M. Schroeder, Statistical parameters of the frequency response curves of large rooms, J. Audio Eng. Soc, vol.35, issue.5, pp.299-305, 1987.

A. Cozza, The Role of Losses in the Definition of the Overmoded Condition for Reverberation Chambers and Their Statistics, IEEE Transactions on Electromagnetic Compatibility, vol.53, issue.2
DOI : 10.1109/TEMC.2010.2081993

URL : https://hal.archives-ouvertes.fr/hal-00530840

D. Hill, Plane wave integral representation for fields in reverberation chambers, IEEE Transactions on Electromagnetic Compatibility, vol.40, issue.3, pp.209-217, 1998.
DOI : 10.1109/15.709418

V. Primiani, F. Moglie, and V. Paolella, Numerical and experimental investigation of unstirred frequencies in reverberation chambers, 2009 IEEE International Symposium on Electromagnetic Compatibility, pp.177-181, 2009.
DOI : 10.1109/ISEMC.2009.5284565

O. Lundén and M. Bäckström, How to Avoid Unstirred High Frequency Components in Mode Stirred Reverberation Chambers, 2007 IEEE International Symposium on Electromagnetic Compatibility, pp.1-4, 2007.
DOI : 10.1109/ISEMC.2007.244

A. Cozza, A skeptic's view of unstirred components, 2011.

G. Orjubin, E. Richalot, S. Mengue, and O. Picon, Statistical Model of an Undermoded Reverberation Chamber, IEEE Transactions on Electromagnetic Compatibility, vol.48, issue.1, pp.248-251, 2006.
DOI : 10.1109/TEMC.2006.870705

URL : https://hal.archives-ouvertes.fr/hal-00692950

J. Ladbury, G. Koepke, and D. Camel, Evaluation of the NASA Langley Research Center mode-stirred chamber facility, NIST technical note, issue.1508, pp.1-282, 1999.
DOI : 10.6028/NIST.TN.1508

M. Hoijer, On “Maximum Power Available to Stress Onto the Critical Component in the Equipment Under Test When Performing a Radiated Susceptibility Test in the Reverberation Chamber”, IEEE Transactions on Electromagnetic Compatibility, vol.50, issue.4, pp.372-384, 2006.
DOI : 10.1109/TEMC.2008.2004614

F. James, Statistical methods in experimental physics, World Scientific, 2006.
DOI : 10.1142/6096