue) =7llne|+v+o0.(1) ase =0

(see [4] Lemma IX.1) and Proposition [3]
U

Note that
I,. <J,e<mdlInp|+ C. (4.2)

We now turn to the n-ellipticity.

We denote by v. a global minimizer of F. in H, gl. We extend |v;| with the value 1
outside €.

One of the main ingredients in this work is the following result.

Lemma 19. [n-ellipticity lemma/
Let 0 < o < 1/2. Then the following results hold:

1. If for e < gg
F.(ve, B(z,e*) N Q) < x?|Ing| — Cy,

then we have
lve| > 1— Cx in B(z,&*®).

Here, x. € (0,1) is s.t. xe — 0 and g9 > 0, C > 0, C; > 0 depend only on
b7a7X797||gHC'1(8Q)'
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2. If for e < &g
F.(ve, B(z,e®) N Q) < C|lne|,

then we have
|v| > p in B(x,e*®).

Here, ju € (0,1) and g9,C > 0 depend only on b, v, i1, [|gllc1(a0) -

This result is a direct consequence of Lemma 1 in [I3].

4.1.2 Uniform convergence of |v.| outside w,

With the help of Lemma [T9 we are in position to establish uniform convergence of |v,]
to 1 far away from @;.

Proposition 20. Let 1072 - dist(w,dY) > u > 0 and Kt = {z € Q|dist(z,w:) > pAd}.
Then, for sufficiently small £, we have

1

o] > 1— 0y /BN e

|Ine|
Here C' is independent of € and p.
[In(A9)]

|Ine|

, then

Furthermore, if for some small e, we have |v.(z)| <1—C

Fa(va,B(x,€1/4)) > 2(md +1)

ZRA=0) [ In(A)].

2(rd + 1) | In(\0)]

btain th
R0 el , we obtain the

Proof. Using Lemma [[91 with « = 1/4 and x = \/

existence of C' > 0 s.t. for € > 0 sufficiently small:
2(rd + 1)
b2(1 — b2)
In order to prove Proposition R0l we argue by contradiction. There are e, J 0, u > 0 and
x, € KE' st.

if F.(ve, B(z,eY%)) < | In(\d)|, then we have |v.| > 1 — Cx in B(z,e'/?).

’/UEn (‘Tn)’ <1l- CX
From (3]), we find

U, =1 < Coe™ % in K22, ¢ = & (4.3)
Consequently, Lemma [T9] the definition of C' and (4.3]) imply that for large n,
1 9 1 9.9 2(wd + 1)
5 57U - > S . .
5 /B(:cn,a}/‘l) {|van| + 222 (1 = |ve, %) } Z R R | In(X\0)| + 0:(1) (4.4)

We extend v: to Q' := Q + B(0,1) with the help of a fixed smooth S'-valued map v
s.t. v = g on 0f). We also extend U, and a. with the value 1 outside €.
For n sufficiently large, we have

1 1
5// {|Vven|2 + @(1 — |U€n|2)2} < COllngy.
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Theorem 4.1 in [20] applied with 7 = 1072 - Adu and for large n, implies the existence of
B" = {B}'} a finite disjoint covering by balls of

{xEQ/

. En En 1/8
dist(z,00Q") > > and 1 —|vg, (x)] > (?) }

s.t.
rad (B") <1072 - \u

satisfying

IR P 1= o2
2 Jupn ol 9e2 o

J

v

7> di(|Inen| — |In(A)]) - C
J

= 7Y _ dj|lngl-C.
J

Here, rad (B") = _, rad(B}'), rad(B) stands for the radius of the ball B, { = €,,/(Ad) and
the integers dj are defined by

S . En
o {|degaBjn(v€n)| if B} C {z € Q'|dist(x,0Q) > ?}
f :

0 otherwise

Since B; C Q+ By C {x € Q'|dist(x,00Q") > %}, we obtain

1 b?
—/ Voo P+ 2 (1 = o P2V > rd|ng| — €. (4.5)
2 Jupy 2e2
From (43) and (I3) we have
b (1 —b?) 1
1/4 2 2\2
Rlve, Uiy UBan el ) = T N N
b b
+= Voo, [ + 55 (1= [v2,[7)* ¢ +on(1). (4.6)
2 Uij 2677/

By combining (@) (with p = A\26%), ([@&2)), @4), (£35) and ([@B), we find that

7db? In[(\6) /€] + md|In[(N0)?]| > F., (v.,,Q)— 0O, (1)
> an ('Ueny Uij U B($m 5;/4)) - On (1)
> wdb?|Iné| + 2(md 4 1) In(\5)| — O, (1)

which is a contradiction. This completes the proof of Proposition O

4.2 Bad discs
4.2.1 Construction and first properties of bad discs

A fundamental tool in this article is the use of ad-hoc coverings of {|v.| < 7/8} by
small discs. The best radius for a covering of {|v.| < 7/8} should be of the order . But
the construction of such covering need some preliminary results.
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Roughly speaking, the way to get a "sharp" covering is to consider a trivial covering
and to "clean" it by dropping some discs with the help an "energetic test" (n-ellipticity
result).

Here, we used two kinds of energetic tests: Lemma [[9 and Theorem II1.3 in [4]. The-
orem II1.3 in [4] gives the most precise results (it allows to deal with discs with radius
O(e)) but it needs a bound on the potential part =2 [, (1 — |v-|*)? which is the purpose
of Proposition In order to prove this bound (Proposition B0), we first use larger discs
(discs with radius p, e < p < AF*1). The construction of intermediate coverings is done
via Lemma [[9

We first consider

Notation 21. A trivial covering of €2 by discs
For £ > 0, we fix a family of discs (B(xi,sl/‘l))iel s.t
v, € Q,Viel,
B(x;, e/t /4) N B(;, e/ /4) = 0 if i # j,
UieIB($i7€1/4) D Q.
Then we select discs (using Lemma [I9]) and we define
Notation 22. The initial good/bad discs

o Let Cy=Cy(1/4,7/8), e0 = €0(1/4,7/8) be defined by Lemma [[912. For € < gy, we say
that B(z;,e"/*) is an initial good disc if

F.(ve, B(zi, ") N Q) < Cy| Ine]
and B(z;,e'/*) is an initial bad disc if

F.(ve, B(zi,eY*) N Q) > Coy|Inel. (4.7)

o Welet J = J(e) := {i € I| B(x;,e/*) is an initial bad disc}.
An easy consequence of Lemma [I§ is

Lemma 23. The number of initial bad discs is bounded
There is an integer N which depends only on g and Q) s.t.

Card J < N.

Proof. Since each point of Q is covered by at most C' > 0 (universal constant) discs
B(x;,eY*), we have
ZFe(UEaB(xi,51/4) NQ) < CF. (v, Q).

icJ
. D Cnd
The previous assertion implies that Card J < < + 1. U
0
Let p(¢) = p 1 0 be s.t.
p [ Inpf®

— d . 4.
)\5P+1—>0an el — 0 (4.8)

Note that from Assumption (L3)), such a p exists, e.g., p = (AJ)F+2. (Recall that if the
pinning term is periodic then P = 1)
The following result is a straightforward variant of Theorem IV.1 in [4].
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Lemma 24. Separation of the initial bad discs
Let €, | 0. Then (possibly after passing to a subsequence and relabeling the indices),
we may choose J' C J and a constant k independent of n s.t.

J ={1,..,N'}, N' = Cst,

‘xi _‘T]’ > 16510 fOT’ Z?] € Jla i #]7
and

1/4

UiesB(xi, &,/ ") C Uier B(xi, kp).

Notation 25. The p-bad disc
For i € J', we say that B(x;,2kp) is a p-bad disc.
Proposition 26. We have

I p
" dist(B(x;, 26p), 00Q)

— 0,

2. degﬁB(xiQ/ip) (UEn) >0,

3. F€n (U€n7 B($17 2’{p)) > szdegaB(xi,znp) (UEn) In L 0(1);

€n

[ 1In p|
[Ine,|

Proof. We prove Assertions 1., 2. and 3.. Set

4. |ve,| >1-C in Q\ Use Bz, 2Kp).

Jo = {i € J' | degy(p(z; 20p)n0) (V=,) > 0}

Since |vg, | > % in Q\ UserB(x;,2Kp), we have

0<d="" degyp(m anpne) (Ven) < D A€oz 2mp)ne) (Ve,)- (4.9)
IeJ’ IeJ,

Consequently J)) # 0.

Up to a subsequence, we may assume that Jj is independent of n.

From Proposition 0, for all i € J} , we have dist(B(x;,e'/4),00Q) 2 & (or 6 if the
pinning term is not periodic). Consequently, for i € J| we find

dist(B(z;, 2kp), 02)
p

— +00 (4.10)

. p
since GPT — 0.

Assertions 1., 2. and 3. will follow from the estimate

FEn (UE'rH B(x“ 2"£p)) 2 b2ﬂ-degaB(xi,2f€p) (Uan) In gﬁ - 0(1)7 (411)

n

valid for ¢ € J|. Indeed, assume for the moment that (£IT]) holds for i € .Jj.

Then, by combining (@), (£2), @7), &), (£9) and @II]), we find that Jj = J,
i.e., 2. holds. Consequently, by combining Assertion 2. with (A.I0), Assertion 1. yields

and from Assertion 2. and (£II]), Assertion 3. holds.
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We now turn to the proof of (4.I1), which relies on Proposition 4.1 in [20]. We apply
this proposition in the domain B = B(O 2k), to the function v'(z) = v, [p(z — z;)] and

with the rescaled parameter &peso = —

)
Note that, from [J)), &€ < Emeso < p < A6T T and |Ine| ~ |In Epeso| > | In(NS)].
Clearly, v’ satisfies

1 1
/{|w'|2+ ~ (1—|v’|2)2} = / {Ivvenl2 (1= o >}
B &meso B(zi,2kp)

= O(HHED - (Hngmeso‘)'

Hence, one may apply the following result of Sandier and Serfaty: there is (B;);er, a finite
covering of

{z € B(0,2k — &meso/b) | [V ()] <1~ (fmeso/b)l/g}
with disjoint balls B; of radius r; < 1073 st

1 / { o, b2 }
— Vo'l + v > T d In Emeso
2 Ipnus, V| €12ncso( [v'?) Z | | —O);

here d; = {(!)degagj (W) if Bj C B(0,2 — &meso/b)

otherwise

Note that from construction, {|v., | < 7/8} C UJB(xZ,En/ ) C UpB(x;,kp). Conse-
quently:

. 3
if dega(Bj03(072,{_&!1650/1)))(1/) # 0, then we have B; C B(0, 5/1)

Therefore, Z dj = degaB(O,Z%) (U/) = degaB(xi,Z%p) (Uen) and

1 1
B} /B( 2 {|Vvsn|2 + ol |ven|2)2} > 1degop(e, anp) (Ven )| 10 Emeso] — O(1)
T;,2Kp
= FdegﬁB(xHZHp) (Uan) ln g - O(l)

Thus ({I1) holds.

The last assertion is obtained using Lemmas [I8] & 9 Indeed, note that the proof of
(AI1) gives a more precise result

3
FEn (UEn? B(x“ 5'%/))) 2 b2ﬂ-degaB(xi,2Hp) (Uan) In gﬁ - O(l)

n

Let z € Q\ Uy B(z;,2kp) then B(x, el ) N B(xy, %/{p) = (). Consequently, using Lemma
I8 and the previous lower bound, we obtain:

FEn(Uean(x €n W )) < I2npen +CO < 7Td| lnp| —1—00

1
Therefore, from Lemma[I9] there is C' > 0, independent of = s.t. |v., (z)| > 1-C [In p|

|Ine,|
]
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4.2.2 Location and degree of bad discs

Let w,, = Uen ¢ HY(Q\ Uy B(x;,2kp),Sh).

’/Uffn‘
Proposition 27. The map wy, is an almost minimal function for Ia., .., .

1
Proof. Indeed, denote K, = =

/ U2 |Vw,|?, then we have
2 O\U j» B(x;,2Kp)

Ky

IN

U2, (1 = Jve,[*) [V |

E., (ve,,Q\ UpB(x;,26p)) + /
O\U s B(x,2Kp)

U2, (1 = [ve, [*)[Vwn[?

e B (ve,, Q) — Fu (ve, Uy Blas, 26p)) + /
OQ\U ;s B(x;,26p)

1
< @), PropBA< I, +C 'n”|/ U2 [Vl + O(1)
|1H€n| O\U s B(x,2Kp)

[ In p|
|Ine,|

< @D, PropRB < Ioppe, +C F. (ve,,Q\ UpB(x;,26p)) + O(1)

n

@), @E2) | Inp|?
< <
Prop 26l — Lawpen +C |Ine,| +0(1)

< (@El) < [2f-6p,an + O(l)-
O

Remark 28. Note that the penultimate line in the proof of Proposition 27]is the main use
of (L3)) (which is express in ([4.8)).

By combining Proposition [12] with Proposition 27] in the periodic case or Proposition
[T if the pinning term is not periodic, we obtain the following

Corollary 29. The configuration {(z1,...,xn), (degaB(m,Q,{p)(Uan), s d€8aB(z s 26p) (ve,)) }
is an almost minimal configuration of Io., ., and consequently, N' = d, degpB(a;,26p) (ve,) =
1 for all i and there is ng > 0 independent of large n s.t.

min {H;éln |z; — 2], min dist(xi,ﬁﬁ)} > 2np,
1] 7
B(:Ei, 2770/\5) C we.

4.3 H} -weak convergence

In order to keep notations simple, we replace from now on, 2xp by p/2.

Using Corollary 29, there is {aq, ...,aq} C Q s.t. possibly after passing to a subsequence,
we have 27! = x; — a;.

Let po > 0 be defined as

po=10"" -min {dist(ax, 02), |ax — al}
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4.3.1 The contribution of the modulus is bounded in the whole domain

We are now in position to bound the potential part of F.(v.). More precisely we have

1
Proposition 30. We have / {]V\vanw + 5_2(1 — ’U5n\2)2} =0(1).
Q

n

Proof. From (d.1]), Proposition 26] (Assertion 1., 2. and 3.) and Proposition 27, we infer

that )
[ {\vrvanw la- mmz} — o).
O\U; B(x4,0/2) €n

Consequently it suffices to obtain a similar estimate in B(x;, p/2). Note that B(x;, p) C we.
Thus, if we set

W(z) = M . B(0,1) — C,

then ' solves )
—Au = Wu'(l — |[u/[?) in B(0,1).

From [5], we obtain

1 9 b2,02
— VI ||" + =51 — [W/]?)? p = O(1).
5 Lo TP + S =2 = 00

This estimate is the subject of Theorem 1 for the potential part and Proposition 1 in [5]
for the gradient of the modulus (see also Corollary 1 in [5]).

1
Set K, = —/ {|V| H + i '02 (1-— |u/|2)2}. Using Proposition 8] we obtain
2 /B(0,1/2) 2e

1 b4 |U€n,U5n|2 ?
K.=0() = o B(wm{\vrmnvgnu # o (1- Psgel)
1/ { b2 2 2}
= = Vv n + — Ve, +0n 1).
3 o Tl g (10 o)

Consequently, Proposition B0 holds. O

4.3.2 'We bound the energy in a fixed perforated domain
Proposition 31. For 0 < n < pg, there is C(n) > 0 independent of n s.t. we have

1
3| e P <cm). (112)
Q\UB(a;,n)

Proof. We argue by contradiction and we assume that there is n > 0 s.t., up to pass to a
subsequence, we have fQ\U B(a \Vvan\ — 00.

Because fQ\UB(ai,n |V, |? = fQ\UB o) ]UE7L‘2‘an‘2 + |V (v, |)|?, from Propositions
& B0l we get fQ\UW |Vw,|? — oo. Therefore, we have fQ\Um |Vw,|? — oo.

It is clear that we may get a map W, € Jyp-1y., (Xe,, 1) 8-t fQ\Um |V, |2 <
Cn).
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For i = 1,...,d, using Proposition [#3) (Appendix [C] Section [C.3] Page B4), we get
the existence of a map w;,, € H'(B(x;,107'n) \ B(zi, p/2),S) s.t. W pn(z; + 107 1net?) =
Wy (z; + 107 1ne’?) and

U2, |V n|? < / U2 [Vw,|* +0(1)

/B<xz-,101n>\8(xz—,p/2> B(xi,10- ')\ B(@:,p/2)

Therefore by extending @, with 1@, in B(x;,1071n)\ B(z;, p/2) we get a map still denoted
o € HA(Q\ UB(z1,p/2),5) st

1 1
—/ 7|an|2——/ VP
2 Jo\UB(w:,p/2) 2 Jo\UB(@ip/2)

which is in contradiction with Proposition
O

Consequently, there is v, € HL (Q\ {a1,...,aq},S') s.t., up to pass to a subsequence,
Ve, — i in HL _(Q\ {a1,...,aq}). Next section is dedicate to the limiting equation of v,.

4.3.3 We establish the limiting equation

In order to obtain the expression of the homogenized problem, we use the unfolding
operator (see [§], definition 2.1).

The use of the unfolding operator needs a slightly modification of the cell period.
More precisely, instead of considering the § x d-grid whose vertices-grid are the points
{6(k,1)+(1/2,1/2) | k,l € Z}, we consider the one whose vertices-grid are {d(k,!) | k,l € Z}.

Thus instead of having cells which contain one inclusion at their center we have cells
with quarters of inclusion at their vertices. (See Figure B

More specifically, we define, for Q9 C R? an open set, p € (1,00) and § > 0,

Ts: LP(%) — LP(Qy x Y)

r Aincl 7
: H‘mwmm={¢@5ywﬁfmmwe% <V
0 for (x,y)€A5xY

Here, Y = (0,1)2, [s] is the integer part of s € R and

o U Tt 5] ((5].[5])
Y& cQo, Kez?
Y =5-(K+Y)

An adaptation of a result of Sauvageot ([21], Theorem 4) gives the following

Proposition 32. Let Qy C R? be a smooth bounded open set. Let v, € H?(,C) be s.t.

1. v, <1 and/ (1—|va)? =0,
Qo

2. v, — vy in HY(Qo) for some v, € H*(Qp,St),

3. there are H, € W (Qq, [b%,1]) and § = 6, | 0 s.t. Ts(Hp)(x,y) — Holy) in
Lz(QO X Y),
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NS,

a) Four period-cells which are obtained from Y = (b) The new unit-cell Y with four quarters

(
(—1/2,1/2)? and the new period-cell in dash obtained from  of an inclusion and the values of & = a%,

Y =(0,1)2
Figure 3: The modification of the reference cell

4. —div(Hp,Vu,) = vp fn(2), fn € L2(Q0,R).

Then v, is a solution of
— div(AVu,) = (AVu, - Vo, )u,

where A is the homogenized matriz of Ho(5)Idgz. (See Appendiz[H to have more details
about A)

The proof of Proposition [32] is postponed to Appendix

We apply the above proposition with Qo = Q \ UB(a;,n), 6 = 0, | 0 the sequence
which defines a., and H,, = Ufn. By application of Proposition Bl we obtain

L2xv) |a?(y) ifaA=1
T5 (U2 )(x, = .
$(U2,)(,) {1 a0

Note that the Y-periodic extension of @ in R? is equal to the Y-periodic extension of
1 — (1 — b*)1» which is a* (defined Construction [I]).
We find that v, solves

—div(AVuv,) = (AVu, - Voo, ifA=1
—Av, = |Vu,|?v, ifA—=0"

Here A is the homogenized matrix of [a*(3)]*Idgs.

4.4 The small bad discs
4.4.1 Definition

With the help the bound on the potential part of the minimizers 6% Jo=|v?)?<C
(Proposition [30]), in the spirit of [4] (Theorem III1.3), we may detect the vorticity defects
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(the connected components of {|v.| < 7/8}) by smaller discs (discs with radius of order €)
than the p-bad discs (Notation 23]).

Notation 33. The small bad discs
The construction is done as follows:

e We consider a covering of  as in Notation 21I] (page 2I). We fix p = p(e) | 0 s.t.
Assumption (L8] holds. For sufficiently small ¢, we denote

S,(e) = {B(z,R/2)| B(x, R) given by Notation 25 page 22I}.

e Following [4] (Theorem III1.3), for [ > 2, there are x;, y; > 0 (depending only on €2, g and
l) s.t. for z € Q, if
1

) (1= [vel)? <
g2 B(x,2K;€) :

then

1
lve| > 1 — 2 in B(z, ke).

We fix [ > 2 and we drop the subscript [. We now consider a covering of Ugeg,-)B by
discs (B(x5, k€))ier st
$f S UBESP(E)B7 Viel,
B(xf, ke /4) N B(x5, ke /4) = 0 if i # j,
Uie]B(.Z';-:, K,E) D) UBESP(E)B'
We say that B(x5, ke) is a small good disc if
1

) (1= |ve*)? < o
g2 B(x5 2ke) :

o If B(x5, ke) is not a small good disc, then we call it a small bad disc. We denote J C I
the set of indices of small bad discs.

Following [4], using Proposition B0l there is N; = N > 0 (depending only on 2, g and
l) s.t. Card(J) < N.

Using a standard separation process (Lemma [2]), for ¢, | 0, possibly after passing to
a subsequence and relabeling the discs, there are J’ C J and ' € {k,...,9V "1k} s.t.

{Jve,| <1 —1/1?} C UjesB(z5", ken) C Uieyr B(257, K'ey)

and e |
xén — pfn
—J _>8ifi,jeJ,i#].
En
By a standard iterative procedure, we may assume that the small bad discs are mutually

far away in the e-scale.

Proposition 34. Possibly after passing to a subsequence, we have, for large R and J" C J,
{|U€n| <1l- 1/12} C UiGJ”B(x?nv Ren)7

where, for i # j,
a5
En
Notation 35. The small and separated bad discs
The discs {B(z;", Rey,) |t € J"} obtained in Proposition B4lare the small and separated

bad discs.

— 0 as n — oQ.
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4.4.2 Each p-bad disc contains exactly one small bad disc

By construction, we know that the small and separated bad discs (defined Notation [35])
are covered by the p-bad discs defined Notation (page 22]). We next prove that there
are exactly d small bad discs and consequently, there is exactly one small bad discs per
p-bad discs.

Proposition 36. For large n and for all i € J”, we have
degyp(esn Re,)(ve,) = 1.
Proof. First we prove that, for large n and for all ¢, we have

degaB(mf" ,Ren)(UEn) # 0.

We argue by contradiction and we assume that, up to a subsequence, there is i s.t.
degaB(xjn ,Ren) (ve,) = 0.

Set A .
M,, = min bminM 51 (4.13)
" i#j  SRep,
and set
u,: B(0,M,) — C
En e
uEn (7‘,1; +x2 > :
—
v b
Note that, B(z;", Mynen) C we, and by Proposition 4] we have M,, — cc.
It is easy to check that u/, solves —Au!, = u! /(1 — |ul,|?). Following [7], up to a
subsequence,
ul, — ug in CE.(R?); (4.14)

here ug : R? — C solves —Aug = ug(1 — |up|?) in R2.

Then two cases occur: (1- |u0|2)2 < 00 or (1— |u0|2)2 - 0.
2 R2

Assume first that / (1 — |ug|*)? < oco. From [7], noting that the degree of ug on large
R2

circles centered in 0 is 0, we obtain that ug = Cst € S! and consequently / (1—|uol?)? = 0.
R2
Since u!, — ug in L*(B(0,2bR)) (R > k), we find that

/ -2 = 2 / (1= lun/b2)2

B(0,2bR) €n JB(aS" 2Ren)

- / (1= Joe, )2 + on(1) = 0.
B(z5" 2Ren)

Noting that B(xf",ke,) is a small bad disc and that B(z;",2ke,) C B(z",2Rey,), we
have a contradiction.

Therefore [ (1 — |ug|?)* = co. Consequently, there is My > 0 s.t.

R2
4h?
/ (1= |ugl*)* > sup{—2 /(1 - \van\z)Z}-
g
B(0,bMy) n n JQ
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Thus, for large n we have

b2
/’ (1— [ = 7/ (1 Jue, /b2
B(0,bMy) €n " Mpen)

" Mnpen)

> su 22},
> f{%lk e, )

which is a contradiction with B(z$", Mye,) C Q.
Consequently we obtain that for large n, degyp(gen Re,)(Ve,) # 0.
Now we prove that

degyp(acn Re,)(Ve,) =1 for all i and large n.

(1= [ve, [)? + 0n(1)

(4.15)

Note that each small bad disc contains at least a zero of v.,. Consequently, for p satisfying

(48), all small bad discs are included in a p-bad disc B(y, p) defined Notation 25 (page

22). (For sake of simplicity we wrote B(y, p) instead of B(y, 2kp)).

If B(y,p) is a p-bad disc, we denote Ay, = {i € J"|zi" € B(y,p)}. Clearly, if

Card(A,) = 1, then (ZI5) holds.
We define

e {10 min; jen,,izj |2;" — 25| if Card(Ay) > 1 ‘

Re, otherwise

From Proposition 4] if Card(A,) > 1 then e, /e, — .
For simplicity, we assume that y = 0 and we let

i =
B=B(0.8 u,.AB< i _>
(0.8)\ Uien, B ( -,

Remark 37. Note that from Corollary 29 we have B(y,16p) C we.

Clearly, we are in position to apply Theorem 2 in [I4] in the perforated domain B.

After scaling, we find that

1

2 /B(y 80)\UB(z." %)

i€y "

Vo, > > 7| Y degopen pe,)(ve,) I —C=rln~

In order to prove (AI5]), we observe the case where there is y s.t. Card(A,) > 1. Recall

that if for all y centers of p-bad discs we have Card(A,) = 1, then (AI5) holds.

degyp(sn Re,)(ve,) # 0, if Card(Ay) > 1, then we have

Z |degaB(m§” ,Ren)(v€n)| > 1L
ich,

We obtain easily the following lower bound for i € A,:

1 Y

/ x5,
2 JB(ain @Y)\B(T" Ren)

Re,

‘V'Ugn’ > m ‘degaB(f” RE7L)(UE7L) ln
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Summing for ¢ € A,, we obtain that

2 =h
Z / |Vue,|© > 27 ln - C.
ZGA B(LBE” 33 En ,Ren) Rgn

Consequently, we deduce that

Y
p ),
E Vo, |2 > ndln =— + 7 g In — On(1).
/ B(y,8p)\UB(x 5" ,Ren) Ren y s.t. Card(Ay)>1 Fen

From Lemma [I8 and Propositions 26] & 27 we deduce easily
1

5 / U2 |V, |* = mdb* In £ 1 0.0).
UB(%SP)\UB(-'E?I ,Ren) En

Combining the previous estimates, we obtain that
{y center of p-bad discs | Card(A,) > 1} =0,

and thus degyp(zen pge,)(ve,) = 1 for large n. O

Corollary 38. For large n, there is a unique zero inside each small and separated bad
discs defined Notation [39 (page[28).

Proof. From Proposition B6] one may assume that v, (z") = 0.

Let i € {1,...,d}. In view of (@I4), if we denote

u,: B(0,M,) — C
ugn(g—"az +a5n) (4.16)

then, up to a subsequence,

ul, — ug in C*(B(0,bR)). (4.17)
Here M, is defined in (£I3)).

Using the main result of [19], we have the existence of a universal function f : R —

[0,1] s.t

{ up(x) = f(|z))e’ %) where & = |z]e¥, 6; € R (4.18)

and f:RT — RT is increasing.

Therefore, we may apply Theorem 2.3 in [2] in order to obtain that, for large n, u, has
a unique zero in B(0,bR). Consequently, for large n, v, has a unique zero in B(z{", Rey,).
O

Corollary 39. One may consider that R depends only on | (R is independent of the
extraction we consider), i.e, for Il > 2 there is R > 0 s.t. for small €, denoting {z5|i €
{1,...,d}} the set of zeros of a minimizer v., we have

{Jve] < 1—1/1%} € U;B(a5, Ree).
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Proof. From Corollary B8, one may assume that v, (z5") = 0.

Let f: Rt — R™ be defined as in (£I8) and u), as in ({I6). For [ > 2, consider R; > 0
s.t.

1
[ — Ry is increasing and f(bR;) > 1 — SR

Note that from [22], one may consider R; ~ v/21/b.
By uniqueness of f, the full sequence |u),| converges to f in L [B(0,bmax {R, R;})].
Consequently, for n sufficiently large, since f is not decreasing,

{Jve, | <1— 1/12} C U;B(x", Rien).

4.5 Asymptotic expansion of F.(v.)

This section is essentially devoted to proof Theorem Bl The key argument in this proof
is Proposition 40l

4.5.1 Statement of the main result and a corollary

We state a technical and fundamental result and a direct corollary.

Proposition 40. For all €, | 0, up to a subsequence, there is p = p(ep) s.t. €, K p K
M\03%/2 and s.t. when n — oo the following holds

b
Fe,l(v2,) = Jpe, + B (mIn =2 + ) + 0,(1), (4.19)

€n

where J, . is defined in B.6) and v is the universal constant defined in [{|], Lemma IX.1.

Corollary 41. Let €y, | 0,p be as in Proposition [{0 Then we have
Ty en — Jpe, = mdb®In Eﬁ + 0n(1).
n

Proof of Corollary[/d. Using Proposition [, we may consider x, = (z7,...,2%) € Q¢ a
minimal configuration of points for J,.,, i.e. s.t.

jp,en(xm 1) = Joen

Combining Corollaries [[3] & [[4] (or Proposition [I7]if the pinning term is not periodic), we
have the existence of ¢ > 0 s.t. B(al, cA\d) C we.

s

Therefore, for a minimal map w, of J,., (x,,1), we may easily construct a map w, €
HYQ\ U;B(2i,6,),St) s.t. W, € Tz, (Xn,1) and

1 -
Jen,sn < 5/ U§n|an|2
O\UB(z4,en)

1 1
= —/ U2 |Vw, + —/ U2 |V,
2 Jo\UBG@.p) 2 JUB(zs,p)\B@ien)
= Jpe, +dbrn Eﬁ + on(1). (4.20)
On the other hand, Lemma [I§ combined with Proposition [0l yield
b
e + db(m In E—p +9) +0n(1) < Fu, (ve,) < ey e, + db?(m Inb + 7). (4.21)
We conclude with the help of (4.20]) and (4.21)). O
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4.5.2 Proof of Theorem

We are now in position to prove Theorem [ i.e., we are going to prove that
F.(ve) = Jeo + db?(rInb +7) 4 0-(1).
Indeed, using Lemma [I8 it suffices to prove that
F.(ve) > Jeo + db?(mInb + ) + 0-(1).
This estimate is equivalent to:
for all €, | 0, up to subsequence, we have F., (v.,) > J., o, + db*(rInb+7) + 0,(1).

Let €, | 0. Then, up to a subsequence, there is p = p,, given by Proposition E{ s.t.

b
P, (v:,) 2 Jpe, +db*(wIn = 4+ 9) + 0, ().

n

n

We deduce from Corollary (1] that

Fo(ve,) > Jepe, —db?In 2 4 db?(r 1nz—'0 )+ on(1)

€n

= Jope, +dV*(mlnb+7) + 0,(1),

which ends the proof of Theorem [l

4.5.3 Proof of Proposition [40]

In order to construct p, we first define a suitable extraction.

For I € N\ {0, 1}, consider R; given by Corollary

Using Proposition 36l and Corollary B8] for sufficiently large n, v, has exactly d zeros
l‘? = 1, ,ﬂjg = Zq.

Clearly, these zeros are well separated and far from 99 (independently of n).

Fix i € {1,...,d} and consider

ul : B(0,)%26%/e,) — C
e
x — b

For simplicity, assume z; = 0.
Up to a subsequence, one has, as in (EIS),

up, = ug in Cpo(R?, C), ug(x) = f(|z])e" %)
where z = |z|e?, §; € R and f: Rt — R¥ is increasing.

Consequently, for I € N\ {0,1}, one may construct an extraction (n;);>2 s.t., denoting
/

Uy, = Uy = |upe(@+2) and Ve,, = Ui, we have
{jv| <1 —=1/1%} C U;B(ws, Rien,), (4.22)
252
pL = RlE"l < Ta
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1 2 2 2 1 2 2 1

Vu/2+— 1—|u —/ Vug|"+ = (1 — |ug < -, 4.23
Lronm [T+ 5 () = [ v+ g (-l | <7 429

and L
H(b; - ei”Cl(B(Qle)) < 7 (424)

Here R; ~ v/21/b and is defined in Corollary
Following the proof of Proposition 1, Step 2 in [7], one has
/ |V#)|* < C independently of I. (4.25)
B0, 22 )\B(0.R1)

In B(0,226%) \ B(0,ey,,), we denote v,, = v; = |v;|e’?*?) (e = z/|z|). By conformal
invariance, (4.24) implies that

C
190 = Oill L= 080,p1)) + |91 11720B(0,000) < T (4.26)
Denote W; = B(0,2p;) \ B(0, p;) and consider ¢! € HY/2(0W},R) s.t
g fo-b moBOL)
' 0 on 0B(0,2p;)
Using (L26)), it is clear that [|1%]| oo ow,) + |9} /2 ow;) = O(1/1). From this, it is straight-
forward that there exists a constant Cp > 0 (mdependent of ) and ¥! € HY(W},R) s.t.

1
trow, Ut = ¢! and —/ VI ? < 020.
2 Jw: z

Finally we define ¥; € HY(Q \ UB(x;, 1), R) by

v, = {\Ifﬁ( —x;) inx+ W

0 otherwise

and v
'lZ)l - |_l|e_2\11l S jpl (X7 1) with x = (f]}'l, ...7.Z'd).
(%

Therefore, denoting w; = ﬁ =e!0t) U, = Ue,, and Q, =Q \ B(z;, p;), we have

- 1 - 1
Ty (x,1) < 5/9 U7V = 5/Q UZ[Vwif? + 202V (0 + ¢1) - V¥ + or(1),
Py Py

From (€.25]), we obtain easily that

-3

)

V(@ + o) VY
Qp,

/ V(G + @l) : V‘Ifi( — :EZ) = Ol(l)
zi+W;

and consequently

N 1
Tppen (%,1) < 5/ U2|Vul? + or(1). (4.27)

Pl
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On the other hand, from direct computations, one has

1 1 1
3 | UAuP =g [ UAveP g [ URGal - D6+ e

7] 7] Qp,

Using the same argument as Mironescu in [I9], one may obtain that

%/ (1 — |u|>)Y2|V(0 + ¢;)|? < C with C independent of I. (4.28)
Qp,
From (4.28) and ([€.22), we obtain
1 2 2 1 2 2
= Ul \Vvl] > = Ul ‘le‘ — Ol(l).
2 Jo,, 2 Jo,,
Therefore, with (£.27]),
1 N
Fo )t o) 2 5 [ UAVUP o) 2 Gpey 1), (129)

Pl

In order to complete the proof of (£I9), it suffices to estimate the contribution of the discs
B($i7 Pl)

One has (using ([£23)))
R onBo) = 5[ 98+ L (1) )
_ g . et 4+ 2 (1 Judf?) + o)
_ g o Vuo|? + % (1 - |u0|2>2 +oy(1).

From Proposition 3.11 in [20], one has

1

1 2
5 o [0 5 (1= 00) " = wn0R) 495 1),
) 1

hence

Fe, (v, B(zi, pr) = b°[w In(bRy) + 7] + oi(1). (4.30)
By combining (.29) with (£.30), we obtain (4.19) with p; = Rjep,.

4.6 Proof of Theorems [1], 2, B] and 4
We prove Quantization part of Theorem [Il and Theorem
e The existence of exactly d zeros is a direct consequence of Corollary

e The facts that they are well included in w,, well separated and that v, has a degree equal
to 1 on small circles around the zeros are obtained by Proposition 36l and Corollary

e The lower bound for |v.| is given by Proposition 2614.

We prove Macroscopic location part of Theorem [Ik
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e The macroscopic location part of Theorem [lis a direct consequence of Theorem [l (proved
Subsection [4.5.2]), Proposition 26 (430) and Proposition

Indeed, from Theorem [ Proposition 2614 and (A30]), we get that the zeros form a quasi-
minimizer of J,. (defined Notation [I5] page [I7). By using Proposition [I6 we deduce
that they are a quasi-minimizer of the renormalized energy W, (defined Notation [IT)).
Thus, by smoothness of Wy, the zeros tend to a minimal configuration of W,.

We prove Microscopic location part of Theorem [ & [t

e In the case where A — 0, the fact that we may localize the zeros inside the inclusions
(microscopic location part of Theorem [Il and Theorem [)) is obtained via Theorem 4 in
[13].

Indeed we take f,,(2) = trop((kn,in),6/2)Ven ((Bn,ln) + 0z) With (ky,l,) a center of a cell
containing a zero of v, . Using the main result of [18], one may easily prove that f,
satisfies the conditions (A1) and (A2) in [13]. Thus we can apply Theorem 4 in [13]
and infer that the location of the zero inside the inclusion is governed by a renormalized
energy which is independent of the boundary condition.

Theorem [3] is obtained by combining:

e The weak H'-convergence of v., to v, is a direct consequence of Proposition BIl The
limiting equation for v, is a direct consequence of Proposition [32] (this is explained right
after Proposition 32]).

e The behavior in an e-neighborhood of the zeros of v, is given by (@I6), (LI7) and
(#I8) (noting that in (LIT7) we have R = R} — +00 as | — 00).

A Proof of Proposition [§

We prove the existence of minimal map in 7, and in J,. The main ingredient is the fact
that these sets are closed under H!-weak convergence (see [16] or below). Thus, considering

o 1 . .
a minimizing sequence for — a|V - |2 in above sets, we obtained the result.
Qp
We consider

e 0; : Q, — R the main argument of x — z;, i.e. e — ‘i:i‘:‘. Note that the 6; are
multivalued function with smooth gradient.

e For d; € N* (given by the definition of Z, or J,) we let 6 = >_d;6; and thus e =
d;
m (=)

From Lemma 11 in [6], there is ¢g € C®(9Q, R) s.t. ge™%0 = b0,

Note that
w € I, <= w = ") with ¢ € H(Q,,R) and trage = ¢o, (A1)
w = e %F9) with ¢ € H'(Q,,R),
we J, — Zdﬁj + ¢ = Cst; on 0B(z;,p) and tropnd = ¢o - (A.2)

JF
Clearly, from (Ad) and (A2), Z, and J, are H'-weakly closed.
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We now prove the second part of Proposition 8
One may easily obtain that for some A : ©, — R, denoting w = el0ote) ¢ ¢ HY(Q,,R)
(and thus w € Z,), we have

— div(aVw) = A < {—div[aV (0 + ¢)] = 0 and A = a|Vw|*}. (A.3)
This observation is a direct consequence of the following identity

—div [aVeZ(a(’*‘b)} —div [V (0o + ¢)] 1T 1 |V (0 + ¢)|?e!PF9),

Note that under these notations one has |Vw| = |V(p + ¢)|. Thus w is a minimizer in Z,
or J, if and only if 6y + ¢ minimizes the weighted Dirichlet functional under the condition
fixed by the RHS of (AJ]) or (A2]).

Consequently, we find that 6y + ¢ minimizes the weighted Dirichlet functional under
its Dirichlet boundary condition.

Therefore, we obtain easily that —div [@V(0y + ¢)] = 0. The identity V(6y + ¢) =
w X Vw yields —div(aVw) = Aw.

Hence, the Euler-Lagrange equations in (3.1]) and (3:2)) are direct consequences of (A.3]).

The condition on the boundary of the holes for wg & (resp. wD‘r) follows from multiply-
ing the equation satisfied by 90+¢‘;‘?§ , wg,eg e!(B0+6518) (resp. o+ ng, Dir e’(9°+¢m))

by ¢ € D(Q,R) (resp. ¥ € D(2,R) s.t ¢ = Cst; in B(x;, p)).
Since « is sufficiently smooth, we can rewrite the Euler-Lagrange equation as

Va - V(qb + 90)
«

—Ap = with € L*(Q).

Va - V(qb + 90)
a
Dir 2 deg | Dir 2 1
So, by elliptic regularity gbp ,Ppa € H(2p,R), and consequently wy ¢, w, s € H*(2,,S%).
B Proof of Proposition

We prove the existence of a minimal configuration {x,d} = {(z1,...,zn), (d1,...,dn)}
for I, .
Let ({x,,dy})n be a minimizing sequence of configuration of I, , i.e.,

. 1
inf = a|lVwl? = 1,4;
weH (Q7,Sh) s.t. 2 n

weg in \OUUBGT )
degpp(an,p) (w)=d} for all i
z,

here QF = Q' \UB(z, p).

Up to a subsequence, we have N, = N = Cst, d, = d = Cst and x, — x with
X = (21, ..., xN) s.t. ming; |x; — x5 > 8p.

Consider wy, € Z,(x;,,d) a minimal map. Since w,, is bounded independently of n in
Hl(Q;‘), up to a subsequence, we have w,, — wp in Hlloc(Qg), Qg = Q' \ UB(z4,p).

Clearly the following properties hold:

e wy € Hy, (Q),S") and wp = g in Q) \ Q.

1 1
e For all compact K C QY we have 5/ a|Vawo|? < liminfi/ alVw,|> < 1,4
K K
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Thus wo € H (29,S') and / a|Vwol|? < 1,4
)

Now, it suffices to check that degyp(,, ) (wo) € N* for all 4. Since wp is Sl-valued, this
fact is equivalent to degyp(y, ) (wo) € N* for all i and for all p’ € (p,2p).
In view of the facts:

e for p' € (p,2p) we have w), = w T — W) = W,

n|QY\UB(z;,p") 0|Q\UB(z?,p")

e the set 7’ := {w' € HY (Y \UB(x;,0'),S!) | degyp (g, (W) = d; for all i € {1,...,N}} is
closed under the H'-weak convergence (see Appendix [A]or [16]),

since w;, € I, we obtain that wj € Z'. Therefore {x,d} = {(z1,...,xn), (d1,...,d,)} is a
minimal configuration for I, .

Now we prove the existence of a minimal configuration for J, ..
Let (x,), be a minimizing sequence of configuration for J, ., i.e.,

Toa(%n,1) = Jpa

Up to a subsequence, one may assume that there is x = (21, ..., z4) € Q% s.t. Ty — X4,
|z; — x| > 8p and dist(z;, 0Q) > 8p.
Let 1, = 8 max |z — x;|. There is a smooth diffeomorphism ¢, : R? — R? satisfying

¢n = Idge in R2\ UB (a7, p+ ")
On i + (1 +n,)z] =2 + 2 for x € B(0,p)
|fn — Idg2|c1(r2y = 0n(1)

For example we can consider ¢,, = Idre + H,, with

H,=0 in R\ UB (2, p + ?771/2)
ptm?
H o+ (14 1)a] = (1= (o) (a7 = 21— o) for o € B0, 50

Here 1, : RT™ — [0,1] is a smooth function satisfying

0 ifr<p
Ynlr) = {1 if r > p+na?/2

For wy, € J,(xpn,1) a minimal map, we consider

and [¢}] = O(,'/?).

Wy o Q\UiB(zi, (1 +m0)p) — St
x = wn [Pn(T)]

Clearly w,, is well defined and we have

/ 0| Vi, |2 = / oV 2 + on(1),
Q\U; B(wi,(1410)p) Q\U; B(z7,p)

Wy, |:f1;z +(1+ nn)pe“"} = w, [(ﬁ(azz +(1+ nn)pe“‘))] — w, {x? + pele} _ H(046:)
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We can extend w, in U;B(zi, (1 4+ 1,)p) \ B(zi, p) by wn(z; + re?) = 040 p < <
(1 +1n)p-

1
Clearly, we have W, € J,(x,1) and — /
Q\Ui

5 | Vit |? = Jpa + 0n(1).

B(zi,p)

Thus considering w € J, «(x,1) a minimizer of — a|V - |?, we obtain

Q\U; B(z4,p)

1 1
—/ a|Vuw|? < —/ |V, |* = Ty + on(1).
2 Q\U; B(zi,p) 2 Q\U; B(z4,p)

Letting n — oo we deduce that the configuration x = (1, ..., 24) is minimal.

C Proof of Proposition

As explained Section B.2] Proposition [I0 is easily established when either N = 1 or
when the points are well separated. It remains to consider the case where N > 2 and there
are i # j s.t. |z — x| < 4Nstop-

C.1 The separation process

We assume that N > 2 and that the points are not well separated. Our purpose is to
compare the energy of jp,a to the energy of fp,a. To this purpose, we decompose €, into
several regions and we compare energies in each regions. These regions are constructed
recursively using the following version of Theorem IV.1 in [4].

Lemma 42. Let N > 2, x1,...,onx € R? and n > 0. There are k € {9°,...,9V"1} and
{y1,-yyn'} C{x1,...,xn} s.t.

UX, B(zi,m) C UL, By, kn)

and
lyi — y;| > 8kn for i # j.

We let x(l), -'-7339\/ denote the initial points x1,...,xx and Ny = N the initial number
of points. For k > 1 (here, k is an iteration in the construction of the regions), we let

Ny denote the number of points selected at Step k, and denote the points we select by
k k

TT, s TN, -
The recursive construction is made in such a way that Ny > Niy1 and N > 1 for all
k> 1.
The process will stop at the end of Step & if and only if one of the following conditions
yields

Rule 1: there is a unique point in the selection (i.e. Ny = 1),
Rule 2: min;4; ]a:f — a:ﬂ > AMstop-

Step k, k > 1: Let n, = %mini# \xf_l — x;?_l].

Using Lemma [42] there are

k€ {9%, ..., 9N 171 and {aF ,x?vk} C {:I:If_l,...,:néfv;:}
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s.t.
Nk 1B( 1777;9) C vazle(.Z'?,HkT]];) and |z — xﬂ > 8kym), for i # .

We denote 7, = 2kn,. We stop the construction if Ny =1 (Rule 1) or if imin ]azf_l
571 > nop (Rule 2).
In Figure M & [l both stop-conditions are presented.

o -
o

/
K17 1 1
xy — 23| > stop

T = 2K11}
4778t0p ) 4771 o ‘ ‘ _
(a) The initial balls ) The first step: a selec- (c) The process stops at the end of the first
tlon of two centers step since there are two well separated balls.

Figure 4: The process stops when we obtain well separated balls

%o

K1 1
=
m = 2K1m . ‘ /
(a) The initial balls (b) The first step: a selec- (c) The second step: it remains a unique ball
tion of three centers (the picture is at scale 1/2)

Figure 5: The process stops when we obtain a unique ball

Remark 43. 1. From the definitions of 772 and 7, we have Ny < Ni_1 and ng_1 < 772 <
Mk -

ii. The balls B(mé‘?, 2ny.) are disjoint.

iii. Denoting Aé‘? C {1,..., Ny_1 } the set of indices i s.t. 271 € B(azf, ki1, ), then for i € Aé‘?
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we have B(zF~!

4,

M) C B(wf,ﬁkng). Furthermore, by construction, |z¥~1 — x;?_l >

C.2 The separation process gives a natural partition of ()

Let Q,g, x1,...,zn, d and p, nsop like in Section with V > 2 and s.t. the points
are not well separated.

We apply the separation process. The process stops after K steps, 1 < K < N — 1.

We denote

{y1,...,yn'} C{x1,...,xn} the selection that we obtain, i.e., y; = x]K and N/ = Nk,

N - 7hsto if N =1
N {min g9th. Mtop » Yminy; — g} N 10 2 max(n, Teop), (G-1)
Aj={ie{l,..,N}|z; € B(yj,n)} and 1y = p.
We denote
Djj, = B(af,m) \ uxf,leB%%)B(mf—l,n,;), ke{l,..K}, je{l,..Ny}, (C.2)
Rk = B(:Ef,%H) \B(x?,nk), ke{0,..K -1}, j€{1,.., Ny}, (C.3)
Ry = B(y;m) \ Blypon)s § € {Los '} (C.4)

and

D =Q\ Ujeq,. vy B(y;,m).

Note that by construction of 7, 7, and :Ef the following properties are satisfied:

the balls B(xf_l, 21} are disjoint (C.5)
and
29, < mi < 9V (C.6)
Therefore
Q,=D U Uj,km U Uj ek U U; R; with disjoint unions. (C.7)

C.3 Construction of test functions

Construction of test functions in D and Dj

Lemma 44. 1. Let n > 0. There is C1(n) > 0 (depending on Q,g and n) s.t. if
T, .., xn € S satisfy mingz; |x; — x|, min; dist(z;,00Q) > 4n and dy,...,dy € N*

are s.t. Sdi = d then there is w € H}(@\ UBGzi,),8") sit. w(z) = S50 on
0B(z;,n) and

/ Vul? < Cy(n).
Q

\UB(zi,m)

Moreover Cy can be considered decreasing with 1.
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D = Q\ UB(y;,n)

(a) The macroscopic perforated domain and the first (b) A mesoscopic ring and a mesoscopic perforated domain
mesoscopic rings

2. Letn >0,k >8, dy,dq,...,dy € N* be s.1. ZlgiSN d; = do. Then, there is Cy(k,do)
s.t. forx1,...,xn € B(0,kn) satisfying min;»; |x; — x| > 4n we can associate a map
w € HY(B(0,2xn) \ UB(zi,1),S!) s.t.

do
W on 8B(O, 2HT])
Til on OB(x,1m)
and
/ |Vw|? < Cy(k,dy).
B(0,26m)\UB(z4,m)

Moreover Co can be considered increasing with k, dy.

Proof. In order to prove 1., we consider, e.g., the test function defined in Q,, := Q\UB(x;,7)
by

H:Q,—R
— ;)% H =0in {dist [x,00,] > n}
Wy (@ — ) . yOlin| =1
= II;———— with H s.t.
w=e |z — x;|% A ° —AH =0 in {dist [z, 0Q,] < n}

w € Hy (), S") and w(z) = (m_ﬁf)di on 0B(x;,n)

Assertion 2. was essentially established in [I4], Section 3. We adapt here the argument

42



in [I4]. By conformal invariance, we may assume that n = 1. We let

( x d;
e G |

i d;
‘:1: + x; <% - 2)
Him in B(O,%)\UB($i73/2)
_ )\ =YY
|t et e, 32)\ B D
1

(z — ;)%
| — |%
Clearly ||l H1(B(: 3/2)\ B D) 18 bounded by a constant which depends only on dp. O

here ¢; € C*°(B(x4,3/2),R) is defined by % = Il and ¢;(z;) € [0,2m).

By (CI) and Lemma @411, one may find a map wy € HY(D,S!) s.t.

g on 0f)
wy = (g ‘ ( where d; = Z d;)
wo(z) = o on 0B(y;,n) 2By )
satisfying in addition
[ 19w0l? < C1(0) < Colnen) (©8)

For each D, combining (C.2), (C.H), (C.6) and using Lemma H412, there exists a map
Wik € Hl(Dj’k,Sl) s.t.

_ pk\djk
€T x" )%,
% for x € OB(:Eg?,nk)
) — mf’k B
DT @y .

- for x € OB (x; ™", 1))

k
Here,

dig= Y di
IzEB(x;ﬂﬂ?k)
and
/ ‘ij,kP < CQ(QHk,dj’k) < 02(2 . gd_l,d). (Cg)
Dy},

Construction of test functions in R;’s and R;}’s
For R > r > 0 and 79 € R? we denote %(xo, R,7) := B(wo,R) \ B(xo,r). For a €
L>(R?,[b?,1]), we define

o t@ 7R7 ’ = . f
M ( (3;0 ’f’) ) weHl('gl(ng,r)Sf)

degaB(zo,R) (w)=d

N —

/ o Vil (C.10)
X (zo,R,T)
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and 1
Dir i i :
R (x0, R, 1), d) = inf —/ a|lVw|~. C.11
Ko ( ( 0 ) ) wEHl(«%’(:EO,RJ)’_Sl) 2 H(z0,R,r) ’ ’ ( )
w(w0+R019):_01d9
w(zo+ret?)e™ 40 =Cst

In the special case a = U2, we denote

pe(Z (20, R, 1), d) = Hyz (%(x0, R,7),d)

and

uPT (% (w0, R, 7),d) = ,ugizr(%’(xo, R,7),d).
Note that the minimization problems (C.10) and (C.I1l) admit solutions; this is obtained
by adapting the proof of Proposition 8l
We present an adaptation of a result of Sauvageot, Theorem 2 in [21].

Proposition 45. There is C, > 0 depending only on b € (0,1) s.t. for R > r > 0 and
a € L®(R% R) satisfying 1 > o > b, we have

uPT (R (20, R, 1), d) < pa(Z(x0, R,7),d) + d>Ch.

Proof. This result was obtained by Sauvageot with a@ € W1°(R?, [v?,1]). We may extend
this estimate to a € L>®(R?, [b%,1]).

Indeed, let (p;)1s1>0 be a classical mollifier, namely pi(z) = t~2p(x/t) with p €
C>°(R2,10,1]), Suppp C B(0,1) and [z p = 1.

Set oy = a * p; € WH™(B(z0, R), [b?,1]). We have

}i_r}& Poy (Z(x0, R, 7),d) = po(%(x0, R,7),d) (C.12)

and

%i_lg%uDir(%’(mo,R,r), ) = pP" (R (x0, R, 7),d). (C.13)

(077

We prove (C12), Equality (CI3]) follows with the same lines.

Let w be a minimizer of po (% (zo, R,r),d). By using Dominated convergence theorem,
since oy — a in LY(B(zg, R)), we obtain that ay|[Vw|*> — o|Vw|? in LY(%#(xo, R,7)) as
t — 0. Consequently

%l_gé 22 ('@(:E(]v R, T)’ ) < :ua(‘@(xo’ R, T‘), d)
On the other hand, let w; be a minimizer of pq(%#(xo,R,7),d) and let t, | 0. Up to
a subsequence, wy, — wo in H'(%(x0, R,7)) as n — oo and /az, Vwy, — /aVuwg in
L*(%(x0,R,7)).
Since the class Z := {w € HY(%(xo, R,7),S') | degpag,r) (W) = d} is closed under the
H'-weak convergence (see Appendix [A] or [16]), we obtain that wy € Z. Consequently, we
have

hItn lglf Koy ('@($07 R7 T)7 ) > ﬂa(t@(ﬂfo, R7 7"), )
%
Thus the proof of (CI2) is complete.
Therefore, without loss of generality, we may assume that « is Lipschitz.

One may easily prove that if R < 4r, then ul'™(%(x, R,r),ci) < 2d?mIn4. Thus we

@ ~

assume that R > 4r. Clearly, it suffices to obtain the result for d = 1 and zy = 0.
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Let w be a global minimizer of y (% (z0, R/2,2r),1). As explained Section[A] denoting
z/|z] = e, one may write w = e"9+®) for some ¢ € H*(%(x0, R/2,2r),R). Now we switch
to polar coordinates.

Consider

2

I= {pe 2r, R/2] ‘/027ra\V(9+¢)’2(p,9)d9§ %/0 a(p,o)de}.

Then I is closed (since ¢ € H?). On the other hand, I is non empty, by the mean value
theorem.

Let 71 = minI and ro = max I. We may assume that ¢(r2,0) = 0 and ¢(r1,0) = 6.
We construct a test function:

0 if2ro <p<R
2T2r2_ P o(r,) ifrg < p<2rp
¢'(p,0) = { ¢(p,0) ifry <p<ry
L N(r,0) 42" Loy itr/2<p<n
0o ifr<p<ry/2

As explained in 2], there is C' depending only on b s.t.

1
[ alTEeP-Ive+oP) <C
%(0,R/2,2r)

Thus the result follows. O

As a direct consequence of Proposition (the two first assertions of the next propo-
sition are direct), we have

Proposition 46. Let o € L®(R2,[b2,1]), R>r1 >r >0, d € Z and x € R?, we have

1. peo(Z(xo,R,7),d) = dzua(%(mo,R,r),l),
2. b27rln§ < po(Z(x0, R,17),1) < 7Tln§,

3. Ma(‘@(x(b R7 7"), 1) < Ma('@($07 R7 Tl)v 1) + /,La(t@(ﬂj‘o, 1, T)7 1) + 2017 where Ob is given
by Proposition [{3 and depends only on b.

We turn to the construction of test functions in R; and R; .

Using Proposition B5] there is Cj, depending only on b € (0, 1) s.t. for « € L°°(Q, [b%,1])
and for all k € {1,..., K — 1}, j € {1,..., Ny}, there is wo jx € H*(Rj,S') s.t.

_k\dk
x T Js
% for x € 3B($f7772+1)
n/kfl
w 7-7k r) = 1
,j ( ) (l‘ _ x‘];‘?)dg,k k 1
%JJJ@T for x € 83(%’7771@) where 7,5k €S
UM
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and s.t. for all w € H'(R;,S") satisfying degyp(zk nk)(w) = ~j,k one has
]7

/ a|Vwa jk* < / o Vuw|? + deik < / a|Vw|? + 2d>Cy,. (C.14)
R Rk Rk
Now we consider the rings R;. For j € {1,..., N}, we denote

di= Y d.

z;€B(y;,m)

Using Proposition B5] for j € {1,...,N'}, we obtain w, ; € H'(R;,S') s.t

RV
% for 2 € dB(y;,n)
n
Wa,j(x) = (z — y;)?
%z,jTj for z € 0B(y;, Nk ) where 74,5 € st
K

and s.t. for all w € H'(R;,S') satisfying degyp(y, ;) (w) = d; one has
/ a|Vw, ;| S/ a|Vw|? + 2dCy,. (C.15)
R; R;
C.4 Proof of Proposition 10

Note that there are at most d? regions Dj 1, at most d? rings R and at most d rings
R;. Consequently, denoting

Ca(nstop) = C1(nistop) + d*Ca(2 -9, d) + 4d* Gy
and using (C.1), (C.8), (C9), (C.14), (C15)), one may construct a test function wy € J,

(up to multiply by some S!-Constants each function previously constructed) s.t. for all
w € Z,, one has

/ a\Vwan/ a|Vw]? + Cy. (C.16)
Q, Q,

Clearly, (CI6) allows us to prove Proposition [0l with Cy = Cy/2.

D Proof of Proposition

D.1 Description of the special solution U.

From Proposition Bl we know that far away Ow., U, is uniformly close to a.. Here we
prove that, in a neighborhood of dw,, U, is very close to a cell regularization of a..

Let .
75) — {b71}
b ifrewr=\w .

PV =

N[

:U .
1 otherwise

Consider V; the unique minimizer of

EF(V,Y) / IVV]? + 252( ™ — V2?2,V e H (Y, R). (D.1)
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Lemma 47. We have the existence of C,y > 0 s.t. fore >0 andx €Y

y87

|Uelys; +67a] = Vigp (2) | < Ce™ .

Thus in the periodic case, we have U, which is almost a 0 - (Z x Z)-periodic function in
and in the sense that

U.(z) — U [ + 0k, 6D)] | < Ce™ % if 2 + (6k, 1) € QY and k,1 € Z.

Proof. Step 1. We first prove that, for all s > 0 and for sufficiently small €, we have
5 P+1 b2 +1
Uz >

—sin Q\ we. The same argument leads to UE2 < + s in w; and for

b +1 ¥+1 o
+ s in w™.

sufficiently small &: Vg > —s5in Y \ w? and Vg <
From Proposition Bl it suffices to prove that for

¢
1462
1o

we have U2 > —sin {z € Q\w.|dist(x,0w.) < Re} (for sufficiently small ¢). Here
C > 1,a > 0 are given by (LI)).

We fix 0 < s <1 and we let ze =y, + A20 € Owe, 20 € Ow. For x € B(z, \6TT1),
we write x = z. + % with & € B(0,\6"+1/¢). Here P = 1 and Y; j € 0Z x 0Z if we are in

the periodic situation.
We define

R=a"'ln

b2 +1

U(z): B0, FF/e) — [b,1]
i — Ud(ze + i)

It is easy to check that

—AU. = U.(a2 — U2) in B(0, A\67F1 /e) (D2)
U. € H' N L>®(B(0, A"+ /e), [b, 1]) '
where
b in 2= - * A B(0, \6F+1 J¢)
Qe = D) _ .
1 in % N B(0, 67+ /e)
Clearly
We — Ze P+1 o7 0 P+1
N B(0,A67+1 /e) — (w=22)| B0, /e)
VY .
= = [(w—22) N B(0,6"T77)],
and thus
R2 _ ) .
% N B0, 6+ e) = % [(R2\ w) = 22) N B(0, 67 )] .

Note that )\§P+1/€ — oo and 67177 — 0, thus by smoothness of w, up to a subsequence,

A7 .
we have — {[R*\w) — 2] N B(0,6"T177)} = Ry, (R x RT). Here Ry, is the vectorial
rotation of angular 6y € [0, 27).
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For sake of simplicity, we assume that 6y = 0. 3
From (D.2]) and standard elliptic estimates, we obtain that U, is bounded in W2P(B(0, R))
for p > 2, R > 0. Thus up to consider a subsequence, we obtain that U. — U in C’lloc(Rz)

(¢ = 0) where U, € C'(R?,]b, 1]) is a solution of
—Aﬁb = ﬁb(l — ﬁg) in R xRt
—~ AU, = Uy(V? — U) inRxR™. (D.3)
U, € CY(R?) N HE (R?) N L>®°(R?)
It is proved in [I5] (Theorem 2.2), that (D.3) admits a unique positive solution. Moreover
Up(z,y) = Up(y) (Up is independent of its first variable) and Uy is the unique solution of

U =Uy(1 - UP) in RT
Ul = Up(b* — UY) in R~ ,
UbECl(R,R), UI;>O, Emszl, l_1mUb:b

Note that since the limit is unique, the convergence is valid for the whole sequence.
This solution U, may be explicitly obtained by looking for U, under the form

AeV2r _ )
R ifz>0
U, — Ae\/im +1
b($) Be_b\/im .
ifz <0

Be—btV2z 4 1

302 + 1+ 2b/2(b2 + 1) B(1+b)+1—1b
t B=— A= d
We ge 1- 02 AT BA-b) 140
U®%¢B_1_1+w+mm@u4>_ 1—b? +b_/b2+1
’ B+1  2b+ 2002 +1) 2+ /2(62 + 1) 2

b2 1 b2 1
Since Uy(0)? = ;_ and U, is an increasing function, for = > 0, Uy(z)? > ;_ :

From the convergence U. — U, in L=(B(0, R)), we obtain that, for ¢ sufficiently small,
! A6

022 D s BO.R N {25 (@) - 4]

Step 2. Fix j € {1,..., P} s.t. M # ) and fix i € M. Note that if we are in the periodic
case then j =1 and we fix y,; = (6k,dl) € 6Z X 6Z s.t. yp;+0-Y C Q.

j .
We denote £ := 5— For z € Y, consider W (x) = Ve(z) — Ue(y7; + 6’x) which satisfies
E bl
(using (L.5))
—EAW () = W(2) {0 @) = [Ve(@)® + Vel + 00)Velo) + Unli; + 992} Y
0<W<Ce ¢ on Y

Here v = a - dist(9Y,w), C and « given by (L3).
By Step 1, taking s = b2, for sufficiently small ¢, we have for z € Y\ w?

Ug(yzaj +5J1L"),Vg2($) > max <b2, 5 > > 3

Thus, using the weak maximum principle, we find that W > 0 in Y. Consequently, since
_a
W is subharmonic, we deduce that W < Ce™ €. U
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D.2 Behavior of almost minimizers of I,

We recall that for zg € R? and R > r > 0, we denoted %(z¢, R,7) := B(zo, R) \
B(:Eo,T‘).
D.2.1 Useful results for the periodic situation

We establish three preliminary results for the periodic situation represented Figure [II
Thus in this subsection we assume that U, is the unique global minimizer of E. in Hi
with the periodic pinning term a. represented Figure [1I

Energetic estimates in rings and global energetic upper bounds

From Lemma (7 (U is close to a periodic function) we obtain

Lemma 48. For all1> R >1r > ¢, x,29 € R? 5.t. B(xg, R) C and and © — xg € § - 72,
we have
pe(%Z(x, Ry1), 1) > ue(%#(xo, R,7),1) — 0s(1).

Adding the condition that B(x, R) C Q0 we have
e (A, Ror), 1) — (B (o, Ryr), D] < 0.(1).
Moreover the o-(1) may be considered independent of x,xq, R, 7.

Lemma [48] implies easily the following estimate.

Proposition 49. Let n > 0 and n > p > e. Then there is C = C(Q,Q,g,b,n) > 0 s.t.
for xo € R? we have

Ip,a < dﬂa(%(xm n, p)7 1) + C(T]),
where C(n) is independent of ¢ and p.

From Lemma A7 we get the almost periodicity of p.(Z(-, R,r),1) w.r.t. a § x d-grid
(expressed in Lemma[T]). Therefore, the "best points" to minimize p.(%(-, R,r), 1) should
be almost periodic.

Another important result is the next proposition. It expresses that the center of an
inclusion is not too far to a good point to minimize pu.(%(-, R,r),1). This proposition may
be seen as a first step in the proof of the pinning effect of w..

Proposition 50. There is C, which depends only on w, b and Q s.t. for sufficiently small
g, for x € Q and Tper € B(x,36v/2/2) N (0Z x 6Z) Nw. we have for 1 > R >1r > ¢

pe(Z(xper, R, 1), 1) < pe(%(z, R, 1), 1) + C,. (D.4)

Proof. If R < 1027, then the result is obvious with C, = 27In10. Thus we assume that
R > 10%r.
We share the proof in three cases:

Case 1. r > ¢,
Case 2. 6 > R>r > M\,
Case 3. R < \S.
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Assume for the moment that
There exists C~* > 0 s.t. (I]ﬂl) yields in the three previous cases with C, = é* (D.5)
For the general case, we divide Z(z, R,r) into Ry (z) U Re(z) U R3(x) with
Ri(x) = #Z (x, R,min{max(,r), R}),
Ry(z) = #Z (z,min{max(d, r), R}, min { R, max(A\d,r)}),
Rs3(x) = Z (x,min { R, max(\d,7)},r).
Remark 51. 1. For k € {1,2,3}, we have ) C Ry, C Z(x, R, 7).
2. It is easy to check that

o [Ri=%(x,R,r)&r>6(Casel.)] and [Ry =0 < R < 4],

o [Ry=Z(x,R,7) < N0 <r < R<J (Case 2.)]
and [Re =0 < {A=1orr>0dor R<A},

o [R3=%(z,R,r) < R <)\ (Case 3.)] and [R3 =0 < r > \d].
3. If A =1 then Case 2. never occurs and Ry = (.
Therefore we have (using Propositions 45 4613 and (D.5))

Na(%(x7R7T)71) > NE(Rl(x)vl) +ILLE(R2('Z.)71) +IUE(R3(‘T)71) B
(m) > Na(Rl (xper)y 1) + NE(R2 (xper)y 1) + Na(R3(xper)a 1) —3C, ~
(Prop. E3)) > :uaDlr(Rl (xpor)’ 1)+ N?lr(@2($per)v 1)+ N?lr(R?i(xpor), 1) = 3(Cs + Cy)
>

pe(Z (Tper, R,1),1) — 3(Ci + Cp).

The last line is obtained by constructing a test function. Therefore, it suffices to take
C, :=3(Cy 4+ Cp).

We now turn to the proof of (D.5)) in Case 1, 2 and 3. Recall that we assumed that
R > 10%r.

We treat Case 1. (R >r >9):

:ue('%($v R, T)’ 1) > (Pl“Op. Im) > /L?ir('@($v R, T)’ 1) —Cp
> pPF(#(r,10R,10717),1) — 27 In 10 — C
{R (zper, R, 107) C Z(2,10R, 1071 1)} > pe(#(wper, R, 107),1) — 2w In 10 — G
> (Prop. H3l) > pe(Z(zper, R,7),1) — 3m1In 10 — 2C;,.

Thus we may take Cy = 37 In 10 4 2C},.
We treat Case 2. Note that from Remark B3, we may assume that A — 0. On the
one hand, it is clear that

pe(Z(xper, R,7),1) < wln ?
On the other hand, letting
a.: R — {b?, 1}
{b2 if 2 € Uppege B(OM, )

)

x .
1  otherwise

we have from Proposition [3 that a. < U2 + V. with ||VZ|| 1~ = o(g?).
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If Z(x, R,r)N{a. = b*} = (), then we have p.(#(z,R,r),1) > 7ln § +0(e21n )\). And

thus the result holds with C, = 1 (for sufficiently small ¢).

Otherwise we have Z(x, R,r)N{a. = b*} # 0. In this situation, because R < §, we get
that Z(x, R,7) N {a. = b?} is a union of at most four connected components. Therefore
S={pe(r,R)|0B(z,p) N {ae = b?}} is a union of at most four segments whose length
is lower than 8\§. Consequently, denoting S = U¥_ [s;,#;] (with s; < s;41), we have for
w, € HY(%(x, R, 7),S') which minimizes p.(%(z, R,7),1)

1 1
5/ U2V, + 0.(1) > 5/ 0|V, 2
X (z,R,r) A(x,R,r)

k )
1 Si+1 dp 2T 9
(t() = T&3k+1 = R) > —/ —/ Z?gw*
; 2 J P Jo | |
k

> FZID SZ;_ :7Tln§ —len%

t; 8\
Since A\d < s; < t; < s; + 8\, we have 1 < =+ < 1+
S Si

< 9. Therefore we may take

Cy=4rIn9+1. )
We treat the last case. Since R < A0 and Zper € (0Z X 0Z) N we, there is Cy s.t. we

have (for sufficiently small €) pe(2(zper, R,7),1) < b lng + C,. On the other hand

R

(Proposition H6l2) we have p.(%(z,R,r),1) > wb*In —. Therefore the estimate in the
r

third case is proved. O

Estimates for almost minimizers

In this subsection we establish a fundamental result: fix an almost minimal config-
uration {x,1} for I,. (the existence of such configuration is proved Section [D.3)) and a
map which almost minimizes % fQ’\Um U2V - |?. Then the map almost minimizes the
weighted Dirichlet functional %f%m 0) U2V -2, 1072 min;z; |z; — 25| > p' > p.

Lemma 52. 1. Let x € R, 0 < r < R, a € L®[R?,[v*,1]), Co > 0 and a map
w € HY(Z%(x, R,7),S") s.t. degyp(z,r)(w) =1 and

1

5[ eV = ol R < G
2 Z(z,R,r)

Then for all ', R s.t. r <r' < R' < R one has

1
= / a|Vw|? — po(Z(x, R ,7"),1) < 4C, + Co,
2 (xR r'")

where Cy, depends only on b and is given by Proposition [{J]

2. Let x1,...,xq € Q (x; # xj fori £ 3j), di =1, e < p < 1072n, n = 1072 .
min {|z; — z;], dist(z;, )}, Co > 0 and w € H'(Q),S) s.t.

1
B} o Ug\Vw\z < Ipe + Co.
P
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Then for p <r < R <n one has for all i

1
5[ UV el o)1) < Co + Cla
(i, R,r)

here C(n) depends only on b,g,9, Q" and n.

8. Under the hypotheses of 2., we also have for n > pg > p

1

— | UZ|Vw|* < C(po,Co);

here C(po, Co) depends only on b, g,Q, ', Co, po and 7.

Proof. Using the third part of Proposition 46l we have

1

—/ AVl < jo( @z, R R + (B, Bor'), 1)
2 X (z,R,r)

+ Ma(’%(‘ra 7,/7 T)? 1) + 4Cb + C(0-
We easily obtain

1 1
—/ a]Vw]2 > po(%(z,R,R'), 1)+ —/ oz]Vw]2 + po(Z(z,7",7),1)
Z(x,R,T) 2 Z (xR r")

2
which proves the first assertion.

The second assertion is obtained by using the same argument combined with Proposi-
tion

Last assertion is a straightforward consequence of Proposition and both previous
assertions. ]

D.2.2 Lower bound on circles

In this subsection we prove an estimate for the minimization of weighted 1-dimensional
Dirichlet functionals. In the following this estimate will be used to get lower bounds in
rings.

Lemma 53. Let 6y € (0,27) and let o € L>=([0, 27, {b%,1}) be s.t. A ({a = b?}) = bp.
Let o € H([0,27],R) s.t. p(21) — ¢(0) = 2. The following lower bound holds

L[ 5 272 272
el > = )
B /0 a(0)|0pp(0)|” dO > 027r é 21 + 0o(b=2 — 1)

Here 51 is the 1-dimensional Hausdorff measure.

Proof. The proof of this lower bound is based on the Computatlon of the mlmmal energy.
It is easy to check that a minimal function ¢, € H'([0,27], R) for 1 f 6)|9p - |*>do

under the constraint ¢(2m) — ¢(0) = 27 exists and satlsﬁes Gg(aagcpmm) = 0. Thus
27

09 Pmin = @ with Cst = —5— . Therefore
(6% 0 o~
1 27 ) 1 27 ) 27T2 27T2
— > : = = .
5 0 ae@F =5 [ o)) a0 TS TR
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D.3 Proof of the first part of Proposition

Let a7, ..., 2% € Q2 s.t. ]w?—xﬂ > 8p and dy,...,dNy > 0, d; = d (up to a subsequence
the degrees may be considered independent of n).
Assume that

there is ip € {1,..., N} s.t. d;, # 1 or there are i # j s.t. [z} —x]| — 0. (D.6)

Up to pass to a subsequence, there are ay,...,apy; € Q and {Aq,...,Ay} a partition of
{1,..., N} s.t.
1eN — 33? — ay.

For sake of simplicity, we drop the superscript n for the points, i.e., we write z; instead of
We let po := 1072 min{miny 4 |ax — |, dist(9Q,99Q)} with ming ay — ;] = +oo if
M=1.

Note that since d; > 0, (D.6)) is equivalent to

there exists lg € {1,..., M} s.t. dj, = Z d; > 1. (D.7)
’iEAlO

We are going to prove that (D7) is not possible for almost minimal configurations. In
order to do this, for [ € {1,..., M}, we obtain a lower bound for the weighted Dirichlet
functional defined around a;. Then using Proposition 49l we will conclude.

For [ € {1,..., M}, there are two cases:

1. Card(A;) > 1,
2. Card(A;) = 1.
In the first case (Card(A;) > 1), we apply the separation process (defined Section [C.1) in

QF = B(ar,2p0) \ Uien, Bz, p) with nstep = 1072 pg.
By construction, the process stops after K steps. For k € {1,..., K} we denote:

o {2k ., x]f\,k} the selection of points made in Step k (20 = x4, i € A}),

e 1), the radius of the intermediate balls in Step k (7)), = imini# |kt — a:;‘?_l]),

e 7)), the radius of the final balls in Step k (mx = 27}, kix € {9°,...,9%} and 1y = p).

Since for i, j € A; we have |z; —x;| — 0, then, in the end of the process (after K steps),

we obtain a unique 2% = y; € {x;|i € A;} in the final selection of points and 1y — 0.

From (C.3) and (C.4), the following rings are mutually disjoint (denoting ny = p)

Ry = Z(y1, po,nrc) and Ry = %’(m?,ngﬂ,nk) for k€ {0,...., K — 1}, j € {1,..., Ni. }.
We let

o for k€ {0,... K —1} and j € {1,..., N}, dj1 := 3. ) di

xieB(x;?,n;C+1

o for n > 1 we let zg = zo(n) € (0Z x 0Z) N we, be s.t. B(xg,2p9) C Q. Thus
combining Lemma (8 with Proposition B0, we get that (for sufficiently large n) and
forpo > R>r>p

pe, (% (w0, R, 7),1) < iggugn(%(x,R,r), 1)+ Ci+1. (D.8)
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1 1
For w € Hy(,,S") we have

K—-1 Ni

1 2 2 1 2 2 1 2 2
5/mzfsnyw)y > 5/31 U? |Vw|? + 225 Unway
l 0 k=0 j=1
1 K—1 Ng ~
> 5/1 U2 IVl + > e, (25, m1,me), die)
Ry k=0 j=1
K—1 Ng ~
[L.8) > 5/ U2 \Vwl? + Y ) e, (Z(0, My 1, me) - djk) — O(1)
Z(20,00,NK ) k=0 j=1
(C8) > df e, (%(x0, o, k) 1 Z Zd ke, (Z(x0, g1, 1), 1) — O(1)
k=0 j=
(Prop. BBL3) > d; e, (%(x0, po, p), 1) + (df J)?szllnnKl— O(1). (D.9)

In the second case (Card(A;) = 1) the computations are direct

1 1
Ay A
2 Qr 2 R(xi,00,p)

> dy pre, (Z(x0, po, p), 1) + (d7 — dp)mb?|In p| — O(1). (D.10)

Summing the lower bounds (D.9) and (D.10)) over ! and applying Proposition @9} we obtain
that if (D7) occurs, then the configuration {x,d} cannot be almost minimal because
ni,p — 0 and dj, > 1. Therefore (D.7)) cannot occur for almost minimal configurations.

D.4 Proof of the second part of Proposition

We now prove the second part of Proposition we establish the repelling effect of
02 on the centers x;’s.

Let 7, ...z} € Qand p = p(e,) L 0bes.t. [2] —2%| > 8p (i # j) and dist(z}, Q) — 0.
From the previous subsection we may assume that there is 779 > 0 (independent of n) s.t.

min {nin\x — 27|, dist(£2, 09 )} > 10%n,.
J

Up to pass to a subsequence, we may assume that 7 — a; € Q with a; # a; for i # j and
that n = max{/dist(«7, 09), p} — 0.

For sake simplicity, we assume that for ¢ = 2, ...,d we have a; € ). If this condition is
not satisfied, then a direct adaptation of the following argument may be done. We assume
that 7 is s.t. for i = 2, ...,d we have dist(z?, 9) > 10%n.

We fix z¢g = zg(e,) € Q s.t.

xo — 2 € 67 x OZ, dist(xf,0) > 10%n, and 'Hl1ind|x0 -z > 10270.

We are going to prove that for w € Hy (€' \ U;B(z7, p),S') we have
1
5/ U2 [Vwf? — ey ({0, /1), 1) = 00, (D.11)
A(Y s/M5m)
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Remark 54. Estimate (D.11) implies that {z7,...,z]} can not be an almost minimal con-
figuration of points.
Indeed, we may construct a suitable test function w as follows:

Construction 55. The test function @ € Hy (V' \ (B(xo, p) U UL, B(2%, p)),S')

= D 2 2
e Fori =2, ...,d, we define W z(un .0 70.9) Uz |V-|7in
HY(% (2,10, p),S") with the boundary conditions @ (27 +ne?) = e and @ (a7 +pe'’) =

Cstiew, Cst; € S'. From Proposition @5 we have

by taking a minimal map for % I F(an

1

5/ U2 |V|? < e, (2 (27, m0, )5 1) + .
Z(x}n0,p)

o We divide Z(x0,n0,p) into Z(xo,m0,+/M), Z(x0,/N,n) and Z(xg,n,p). In each of

these rings we consider the minimal maps for % fr ing U3n|V - |? with the boundary con-
ditions w(zg + Re’’) = ¢ and w(zg + re?) = Cstie, Cst; € S! where ring €
{%(x0,m0, /1), Z(x0,/0,m), %(20,m,p)}, r < R and ring = Z(xo, R, 7).

Up to consider suitable rotations, we glue these functions to get a map W%z n0.p)
HY(%(x0,10,p),S') which is s.t. @(xg + noe’’) = ¢ and (from Proposition E5)

S

1

—/ U2 |V@[* < pe, (ving, 1) + Gy
2 ring

with ring € {Z(xo, 10, /M), % (20, /1, n), %(x0,n,p)}

e We extend @ in Q\ (B(zo,m0) UUL,B(2?,10)) using Lemma F4l1. Then we finally

obtain @ € H} (' \ (B(xo, p) UUL,B(al, p)),Sh).

From Lemma @8] (D.II) and by construction of @, for w, € Hy(Q'\U;B(z?, p),S') we
have easily that

/ UV, —/ U2 [V]? — +o00
Q\U; B(?p) \(B(wo,p)UU?_, B} p))

which implies that {z,...,2];} can not be an almost minimal configuration of points.

We now turn to the proof of (D.I1). We argue by contradiction and we assume that
there is w, = wi" € Hy(Q'\ U;B(z}, p),S') s.t.

1

s[RIV < e, @G V). 1) + OQ), (D12
R(x \/T,m)

In particular (using Lemma [A8)) we have

1

5[ RV = e, G i) 1) + O,
AT \/1:m)

The key ingredient to get a contradiction is the fact that the map w, is almost constant
in the "half" ring Z(z", \/7,1) \ Q.

By smoothness of 2, we may assume that the cone K 5, = {z = =7 + pe? |6 €
[0,7/2], n < p < \/n} does not intersect Q: K 5, N Q= 0.
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We consider the map

0 if g € [0,7/2]

1 otherwise

wo (2] + re?) = { r>0
which is s.t. wo € H'(#(27, /1, n),S') and degyp(an, m(wo) = 1.

For d € N* (to be fixed later) we define the map wies; = wfwo € HY(%(x7, V1), s
and degaB(m?,\/ﬁ) (Wiest) = d + 1.

Thus, we have

1

2 /«%(r?,\/ﬁ,n)

On the other hand, letting ¢., o : Z(27,/n,n) — R s.t. w, = ¥ and wy = ¥,
(note that ., o are locally defined and those gradients are globally defined and lie in

L2(% (27, Vv71,1m),R)), we have (using (D.12)),

Ue2n|thcst|2 > e, (% (z7, V1 ), d~+ 1) =(d+ 1)2N6n (% (7, V1, n),1).

1 1 .
3 / U2 |[Vwgest|* = 5 / U2 |dVp. + Vipo|?
%)(w?,\/ﬁﬂ?) ‘%("E?7\/ﬁ7rl)
d~2

1
_ Umv%F+—/
2 Ja@pr, i 2 Ja(ay im)

+d / U2 V. - Vo
R(x \/1,m)
& e, (Z (27, \/7,1), 1) + 2| Inn| +
+J/ U2 Vo, - Vo + O(1).
ACHBVOR))

UZ Vol +

IN

Since w, = g in Z(x7, /1, n) \ @ and Vol L2z @, mmna) = 0, we have (using Cauchy-
Schwarz inequality)

U2 (V. |[Vigo| = / U2 Ve[Vl = O(/Ti)).

/%’(:v?,\/ﬁ,n) Z(xT /Mm)\Q2

Therefore we obtain

dpe,, (% (2}, \/0,n), 1) + 2x | lng] + O(/[lun]) = (d+ 1) pe, (#(a, /7,9),1)

which implies that 27| Inn|+O(y/[Inn]) > (2d+1) e, (Z(x7, /1, 1), 1) > (2d+1)b7| In 7).
Clearly we obtain a contradiction taking d > (2 — b%)/(2b).
Thus, by using Remark [54], the second part of Proposition [[2]is proved.

D.5 Proof of the third part of Proposition

In this subsection, we prove the third part of Proposition the attractive effect of
the inclusions.

Assume that there exist Cy > 0, sequences e,,p 1 0, p = p(e,) > &, s.t. p/(AJ) — 0
and distinct points x7, ..., 2]}, satisfying

1
inf — | U?|Vw]?-1,. <C. D.13
weHL(%,,51) 2/9;3 eal VO = Lpen < Co (D-13)
degaB(zi,p)(w)zl
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We denote x, = (z7,...,x}). From the first and the second assertion, there exists 79 > 0
(independent of n) s.t.

min {nin |z — 27|, min dist(x?,(‘)Q)} > 102 -1y > 0.
i#£] i

We want to prove that there is some ¢ > 0 s.t. for ¢ = 1,...,d we have (for large n)
B(z], c\d) C we,,.

To this end, we argue by contradiction and we assume that either =7 ¢ w,, or z7 € w;,
dist(z7, Owe,, )

and ——————= — 0.
A -
We are going to prove that letting y,, € 0 - (Z X Z) s.t. x,y, € Yk‘;l, then,
Tpen(®n,1) =Ly e, (Yn, x5, ...y ), 1) — o0. (D.14)
Up to a subsequence, we may assume that lim,, % exists. We divide the proof into

two steps:

dist (2}, we,,)

Step 1. if 2} ¢ w,, and %

— ¢ € (0,00], then (D.I4) holds;

dist(z7, Owe,, )

tep 2. if
Step 2. i %

— 0, then (D.14)) holds.

dist(x], we,,)

% — ¢ € (0,00] and

We now prove Step 1. Assume that 27 ¢ we,,,

. 1 2 2

inf —/ Uz |[Vw|® = 1,., < Co.
weH (2,81 2 Jor
degyp(a;,p) (W)=1

Denote w,, a minimizer for fpﬁn (xpn, 1) (see Proposition [). Using Lemma [52]2, for p <
r < R < ng, one has

1 -
) URIVwlP - e (B B\ BGLL) < Co+ Ol
B(z1,R)\

B(zy,r)

Let x € (0,1072 - ¢) be s.t. B(0,10%k) C w C Y and dist(w,dY) > 10%.
From Lemma [52] (Assertions 2 and 3), we have

~

d
Ip,an(xny 1) = Zﬂan(%(x?y Mo, p), 1) + O(l)
=1

and

~

d
Ipﬁn((ynv ZEEL, EES) ‘/E:ll)’ 1) = Mg, (%(ynv 7o, /0)7 1) + Z He,, (%($?’ Mo, p)v 1) + 0(1)
=2

Recall that y, € & -Z2 is s.t. z7,y, € ﬁ Since |z} — yn| < §, using Lemma 412 and
Propositions [45], 4613, we have

pien (R (Yns 10, ), 1) = pey (Z (2110, 0), 1) + ey, (Z (Y, 50, p), 1) + O(1)
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Therefore

Tpen (X, 1) = Zpeo (Y, 25, ooy 3), 1) (D.15)
= e (Z (@7, K6, 0), 1) = piey, (Z(Yn, 16, p), 1) + O(1).

Thus it suffices to estimate the energies in the rings with radii k6 and p. We have (using

) Ad
%J%@mH&MJ)=WHKM+§ﬂm?;+OG) (D.16)
In order to estimate p., (Z(z", k0, p), 1), we divide the argument according to the asymp-

totic of A\. If A = 1, then ¢ € (0,00) and thus dist(B(z;, cd/3,we,) > ¢d/3. Consequently,
from Proposition Bl we have

0
Hey (’%(‘T?7 557 p)7 1) = ﬂ-ln; + O(l)

Therefore (D.14) holds.

c
=X ife< oo 9
IfA—0, welet y =4 2 and n = dist(z}, dw,, ). Note that n+ 200 =
kA0  otherwise n—X
O(1) and that U,,, = 1+V,, in Z(a, k6, n+2X0) UZ (2T, n— X, p)s |VallLe = 0(e2) (from

(L.5)).

Thus we obtain

N+ 2\ n—x
H(z,k0,p),1) > ml + b’ ln L= 4 rln —2= 4+ O(1
pe (AGLRp)Y) = wln e i T i X o)

5
_.nm;+0u) (D.17)

Therefore if ¢ € (0, 00], then (D.I7) holds. Estimates (D.19),(D.16) and (D.17) contradict
(D.13) (because (D.14) holds).

We now turn to Step 2. Arguing as in Step 1., it suffices to prove that
e, (Z (2}, k0, p), 1) — e, (Z(Yn, k6, p),1),1) — oo for some fixed x. (D.18)

(And y,, € § - Z% s.t. 27y, € ﬁ)
We let k > 0 (depending only on w) be s.t.

K < 1072 - dist(w, dY) and B(0,10% - k) C w.
In order to prove (D.18)), we divide the annular Z(z7, k6, p) into three regions :
R (Yn, K6, p) = X (2, k0, KAS) U Z(x, KA, ) U Z (2, T, p)

with

Tp = max {6&/4,p, VG- dist(xn,&ug)} + VEn.

We are going to prove that pu., (Z(x}, kN0, 15,),1) is too large.

We consider K, the cone of vertex ' and aperture 7/2 which admits the line (27, g, 27)
for symmetry axis and s.t. K, Nw., NZ (2], kA0, ) = (. Here Ilg,, (27) is the orthogonal
projection of z} on Ow,.

o8



gl

Figure 6: The domain Z(x, kAS,ry) N Ky,

dist (2}, we,,)

Note that since — 0, for large n and small k£ (independently of n), by

smoothness of w, K, is well defined (see Figure [6).

We have U., = 1+ V, in Z(a7,k\6, ) N K,, where, ||[Vp|lp = o(¢2). Thus,
1 in K,
b?> otherwise
HY % (27, kNS, 7,),SY) s.t. degyp(en r,)(w) =1, we have

if we define a,, = { , then, from Lemma [(3] with 8y = 37/2, for w €

1 4 A0
5/ an!Vw]2szbz ngnﬁ—.
R(x] KN, Tn) + Tn

Clearly, from construction, Ugn > ay, +o(e2), thus if w, is a minimal map for fp,gn(xn, 1),
then we have

1 / , s, Am KA
= Uz |Vw,|* > b In — + o0, (1).
2 R(x] KNS, Tn) e b? +3 Tn

Now the computations are direct

pe, (Z(xY, k0, p), 1) = pe, (Z(2T,£0,3X0),1) + pue,, (Z (27, KNS, 70), 1)
+ pe, (Z(27, 0, p), 1) + O(1)
A0

4 n
bziglnr——kaﬂln%—kO(l). (D.19)

> w|In\| + b

A0
Therefore, (D.18) is a direct consequence of (D.16) and (D.19) since — — +o0.

Tn

E Proof of Propositions 16| and 17

We now prove the results specific to th pinning terms with dilution. We begin these
proofs by their key ingredient.
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E.1 An important effect of the dilution of inclusions

We first state a result which establishes that a "sufficiently large" circle has a small
intersection with w, if A — 0.

Lemma 56. We denote C, a circle with radius p.

1. Assume that the pinning term is periodic. Once A < 1/8x, for p > 0/3 we have
A (O, Nwe) < 1672 Ap.

2. Assume that the pinning term is not periodic, and recall that the inclusions with size
AT is wl = UiEM;{yiE,j + A - w}, jedl, .., P}
Once X < 1/8m, for p > §7/3 we have 5*(C, Nwl) < 1672 Ap.

Here 1 (C, Nw,) is the 1-dimensional Hausdorff measure of C, N w.

Proof. In order to unify the notations, we fix j = 1 if we are in the periodic case (and
j €{1,...,P|M; € N*} if we are in the non-periodic case).
Assume that C, Nw, # 0 and let

kleZ? Y.CQ

Y. = (0k,0l)+6-Y :
{8 ( ) and Y:NC, # 0

} in the periodic case
S; =

{}76 = B(y; 67) ‘ y;; € M and Y. N C,#0 } in the non-periodic case

For Y. € S, we denote
e &, the connected component of w. which is included in Y.

~ 2146-Y, 21 €5-7Z% in the periodic case
e 2; the center of Y; = . . o :
B(zj,07), zj € M5 in the non-periodic case

We first treat the case where C, C Y. € S;: since p > 6//3 and ©. C B(zj, \o)
(because w C B(0,1)), we have

AN C,N@) = (C,Nwl) < A OB(2,M07)) = 27087 < 6mp.
Otherwise, for Yz € Sj, C, ¢ Yz and thus
A C,Nna.) < #C, HW) < 27\’ (because w C B(0,1))
and
ANC, N\ ) = 6 - (% - 2m> .

Last estimate comes from the fact that C, ¢ Y.. Thus # L, N Y.\ @) is at least a
radius of Y. (if we are in the non periodic or half of side length of Y. otherwise) minus the
previous upper bound. Thus we obtain (for A < 1/8)

AN C,NY:\ @)

— —27A
2

AN C,N &) < 2w < 8mAAN(C, N YL\ @)
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Consequently,
AN CoNwe) = Y HC,N )
< 8TA Y AN C,NYL\ @) < 8TAK(C,) = 1677 Ap.
YEESJ'

E.2 Proof of Proposition

We are now in position to prove Proposition The proof is done in 3 steps.

Let €, 1 0, p = p(en) L 0, p > &, and let x,, be a quasi-minimizer for J,., (defined
Notation [13]).

From Corollaries I3l & M4 up to pass to a subsequence, there are g > 0 and a =
(a1,...,aq) € Q4 s.t. 2 — a;, |a; — ajl,dist(a;, Q) > 10%n,.

We prove that Wy(a1,...,aq) = ming,  p.cq Wy(bi,...,b,). We argue by contradiction
and we assume that, up to consider a smaller value for 7 if necessary, we have the existence
of b= (bl, ...,bd) S Qd s.t. |b2 - b]| > 102770, diSt(bZ‘,aQ) > 102’1’}0 and

W, (b) < W,(a) — 10%n.

Step 1. We estimate the energies in perforated domains with a fixed perforation size

The goal of this step is to prove the existence of small py (independent of n) s.t. we
have for ¢ € {a,b} and x € Q7 satisfying max; |z; — ¢;| < po

T8 (¥) = T (%) < 2. (E1)
From [10] ((15) and Lemma 2), we may fix 79 > pp > 0 independent of n s.t. for c € {a, b},
we have K R
Too.1(X) — Ly 1(x) < mp for all x € Q% s.t. max|z; — ;| < po,
fpm][(x) —md|In pg| — Wy(x)| < mp for all x € Q% s.t. max |z; — ¢;| < po
and
(W, (c) — W,y(x)| < np for all x € Q% s.t. max |z; — ;| < po.
For ¢ € {a,b} and x € Q9 s.t. max; |z; — ¢;| < po:

xr —x;

e We let 05 = E?:l 0, where 0, € (—m, 7],

tion of the argument of x — x;.

= %% (z # ;) is main determina-
|z — ;]

e We fix ¢X € C®(9,R) s.t. €0 = ge~¥x. Clearly, since degy(ge <) = 0, and since
ge = € C°(99,S1), ¢X € C=(9, R) is well defined [3].

o We let ¢, = ¢%, ¢ = ¢* € H' be the solutions of

—A¢, =0 in Q\ UB(z4, po)
b = o on 0f)
Oys = — 352000z, on OB(wi,p0), 1= 1,....d
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and
—div(U2V¢) = div(U2Vby) in Q\ UB(x;, po)
b= o on 0f2 .
Oy = — Zj# 00z, on 0B(x;,po), 1 =1,...,d

o We let ¥ = ¢ — ¢, be the solution of

—div(U2Vy) = div[(U2 — 1)(Vlx — V¢,)] in Q\ UB(z;, po)

=0 on 0N
oY =0 on 0B(z;, po), i =1,...,d
Remark 57. 1. From Proposition B the functions ¢, ¢ are s.t. w, = etfxt0+) 4y —

e!l0xt9:) € T, (x) satisfy
. 1 , 1 )
Ipax)=5 |  [Vu[' =3 [V (6x + ¢4)]
Q\UB(z;,p0) Q\UB(z;,p0)

N 1 1
:%sz—/ z@wwz—/ U2[V (6 + 0)1°.
2 Q\UB(z4,p0) 2 Q\UB(zi,p0)

and

2. V¢ and V¢, are bounded independently of x and ¢, in L?(Q2\ UB(z;, po))-
3. From a Poincaré inequality we have the existence of Cy independent of x s.t.

11 22 o\uB G0y < COlVE L2(0\UBG 0))-

Therefore, using a trace inequality in % (z;, 20, po) we obtain |[1||z2ap(
C}, is independent of x,n.

!
zi.00)) = Cos

4. We have |V¢,| which is bounded in L (2 \ UB(z;, po)):
V.| < Cp with Cy independent of x.
Indeed, with standard result of elliptic interior regularity, we have
104l c2(@B(@i,8p0)): 85 lc2(0B(c: 400)) < Co-
Thus, from global regularity for the Laplacian, we have

\|V¢*||Loo(g\um)a IV sl oo ((5,800,p0)) < Co-

We let Q,, = Q,,(x) :== Q\UB(x;, pg). We are now in position to prove that / Vo> —
Po
0 when n — oo uniformly on x. This estimate will easily imply (EJ]). Indeed

N N 1
L)~ Tpe ) = 5 [ U2 [Vt 6P = [V(6x+ 0)P)
1 2 2
5 [ =TV o)

Po
< Cauchy-Schwarz >

inequality

Co (V011 20y) + 11 = U2 1200, ) = 0.
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Consequently we obtain

jpo,ll(x) - jpo@n(x) < ipovll(x) —ZLpoen (x) + 10 <o+ on(l) < 2no

which is exactly (E.TJ).

Thus it remains to establish that / |V4)|? — 0 when n — oo uniformly on x:
P0

/ U2 Vg = / div[(U2, — 1)(Voy — Vo. )0
Qpp

PO

- /Q (1= U2 )(Vby — Vo) - Vi + / (U2~ 1)0,(6x — 6.0

PO aQPO

From the L? bound on V% and the L> bounds on V¢, Vfy we have (with C independent

of x)
1/2 1/2
11— U2 |V — w*\?) (/ yw\?) +
Qo

2 2
[ eever < (f,
1/2 1/2
U2 —1)210, (0 — )2 2
+</mp0( e — 1)710u( ¢)I) ([)Qﬂolwl)

0]
2 2
< Co (I = U2 Nz + 11— U2 200, -

0

From Proposition [ and Lemma 56 we have |1 — U2 ||z (09,,) = O(A) uniformly in x.

Therefore /
Q\UB(‘TZ 7PO)

|V4|> = 0 when n — oo uniformly on x and (E.I) holds.

Step 2. We study the energies in Z(z;, po, max(d, \?))
Let

o k= max(\,V9)
e x, be a quasi minimizer for J,.

e w, = %" be a minimizer of J, ., (x,) (¢y is locally defined and its gradient is globally

defined in Q \ UB(z;, p)).
We prove that there is r € (k2, k) s.t.

1 27
- / |Ogon (2] + Tew)\de <7+
0

5 fori=1,...,d. (E.2)

1
VAR

This estimate is obtained via a mean value argument. We first prove that
Ma”(%’(m?, K, "12)7 1) = N]I(‘%(‘Tznv K, "12)7 1) + OEn(l)’

Indeed we let w’ be a smooth open set s.t. @ C w’ and w’ C B(0,1). We define ol =
b2 in 6Z x 6Z + NS - u'

1  otherwise

O(£?).

. From Proposition B, we have ol < U2 + V. with ||V.||z~ =
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For p > § and x € R?, from Lemma 56, we have J#[{a. = b*} N OB(x, p)] < 1672 \p.
Therefore, using Lemma [53] we obtain

pr(2(xl k,k%),1) + O\ Ink|) < (Lemma[53) < ta, (Z(x, K, K%, 1)
(L SU2HVE) S piey (B0, k2), 1) + 00, (1)
<2< < pa(R(af, k,62),1) + oz, (1).

Since for s € (k2, k) we have s > §, we obtain (because £ > \)

e, (2 (2}, K, /12), 1) = pa(Z (2}, ky Kk ) 1)+ O(\|Ink|) = 7| In k| + o, (1).

1
Therefore from Corollary [[4] and Lemma 5212, 5/ U2 |[Vw,|* = 7|Ink| + O(1).
R(z7,k,k2)
On the other hand, from a standard estimate, we have

2T
%/ |0gon (2 + 5e)|2d0 > 7, Vs € (K2, k).
0

We deduce that
md|Ink|+ O(1) > 1/ Vw |2 > 1/’i % Z/27r |Opon (' + 86’9)|2d9
=3 R ) nl =5 2 s — Jo 0Pn T; .

Assume that 7 € (k2, k) s.t. (E2) holds does not exist. Then we obtain that for s € (k2, k)

2m
Z / |09 (2 + se)2d0 > 7d + —

1
VIl

and consequently

1 / , 1
- Vwp|* > |Ink| | 7d + —— | = nd|In k| + In x|.
3 s Tl 2 ( o M) [in |+ /[T A
1
Clearly this lower bound contradicts 5/ U2 |[Vw,|* = 7|lnk| + O(1). We are
R(x? K k%)

now in position to estimate the energy in Z(x7,po,7). Let h? : S' — Sl hP(e?) =
wy (2 4 re’). We have h? x 0, [h(e?)] = 0; [¢n (2 + re?)].
Thus from (E.2)): ||A" % 0- hn”Lz(gl <27 +2/4/|Ink|. Consequently

/ |l x 9-hl — 1> = / {|n} x O:hM? + 1 — 2h7 x O-hi} <2/y/|Ink| — 0.
Sl S

Therefore h}' x 0:h — 1 in L?(S'). Consequently, up to pass to a subsequence, we have
the existence of a; € S! s.t. a; 'hPe™ — 1 in H'(SY).
From Propositions 12 and 13 in [13] we have

1 1
inf —/ Vw|> = inf —/ IVw|? + 0,(1)
weH (% (x} ,po,r),S") 2 Z(x],po,T) weH (% (x} ,po,r),S") 2 Z(x],po,T)

w(z? +poe*?)=a;e? w(z?+poe’?)=a; e
w(zP+re?)=hr () w(z?+re')=a;e??

= 7ln % + on(1).
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Step 3. We conclude

We are going to construct a map W, € J,(yn), max|y; — b;| < d and s.t.

/ __ Uezn‘vujn’z + 1m0 < jp,en (Xn) (E3)
DNUB(yi,p)

Clearly (E3) is in contradiction with the assumption: J,.. — J,e,(x,) — 0. Then this
contradiction will imply that a = lim x,, minimizes W,.
We let y,, be s.t. max |y — b;| <6 and z}' — y' € 0Z x 6Z and we define

Wk (@) it x € O\ UB77 o)
Wp(x) = CSti,nwi(x -y + x?) ifxe ‘%(yin? P0;7)
Cstipwnlr —yi + 7] if z € Z(y 7, p)

Here:
Yn o e . -
e wy, is a minimizer of J,y 1(yn),
i o . 1 2
e w' is a minimizer of inf = |Vwl
wGHl(,%’(m?,po,r),Sl)2 Z(x} ,po,T)

w(z?+poe*?)=a;e?

w(zl+re'?)=h1 (e?)
e Cst;, € S! is a constant s.t. @, € HY(Q\ UB(y, p),St)

e w, is the minimizer of 7, ., (x,) used in Step 2..

We now compare the energies of w, and w,,.

/ UV = / 7U§n|vwn|2+/ UZ |V, |* +
Q\UB(y?,p) Q\UB(y*,p0) Us Z (Y2 ,po,r)

+/ U2 |V, |.
Ulﬁ(y? 7T7p)

From Step 1. (the definition of py and Estimate (E.I)), we have

1
—/ U2 |V, > < wd|In po| + Wy(yn) + 10 + 0n(1)
2 Jo\UBGIp0)

IN

md| In po| + Wy(xy,) — 10m9

1
< —/ U2 |Vw,|? — 210.
2 Jo\UB(? o)

b2 in0Z X 0Z + \S - o'
From Step 2., letting ol = m X * v , we have
1 otherwise

1
_/ U52n|V1Z)n|2 = (Step 2.) = rdln 0 +on(1)
2 Jua e po.r) r
1
< (Lem. B3 & 56) < —/ o [Vw,|* + on(1)
2 Us Z(x? ,po,r)

1
<(L<U2+V)< 1+ / U2 [V |? + on(1).
2 Ui Z(x7 ,po,T) "

65



From Lemma HT

/ U2 |V |? = / U2 Va2 + oa(1).
Ui Z (Y3 m.p) Ui 2(z77,p)

Therefore we obtain (E.3)) and consequently Proposition [I6] holds.

E.3 Proof of Proposition [17]
The strategy to prove Proposition [[7]is the following:

Step 1. We let kK = max(A,d). We first characterize almost minimal configurations for
I. o (i.e the domain 2 is perforated by discs with radius x).

Step 2. We make the description of almost minimal points (). for pu.(2(-, k, \0°/?),1).

Step 3. We estimate inf, cge p1-(% (20, \6°/2, p), 1) and we conclude.

Step 1. We study almost minimal configurations for I, ., £ = max(X, 9)

We prove that {x,d} = {(z],d1), ..., (z%,dn)} is an almost minimal configuration for I .
if and only if N =d, d; = 1 and there is 19 > 0 s.t. dist(zf, 0%2), |27 — z5| > no.

First note that for 9 > 0 and zf,...,z5 € Q s.t. dist(z;,09Q), [zf — 25| > no we have
easily

Lo < Tpo(x,d) < wd|In k| + C(no) (E.4)

with C(no) which is independent of ¢.

We consider {x,d} which is almost minimal for I,.. We argue as in the proof of
Proposition (Assertions 1 and 2, see Subsections [D.3] & [D.4)). We use the separation
process defined Subsection and the associated natural partition of Q, := Q\UB(5, k)
(see Subsection [C2]).

Here the key ingredients are Lemmas [53] & [50] (which replace the periodic structure of
the pinning term). Combining both lemmas we get that if R > r > k, then

R

pe(%(x0, R,7),1) = 7T].Il§ +O(A1n ?)

The rings Z(xo, R,r) which occur in the partition of Q, are all st. C(2) > R >
r > k and thus g = O(x~!). Which infer that O(AIn£) = 0.(1) and consequently

pe(%(z0, R,7), 1) = wln & + 0.(1)

Therefore we get: If {x,d} is an almost minimal configuration for I, then N = d,
di = 1 and there is 1o > 0 s.t. dist(x5, 0Q), |z7 — 25| > no. This is proved by contradiction
exactly as in Subsections [D.3] & [D.4] and using (E.4).

Moreover, if {x,d} is an almost minimal configuration for I, ., then the arguments of
Subsections D3] & D4 in conjunction with (E4), yield |Z.(x,d) — md|In || < C(no).
Here ng is obtained in the previous paragraph. Therefore we get I, . = wd|In k| + O(1).

Conversely, from (E4)), for g > 0 and 2, ..., 25 € Q s.t. dist(x5,0Q), 2§ — 25| > no,
we have {z7,...,25} which is almost minimal for I, .

Step 2. We study almost minimal configurations for yi.(Z(-, k, A\6°/?),1)
For j € {1,..., P}, we denote: Wl = UieMj{yi‘E,j + A6w}. And recall that the set of

centers of connected components of w! is MG = {yi ;i € M5}
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Letting 20 € w. et ¢ > 0 (independent of ) s.t. B(zY,¢c\d) C w!, on the one hand we
may easily prove that

e (2(20,6,06%/%),1) = 7b?| In 6"/2| + 7| In A| + O(1), (E.5)
and on the other hand, applying Lemmas (53] & (6l we have
11:(% (2, k,6),1) = 7[l + O(\)] In g (E.6)
Therefore, from (E.5) and (E.6), we get

2
pe(Z (32,15, 06%%),1) =7 [% +1+ (’)(A)] |Ind| + Fln; + O(1). (E.7)

We are going to prove that this situation (B(2?,c\d) C w!) is the only way to get the
minimal energy. More precisely we prove that for a fixed constant Cy > 0, if we have
(xe)e C Q which is s.t.

He(R (e, 1, A0%2), 1) < inf (R (o, 5, \0¥2), 1) + Co, (E:8)
o

then there is ¢ > 0 independent of ¢ s.t. for sufficiently small e we have B(z.,c\d) C we,
i.e. B(ze,cAd) C 5 4 + Aow with y5 | € M;.

We let Cp > 0 and (z.). C 2 s.t. (E.8) holds.

Up to pass to a sequence &, | 0, dropping the subscript n (we write ¢ instead of &),
we may assume that one of these cases occurs

Case 0. d¢ > 0 s.t. B(xe,cAd) C we,
Case 1. z. ¢ Ule Uiem: B(yf,jﬁj),
Case 2. z. € UfZQ UieMj B(yf,j, 5j)7

Case 3. {z: € Uiems B(y51,6) \wll or {z. € w! & dist(z., dw!) /A6 — 0}.

We want to prove that only Case 0. occurs if (E.8) holds.
Case 1. From Lemmas [53] & B8] it is direct to prove that

pie(Z (xe, 5, 20%/%),1) > 7w [1 + O(N\)] In =7 [g + (’)(A)] |Ind| + Wln;

K
2\53/2
Using (E) we get

He( B (e, 1, A8%%), 1) — inf pe (R (o, 5, A%/), 1) = +o0.
xo€E

Therefore, if (x.). satisfies (E.8), then Case 1. does not occur.
Case 2. We let jo € {2,...,P} be st. xz. € UieM;()B(yz‘,jo,(Sjo)- We define «' :=

max{070, A\6/2} and we denote 3 = Yijo € M\jo be s.t. z. € B(yo, d’°).

We first assume that z. ¢ @ and we let & = max{\6%/2, dist(z., dwl®) — A6}, In
order to estimate u.(Z(z., K, A\6°/?),1), we divide Z(z., k, A\6°/?) into

B(xe, ko, K+ 20670) U R (32, K + 20670, & + 20670) U R (e, & + 20670, &) U R (w2, 3, \6/?).
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From Lemmas B3l & B6] we have

K

/ ] _
pe (R (e, i, 6+ 2257),1) 2 a1+ O] In e

Note that dist(%2(ze, k' +2X570, & +2X67°), wgo) > A&7 and if for some j we have Z(z., K’ +
20670 & + 2067°) Nwl # ), then dist(z.,wl) > &7 (because z. € B(yo,’°)). Therefore,
using Proposition 3] and Lemmas (53] & 56 we get

, . K+ 2187
He( (e, K+ 2287, 2 4+ 2267), 1) 2 7[1 + ON)]In ===

It is obvious that

& + 2170

11 ( (e, + 2050, 2),1) > b ln > p?rln (1 + 2510—3/2) = 0.(1).

By definition of z, from Proposition [B] we have

®
pie (% (xe, 2, 76%2),1) > 7ln 5 0:(1).
Summing these lower bounds we have
K K+ 21870 %
Na(%(xa,H,A63/2)71) 2 7T[1+O()\)] [lnm+ n &4—2)\530 —l—ln A53/2 +05(1)
K

K

— a1+ O] @may +In A) +o.(1)

and therefore pie (%2 (e, k5, A6%/2),1) — infyyeq pe (2 (0, K, A0%/?),1) — 400 (because 0 <
In(k/A\) < |Ind| and from (E.7).

We now assume that x. € w.. Because jo > 2 and z. € B(yg, A\6’°), we have
B(yg, 2007 N % (., k, M6*/2) = 0. Therefore, from the dilution of the inclusion, if there
is &, a connected component of wl s.t. Z(x.,r,A\0%?) N &, then dist(z.,d.) > 67/3.
Consequently, from Lemmas [53] & [G6l we have

pie (R (xe, 1, M0%%),1) > 7w[1 + O(N)]In =7[1+ O(\)] <g\ Ind| +In ;) .

K
7
From (E7), we obtain that p.(2(z., k, A\6%/2),1) — inf o eq pe(# (0, K, X6%/?),1) — +o00.

We deduce that if (z.). satisfies (E.8]), then Case 2. does not occur.
Case 3. We denote yo := y;; € .K/l\i be s.t. z. € B(yo,9).

On the one hand, if x < 10728, then we have p.(%Z(z.,k,6),1), e (Z(yo,k,6),1) <
27 In 10.

On the other hand, if x > 10726, then we have Z(yo, x,100) C %(z.,10x,10715) and
thus (using Proposition 45]) we get

pe (R (22, 1, 6),1) pe (2 (22,105,10716),1) — (27 In 10 + Cy)
e (% (yo, K,106),1) — (2mIn 10 + Cy)

e (% (yo, k,100),1) — (3w In 10 + 2Cy).

(AVARAVARVS
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Y

Moreover, following the argument of Subsection [D.5 we have (because —0)

pie (R (e, 6,\0%/%), 1) — pe(R(yo, 5, A6%/?),1) — +o0.
Therefore we have the existence of H, — +00 as € — 0 s.t.

> (R (e, 5, 0),1) + pe(R (e, 6,00°%), 1)
> /’LE(%(you’%u 6)7 1) +ME(’%(?J0767 )‘53/2)7 1) +HE
> pe(R(yo, 5, 20%%),1) + He — 2Cy,

pie (R (e, 1, M0%/%), 1)

(Prop. E813)
Consequently (2 (zc, K, A\6%/2),1) —inf,eq e (Z (20, K, A03/?),1) — 400 and since (. ).
satisfies (E.8]), Case 3 does not occur.

Step 3. We study inf,, cge p1=(% (0, A\6°/2, p), 1) and we conclude
3/2

It is obvious that inf, cp2 f1e(%(z0, \6%2, p),1) = 7b%In A9 + 0-(1). Now we are

in position to conclude. On the one hand, from the previous steps, for 7n9,¢ > 0 and a
configuration of points/degrees {x.,1} = {(z7,1),..., (z3, 1)} s.t. |2§ — 25|, dist(z5, 0Q) >
no and B(2?°,c\) C w} for all i # 4, 4,5 € {1,..., N}, we have Z, .(x.) = I, + O(1).

On the other hand, for &, | 0, if either there is ¢ € {1,..,N} st. d; > 1 or
dist(z°,0Q) — 0 or there are i # j s.t. |v; — x;] — 0, then the configuration of
points/degrees cannot be almost minimal for I5., and thus it cannot be almost minimal
for I,.,.

Moreover, if there is i s.t. 5" ¢ w! or dist(zf", 0w} )/(A6) — 0, then (z5"),, cannot
be an almost minimal configuration for . (Z%(-, k,A6%/?),1). And thus {x,d} cannot be
an almost minimal configuration for I, .

Therefore Assertions 1. and 2. of Proposition [I7] holds.

The rest of the proposition is obtained exactly as Corollary 14l

F Proof of Proposition

We use the unfolding operator (see [8], definition 2.1). We define, for Qg C R? an open
set, p € (1,00) and § > 0:

7:5 : Lp(Qo) — Lp(QO % }N/)
E Aincl 7
¢ = T5(@)(z,y) = ¢ <5 [5] +5y> for (z,y) € Q57 x ¥
0 for (z,y) € As x Y
and i - -
Y = (0, 1) X (0, 1), ancl — U YJK,
f/(SKCQO

YE=6(K+Y), Kez?

oo wa [2] = (5] [2]) 2

Here, for s € R, [s] is the integer part of s.
We will use the following results:

75 is linear and continuous, of norm at most 1 ([8], Proposition 2.5), (F.1)
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Ts(d) = Ts(6)T5(¥) ([8], equation (2.2)), (F.2)
§T5(Vo) (2, y) = V, T5(¢)(z,y) for ¢ € WP (Qq) (8], equation (3.1)), (F.3)

for ¢ € L'(£), we have [ = / ~Ts(¢s) (8], Proposition. 2.5 (i)). (F.4)
Qipel QoxY

If 95 € Hl(QO) is such that ¢5 — ¢ in H', then, up to subsequence, there exists qAS €
L2(Q, HL (V) s.t.:

per

To(6s) — do and T5(Vs) — Vo + V,é in L*(Q x ¥) (8], Theorem 3.5).  (F.5)

Here ngr(}}) stands for the set of functions ¢ € H'(Y) s.t. the extending of ¢ by Y-
periodicity is in Hi _(R?) (see [9], section 3.4).

loc
In order to define properly the homogenized matrix A we recall a classical result (see

Theorem 4.27 in [9]).

Proposition 58. Let Hy € L™(Y,[b?,1]). For all f € ( por(f/))’ s.t. f annihilates the

constants there exists a unique solution h € Héer(Y) of

&wmwdnzfmmwwmyi/hza
Y

Using the previous theorem we denote x; € H 1 ( ) the unique solution of

per

diV(HOVij) = 8yj (HO) and M}}(Xj) =0. (FG)

With these auxiliary functions, we can give an explicit expression of A the homogenized
matrix of Hy(5)Idg2 (see Theorem 6.1 in [9]):

—0y, X2
A= /H< Oy X1 b )Z/HId—V = ).
0 szl 1—ay2X2 Vv 0( R2 yX) X (Xl X2)

For the convenience of the reader we restate, in larger detail, Proposition
Proposition. Let Qo C R? be a smooth bounded open set and let v, € H?(Q,C) be s.t.

1. |, <1 and/ (1—|va?)? =0,

Qo

2. vy — v, in HY(Qg) and v, € H' (9, S'),

3. there is H, € Wh°(Qq, [b*,1]) and 6, | 0 s.t. Ts, (H,) — Hy in L*(Qp x Y) with
Hy independent of x € Qy,

4. —div(H,Vv,) = v, fn(x), fn € L®(Q,R).
Then vy is a solution of
— div(AVv,) = (AVu, - Vo),

Here A is the homogenized matriz of Ho(5)Idge given by
A= / H, ( ?Jle _ay1X2 >
Oysx1 1= 0y, x2
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Proof. In order to keep notations simple, we write, in what follows, & rather than 9,.
Since f, is real valued, we have that div(H,Vuv,) x v, = 0. From (E.l) and (E2)), we

obtain

divy, [Ts(Hy) (2, ) Ts (Vo) (2, y)] X Ts(vn)(z,y) = 0in Qg x Y. (F.7)

Note that fro~m the assumptions and (EJl),(E.5]), passing to a subsequence, there is w €
L2(907 Hécr(y)) s.t.

Ts(vn)(x,y) = vi(z), Ts(Vop)(z,y) = Vuy(z) + Vyo(z,y) in L3(Qy x Y)

and
Ts(Hy)(z,y) — Holy) in L*(Q x Y).

Thus we obtain the convergence:
divy, [T5(Hp) (2, y) Ts(Von) (2, 9)] X Ts(vn) (x, y) — div, [Ho(Ve + Vyd)]xv. in L*(Qox HH(Y)).

Consequently,
divy [Ho(Vv, 4+ Vy0)] x v, = 0.

Since v, is independent of y € Y, the previous assertion is equivalent to
—divy, [HoVy(0 x vs)] = (VyHo - Vuy) X vy,
which in turn is equivalent to

—divy [HoVy(i x v.)] = Y _ 0y, Ho(Dsvs X v..).

Hence, from Proposition 58 and (E.6]), we obtain

B X v ==Y xi(Bive X ) = —x - (Vou X 02), x = (X1, X2) - (F.8)

Let v € D(Qp) and n sufficiently large s.t. Supp(y)) C Q. Since —div [H,, Vv, x v,] = 0,
we have

H,Vv, xv, -Vy=0.

ancl
This identity combined with (E.4]) implies that
| Tl (e ) - Vel =
QQXY
Therefore, using (E.3) and (E.5), we obtain:
0= [ TlH(Veax0) Vel = [ TH)TT) x To(wn) - ()
QoxY QoxY
— Hy [Vv, X v + Vi (0 x vy)] - V.

n—00 QoxY

Finally, for all ¢ € D(Qyp), using (E.8), we have

0= / HoVu, x v, [ldge — Vyx]- V¢ = / ({/ Hy [Idg2 — Vyx]} Vv, X v*> V)
QoxY Qo Y

= —/ —div (AVu, X vy) 1.
Qo
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Here A = / Hy (Idge — VyX).

Y
Thus —div (AVwv, X v.) = 0. Note that, since Hy and y are independent of z, A is
a constant matrix. This fact combined with the equation —div (AVwv, X v,) = 0 implies
that v, satisfies

— div(AVuv,) = (AVu, - Vo, )u,. (F.9)

Indeed, we can always consider @, which is locally defined in 4 and whose gradient is
globally defined and in L?(Qq, R?) s.t. v, = e,
Since v, X Vv, = Vi, we obtain that div(AVe,) = 0. Identity (E9) follows from the
equation of ¢, and the fact that |V, |? = |Vu.|?.
]
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