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ON THE NEWMAN CONJECTURE

Alexander BULINSKI1,2

Abstract

We consider a random field, defined on an integer-valued d-dimensional lattice Zd, with
covariance function satisfying a condition more general than summability. Such condition
appeared in the well-known Newman’s conjecture concerning the central limit theorem
(CLT) for stationary associated random fields. As was demonstrated by Herrndorf and
Shashkin, the conjecture fails already for d = 1. In the present paper, we show the validity
of modified conjecture leaving intact the mentioned condition on covariance function.
Thus we establish, for any integer d ≥ 1, a criterion of the CLT validity for the wider
class of positively associated stationary fields. The uniform integrability for the squares
of normalized partial sums, taken over growing parallelepipeds or cubes in Z

d, plays the
key role in deriving their asymptotic normality. So our result extends the Lewis theorem
proved for sequences of random variables. A representation of variances of partial sums
of a field using the slowly varying functions in several arguments is employed in essential
way.

Keywords and phrases: stationary random fields, positive association, central limit
theorem, uniform integrability, slowly varying functions, the Newman conjecture.

2010 AMS classification: 60F05, 60G60.

1 Introduction

The study of asymptotical behavior of the (normalized) sums of random variables is the vast
research domain of Probability Theory having various applications. The limit theorems estab-
lished for independent summands form here the classical core. In this regard one can refer to
the monographs [6], [15], [8], [13]; see also references therein.

Stochastic models described by means of families of dependent random variables arose at the
beginning of the last century. Thus the Gaussian and Markov processes, martingales, solutions
of the stochastic differential equations, mixing processes appeared as well as other important
classes (see, e.g., [3], [9]). Moreover, much attention has been paid to studying of random fields.

Since the 1960s due to the problems of mathematical statistics, reliability theory, percolation
and statistical physics there arose the stochastic models based on the families of variables
possessing various forms of positive or negative dependence (see, e.g., [2]). The key role in
these models belongs to the notion of association (in statistical physics the well-known FKG-
inequalities imply the association). We will use the following concept extending that introduced
in [5].

1The work is partially supported by RFBR grant 10-01-00397.
2Lomonosov Moscow State University and University Paris-6 – Pierre and Marie Curie.
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Definition 1 ([12]) A real-valued random field X = {Xt, t ∈ T} is called positively associated3

(one writes X ∈ PA) if, for any finite disjoint sets I = {s1, . . . , sm} ⊂ T , J = {t1, . . . , tn} ⊂ T
and all bounded coordinate-wise nondecreasing Lipschitz functions f : Rm → R, g : Rn → R,

one has

cov(f(Xs1, . . . , Xsm), g(Xt1, . . . , Xtn)) ≥ 0. (1)

Recall that a random field X is called associated ([5]), if the definition above is satisfied
without the hypothesis I∩J = ∅. Obviously association implies positive association. Note that
any family of (real-valued) independent random variables is automatically associated. Many
other important examples can be found in [2].

For a random field X = {Xt, t ∈ T} and a finite set U ⊂ T introduce

S(U) =
∑

t∈U

Xt.

Further on we will consider random fields defined on a lattice T = Z
d and a probability space

(Ω,F ,P). In the seminal paper by Newman [12] the central limit theorem (CLT) was established
for associated (strictly) stationary random field X = {Xt, t ∈ Z

d} under finite susceptibility

condition that is when the covariance function is summable:

σ2 :=
∑

j∈Zd

cov(X0, Xj) < ∞. (2)

Namely, these simple assumptions imply for a field X the following relation

Sn − ESn√
〈n〉

law−→ Z ∼ N (0, σ2) as n → ∞, n = (n1, . . . , nd) ∈ N
d, (3)

here Sn = S([0, n] ∩ Z
d), [0, n] = [0, n1] × . . . × [0, nd], 〈n〉 = n1 . . . nd, N (0, σ2) is a Gaussian

law with parameters 0 and σ2,
law−→ stands for weak convergence of distributions.

The goal of this work is to provide the criteria of the CLT validity for positively associated
stationary random fields with finite second moment (and in general without condition (2)).

2 Main results

At first it is reasonable to recall several definitions.

Definition 2 A function L : Rd
+ → R \ {0} is called slowly varying (at infinity) if, for any

vector a = (a1, . . . , ad)
⊤ with positive coordinates,

L(a1x1, . . . , adxd)

L(x1, . . . , xd)
→ 1 as x = (x1, . . . , xd)

⊤ → ∞, (4)

i.e. x1 → ∞, . . . , xd → ∞. For such functions we write L ∈ L(Rd
+).

3or weakly associated
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We operate with column vectors and use the symbol ⊤ for transposition. A function L :
N

d → R \ {0} is called slowly varying (at infinity) if, for any vector a = (a1, . . . , ad)
⊤ ∈ N

d,
relation (4) holds with additional assumption that x ∈ N

d. Then we write L ∈ L(Nd).
For example the function

∏d
k=1 log(xk ∨ 1) where x ∈ R

d
+ belongs to L(Rd

+).

Remark 1 It is well-known that not every function belonging to L(Nd) admits extension to

a function from the class L(Rd
+) even for d = 1. However, it is not difficult to verify that if

a coordinate-wise nondecreasing function L ∈ L(Nd), then H(x) := L([x̃]) belongs to L(Rd
+).

Here x̃ = (x1 ∨ 1, . . . , xd ∨ 1)⊤ for x ∈ R
d, and [x] = ([x1], . . . , [xd])

⊤, i.e. one takes the integer

part of each component of x.

During a long time there was no solution to the Newman conjecture on possible replacement
of requirement (2) appearing in CLT by a milder condition. Namely, he considered the partial
sums S(U) taken over ”integer cubes” U and believed that instead of (2) it suffices to assume
that for associated strictly stationary random field X = {Xj , j ∈ Z

d} with EX2
0 < ∞ the

function
K(r) =

∑

j∈Zd:‖j‖≤r

cov(X0, Xj), r ∈ N, (5)

belongs to L(N) where ‖ · ‖ is the Euclidean norm in R
d.

Unfortunately it turned out that this beautiful hypothesis is not true even for d = 1. The
first counterexample was constructed by Herrndorf [7], and then Shashkin [14] showed that
condition (2) has in a sense the optimal character.

It is worth mentioning also that the Newman CLT was generalized in [4] for partial sums
S(U) taken over regularly growing subsets of Zd. Further extensions are discussed in Chapter
3 of [2].

Definition 3 A family X = {Xj, j ∈ N
d} is called uniformly integrable if

lim
c→∞

sup
j∈Nd

E|Xj|I{|Xj| ≥ c} = 0.

For a (wide sense) stationary random field X = {Xj, j ∈ Z
d} introduce the function

KX(n) =
∑

j∈Zd:−n≤j≤n

cov (X0, Xj), n ∈ N
d.

If a = (a(1), . . . , a(d))⊤ and b = (b(1), . . . , b(d))⊤ are vectors in R
d, the notation a ≤ b means that

a(k) ≤ b(k) for all k = 1, . . . , d. We write a < b whenever a(k) < b(k) for any k = 1, . . . , d.
The following result extends the Lewis theorem proved in [10] for a sequence of random

variables.

Theorem 1 Let a strictly stationary random field X = {Xj, j ∈ Z
d} ∈ PA, 0 < EX2

0 < ∞ and

KX(·) ∈ L(Nd). Then X satisfies CLT, i.e.

Sn − ESn√
varSn

law−→ Z ∼ N (0, 1) as n → ∞, (6)

if and only if the family {(Sn − ESn)
2/(〈n〉KX(n)), n ∈ N

d} is uniformly integrable.
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Consider now a sequence of growing ”integer cubes” Cr = (0, r]d ∩ Z
d, r ∈ N.

Theorem 2 Let a strictly stationary random field X = {Xj, j ∈ Z
d} ∈ PA, 0 < EX2

0 < ∞ and

K(·) ∈ L(N). Then
S(Cr)− ES(Cr)√

varS(Cr)

law−→ Z ∼ N (0, 1) as r → ∞, (7)

if and only if the sequence ((S(Cr)− ES(Cr))
2/(rd K(r)))r∈N is uniformly integrable.

Theorem 2 shows what one has to assume additionally, for a class of positively associated
strictly stationary random fields, besides the condition that the function K(·) is slowly varying
to guarantee that the Newman conjecture holds true for any dimension d ∈ N. In [11] the author
discussed his conjecture and noted without proof that the ”mild version” of that hypothesis
takes place under the additional condition of uniform integrability of the sequence appearing in
Theorem 2 above. Therefore Theorems 1 and 2 show that in fact we do not change the initial
problem but clarify its essential feature. We do not deal here with a renorm group approach
(do not consider the partition of Rd by the congruent cubes) but study the partial sums Sn

taken over any growing ”integer blocks”.

3 Proofs of the main results

We start with simple auxiliary statements.

Lemma 1 Let a function L belonging to L(Nd) be coordinate-wise nondecreasing. Then there

exist non-random vectors qn = (q
(1)
n , . . . , q

(d)
n )⊤ ∈ N

d, where n = (n1, . . . , nd)
⊤ ∈ N

d, such that

q(k)n ≤ nk,
q
(k)
n

nk
→ 0 for k = 1, . . . , d, qn → ∞ and

L(n)

L(qn)
→ 1 as n → ∞. (8)

Proof. According to Remark 1 we can assume without loss of generality that L is extended
to a function belonging to the class L(Rd

+). For any R = (R(1), . . . , R(d))⊤ ∈ N
d we can choose

N0(R) ∈ N
d in such a way that

L(n1, . . . , nd)

L
(

n1

R(1) , . . . ,
nd

R(d)

) − 1 ≤ 1

〈R〉

for all n ≥ N0(R). Now we take a sequence (R(r))r∈N such that R(r) ∈ N
d and R(r) < R(r+1)

for each r ∈ N. Introduce M0(1) = N0(R(1)) and M0(r + 1) = (M0(r) ∨N0(R(r + 1))) + 1 for
r ∈ N where, as usual, 1 = (1, . . . , 1)⊤ ∈ R

d and

(a(1), . . . , a(d)) ∨ (b(1), . . . , b(d)) = (a(1) ∨ b(1), . . . , a(d) ∨ b(d)).

Then M0(r) < M0(r + 1) for r ∈ N. For arbitrary r ∈ N and n ≥ M0(r)

L(n1, . . . , nd)

L
(

n1

R(1)(r)
, . . . , nd

R(d)(r)

) − 1 ≤ 1

〈R(r)〉 .
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Let us define non-random sequences (ε
(k)
j )j∈N where k = 1, . . . , d, putting ε

(k)
j = 1/R(k)(r) for

M
(k)
0 (r) ≤ j < M

(k)
0 (r + 1).

For any ε > 0 take r0 ∈ N in such a way that 1/〈R(r0)〉 < ε. Further on, for n such that
M0(r) ≤ n < M0(r + 1) where r ≥ r0, one has

1 ≤ L(n1, . . . , nd)

L(n1ε
(1)
n1 , . . . , ndε

(d)
nd
)
=

L(n1, . . . , nd)

L
(

n1

R(1)(r)
, . . . , nd

R(d)(r)

)

≤ 1 +
1

〈R(r)〉 ≤ 1 +
1

〈R(r0)〉
≤ 1 + ε.

Then we can take qn = ([n1ε
(1)
n1 ], . . . , [ndε

(d)
nd
]) ∨ ([logn1], . . . , [lognd]) ∨ 1, to ensure the validity

of (8). �

Lemma 2 Let X = {Xj, j ∈ Z
d} be a wide sense stationary random field with nonnegative

covariance function. Assume that KX(·) ∈ L(Nd). Then

varS(Un) ∼ 〈n〉KX(n) as n → ∞ (9)

where Un = {j ∈ Z
d : 1 ≤ j ≤ n}, n ∈ N

d. Conversely, if varS(Un) ∼ 〈n〉L(n) as n → ∞,

where L ∈ L(Nd), then L(n) ∼ KX(n) as n → ∞.

Proof. Let KX(·) ∈ L(Nd). Due to the (wide-sense) stationarity ofX one has cov(Xi, Xj) =
R(i− j) for i, j ∈ Z

d. Thus

varS(Un) =
∑

i,j∈Un

cov(Xi, Xj) =
∑

i,j∈Un

R(i− j)

=
∑

m∈Zd:−(n−1)≤m≤n−1

(n1 − |m1|) . . . (nd − |md|)R(m)

≤ 〈n〉
∑

m∈Zd:−(n−1)≤m≤n−1

R(m) ≤ 〈n〉KX(n), (10)

as the function R is nonnegative.
Take any c ∈ (0, 1) and n ≥ 1

1−c
1 (i.e. cn ≤ n − 1, n ∈ N

d). Using again nonnegativity of
R we can write

varS(Un) =
∑

m∈Zd:−(n−1)≤m≤n−1

(n1 − |m1|) . . . (nd − |md|)R(m)

≥ (1− c)d〈n〉
∑

m∈Zd:−cn≤m≤cn

R(m) = (1− c)d〈n〉KX([cn]).

In view of Remark 1 we come to the relation

(1− c)d〈n〉KX([cn]) ∼ (1− c)d〈n〉KX(n), n → ∞, n ∈ N
d.

Consequently, varS(Un) ∼ 〈n〉KX(n) as n → ∞, because c can be taken arbitrary close to zero.
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Now suppose that varS(Un) ∼ 〈n〉L(n) as n → ∞, where L ∈ L(Nd). Then for any ε > 0
and all n sufficiently large (i.e. each component of n is large enough), application of (10) leads
to the inequality

KX(n) ≥
varS(Un)

〈n〉 ≥ (1− ε)L(n). (11)

For a fixed q ∈ N, q > 1, and nr ∈ N, mr ∈ Z such that |mr| ≤ nr where r = 1, . . . , d, one has

q

q − 1

(
1− |mr|

nrq

)
≥ q

q − 1

(
1− nr

nrq

)
= 1.

Therefore, taking into account condition R ≥ 0 we verify that

KX(n) ≤
(

q

q − 1

)d ∑

m∈Zd:−n≤m≤n

R(m)

d∏

r=1

(nrq − |mr|)
nrq

≤
(

q

q − 1

)d
(

d∏

r=1

nrq

)−1 ∑

m∈Zd:−nq≤m≤nq

R(m)
d∏

r=1

(nrq − |mr|)

=

(
q

q − 1

)d
varS(Uqn)

〈qn〉 ∼
(

q

q − 1

)d

L(qn), n → ∞. (12)

As q can be chosen arbitrary large, using (11) and (12) we conclude that the desired statement
holds. �

Proof of Theorem 1. Necessity. Suppose that (6) is satisfied. Then

(Sn − ESn)
2

varSn

law−→ Z2 as n → ∞.

Indeed, if the random variables Yn
law−→ Y , then for any bounded continuous function h : R → R

one has h(Yn)
law−→ h(Y ) as n → ∞. Obviously,

(Sn − ESn)
2

varSn

≥ 0 and
E(Sn − ESn)

2

varSn

= 1.

Thus uniform integrability of the family {(Sn − ESn)
2/varSn, n ∈ N

d} follows from the ana-
logue of Theorem 1.5.4 established in [1] for a sequence of random variables indexed by
points of N. In view of Lemma 2 we can claim that (9) holds. Consequently, the family
{(Sn − ESn)

2/(〈n〉KX(n)), n ∈ N
d} is also uniformly integrable.

Sufficiency. If the function KX is bounded we see that (2) is valid and Theorem 3.1.12 of
[2] implies that (6) is satisfied. Thus we will assume further that a function KX is unbounded.
Set KX(t) := KX([t] ∨ 1) for t = (t1, . . . , td)

⊤ ∈ R
d
+ where [t] = ([t1], . . . , [td])

⊤. This extension
of the initial function KX belongs to L(Rd

+) as KX is coordinate-wise nondecreasing on N
d (a

field X ∈ PA, therefore its covariance function is nonnegative). Further on we assume that the
function KX is extended on R

d
+ as indicated above.
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Let the vectors qn, n ∈ N
d, be constructed according to Lemma 1. It is not difficult to find

a non-random family of vectors {pn, n ∈ N
d}, where pn takes values in N

d, such that

q(k)n ≤ p(k)n ≤ nk, q
(k)
n /p(k)n → 0 and p(k)n /nk → 0 for k = 1, . . . , d as n → ∞. (13)

Now we apply the Bernstein partitioning method. For n, j ∈ N
d and introduced pn and qn

consider the blocks

U (j)
n = {u ∈ N

d : (jk − 1)(p(k)n + q(k)n ) < uk ≤ jkp
(k)
n + (jk − 1)q(k)n , k = 1, . . . , d},

where u = (u1, . . . , ud). Let Jn = {j ∈ N
d : U

(j)
n ⊂ Un} and

Wn =
⋃

j∈Jn

U (j)
n , Gn = Un \Wn, n ∈ N

d.

In other words Wn consists of ”large blocks” (having the ”size” p
(k)
n along each of the k−th

axis for k = 1, . . . , d), separated by ”corridors” belonging to the set Gn. Put vn =
√
〈n〉KX(n).

Then, for each t ∈ R and n ∈ N
d we obtain

∣∣∣∣E exp

{
it

vn
Sn

}
− e−

t
2

2

∣∣∣∣ ≤
∣∣∣∣∣E exp

{
it

vn
Sn

}
− E exp

{
it

vn

∑

j∈Jn

S(U (j)
n )

}∣∣∣∣∣

+

∣∣∣∣∣E exp

{
it

vn

∑

j∈Jn

S(U (j)
n )

}
−
∏

j∈Jn

E exp

{
it

vn
S(U (j)

n )

}∣∣∣∣∣

+

∣∣∣∣∣
∏

j∈Jn

E exp

{
it

vn
S(U (j)

n

}
− e−

t
2

2

∣∣∣∣∣ =:

3∑

r=1

Qr,

here i2 = −1, Qr = Qr(n, t) and Sn = S(Un) as previously. Taking into account that |eix−eiy| ≤
|x− y| for all x, y ∈ R, and using the Lyapunov inequality we get

Q1 ≤
|t|
vn

E|S(Gn)| ≤
|t|
vn

(ES(Gn)
2)1/2.

A random field X ∈ PA, therefore cov (Xj , Xu) ≥ 0 for any j, u ∈ N
d. Thus in view of wide-sense

stationarity of X we come to the relations

ES(Gn)
2 ≤

∑

j∈Gn

∑

u:−n≤u−j≤n

cov(Xj , Xu) ≤ cardGn KX(n)

≤ KX(n)
d∑

k=1

(m(k)
n q(k)n + p(k)n + q(k)n )

∏

1≤l≤d,l 6=k

nl

where cardG stands for the cardinality of a set G, m
(k)
n = [nk/(p

(k)
n + q

(k)
n )], k = 1, . . . , d. Due

to (8) and (13) we get the inequality

ES(Gn)
2

〈n〉KX(n)
≤

d∑

k=1

m
(k)
n q

(k)
n + p

(k)
n + q

(k)
n

nk
→ 0, n → ∞.
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Consequently, Q1(n, t) → 0 for each t ∈ R as n → ∞.

For any n ∈ N
d the family {S(U (j)

n ), j ∈ Jn} ∈ PA (see, e.g., Theorem 1.1.8 in [2]). Enumer-
ate elements of this family to obtain the collection of random variables {Yn,s, s = 1, . . . ,Mn}
where Mn = card Jn. It is easily seen that

d∏

k=1

m(k)
n ≤ Mn ≤

d∏

k=1

(m(k)
n + 1).

Recall that for complex-valued random variables Y and V (absolute square integrable) the
covariance cov(Y, V ) := E(Y − EY )(V − EV ), where the bar denotes the conjugation. Due to
Theorem 1.5.3 of [2] one has

Q2 ≤
Mn−1∑

s=1

∣∣∣∣∣ cov
(
exp

{
it

vn
Yn,s

}
, exp

{
− it

vn

Mn∑

l=s+1

Yn,l

})∣∣∣∣∣

≤ 4t2

v2n

∑

1≤s,l≤Mn,s 6=l

cov(Yn,s, Yn,l) ≤
4t2

〈n〉KX(n)

∑

j∈Un

∑

u∈Un,|u−j|>qn

cov(Xj , Xu)

where |u| = maxk=1,...,d |uk|. Obviously, for j ∈ Un

{u ∈ Un, |u− j| > qn} ⊂ {u ∈ N
d : j − n ≤ u ≤ j + n} \ {u ∈ N

d : |u− j| ≤ qn}.

Therefore, the inequality

∑

j∈Un

∑

u∈Un,|u−j|>qn

cov(Xj, Xu) ≤ 〈n〉(KX(n)− KX(qn))

and (13) imply that Q2(n, t) → 0 for each t ∈ R as n → ∞.
For any n ∈ N introduce a vector (Zn,1, . . . , Zn,Mn

)⊤ having the independent components
and such that the law of Zn,k coincides with the law of Yn,k/vn, k = 1, . . . , d. Due to Lemma 2
for all s = 1, . . . ,Mn

varZn,s = varZn,1 ∼ 〈pn〉KX(pn)/〈n〉KX(n), n → ∞. (14)

Thus
Mn∑

s=1

varZn,s = MnvarZn,1 → 1, n → ∞, (15)

since

Mn〈pn〉 ∼
d∏

k=1

[nk/(p
(k)
n + q(k)n )]p(k)n ∼ 〈n〉

and KX(pn)/KX(n) → 1 as n → ∞. For arbitrary ε > 0, taking into account the stationarity
of X , we have

Mn∑

s=1

EZ2
n,sI{|Zn,s| > ε} =

Mn

〈n〉KX(n)
EY 2

n,1I{Y 2
n,1 > ε2〈n〉KX(n)}
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=
Mn〈pn〉KX(pn)

〈n〉KX(n)
E

S(U
(1)
n )2

〈pn〉KX(pn)
I

{
S(U

(1)
n )2

〈pn〉KX(pn)
> ε2

〈n〉KX(n)

〈pn〉KX(pn)

}
→ 0, n → ∞,

in view of (14), (15) and because

〈n〉KX(n)

〈pn〉KX(pn)
→ ∞ as n → ∞.

We also used uniform integrability of {S(U (1)
n )2/(〈pn〉KX(pn)), n ∈ N

d}. Indeed, this is a
subfamily of the uniformly integrable family {S2

n/(〈n〉KX(n)), n ∈ N
d}. The Lindeberg theorem

(see, e.g., [9], p. 69) implies that

Mn∑

s=1

Zn,s
law→ Z ∼ N (0, 1), n → ∞.

Therefore,
Mn∏

s=1

E exp{itZn,s} − exp

{
−t2

2

}
→ 0, n → ∞.

It remains to note that

∏

j∈Jn

E exp

{
it

vn
S(U (j)

n )

}
=

Mn∏

s=1

E exp{itZn,s}.

Thus Q3(n, t) → 0 for each t ∈ R as n → ∞. The proof is complete. �

Proof of Theorem 2. For a wide-sense stationary random field X = {Xj , j ∈ Z
d}

introduce the function
RX(r) =

∑

j∈Zd:|j|≤r

cov(X0, Xj), r ∈ N.

This function RX(·) is close in a sense to K(·) defined in (5). They coincide if d = 1. Clearly,
for d ≥ 1

K(r) ≤ RX(r) ≤ K(r
√
d), r ∈ N.

Consequently, if K ∈ L(N), then RX ∈ L(N), and vise versa if RX ∈ L(N), then K ∈ L(N).
Now for a sequence (Cr)r∈N it is not difficult to obtain the desired result following the scheme
of the proof of Theorem 1 and using RX instead of KX . �

Remark 2 Lemma 2 shows that in Theorems 1 and 2 instead of normalizations
√
varSn and√

varS(Cr) for partial sums one can use
√

〈n〉KX(n) and rd/2
√
K(r), respectively.
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