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Abstract—Current understanding of reverberation chambers is
firmly funded upon their being operated as overmoded cavities.
A proper definition of this condition has been lacking for a long
time, while being regarded as automatically satisfied as soon
as a large (and unspecified) number of normal modes are set
to resonate at the frequency of operation of the chamber. In
a recent work, we have introduced in a formal way a proper
definition of the overmoded condition, showing how, from a
strict mathematical viewpoint, it is not related to any threshold
frequency, but rather requirs a statistical framework. In t his
paper we revisit the most important results from our analysis,
and show how our theory can straightforwardly explain the
local non-compliancies sometimes observed for field statistics in
what are deemed to be overmoded cavities. Partial overlapping
between the normal modes of the cavity are shown to lead to
an alternative and more physically-based explanation for this
phenomenon, without invoking the concept of an ineffective
stirring technique, nor the presence of unstirred components.
The proposed theory is finally applied for the assessment of the
relationship existing between the actual confidence marginbased
on the ideal properties of a reverberation chamber and those
predicted by our model, showing how there is a non-negligible
probability of having a large number of samples outside the
original confidence margin, i.e., a potentially erroneous estimate
of the true variability of a field-related quantity.

Index Terms—Statistics, Cavities, Losses, Error analysis.

I. I NTRODUCTION

The way reverberation chambers (RCs) are commonly uti-
lized in EMC radiated tests is based on a strong assumption,
that they are capable of providing a diffused field. This
property is never directly invoked in RC theory as developed
within the EMC community, though it is of fundamental
importance in the physics of cavities and the study of room
acoustics [1]. Historical reasons are likely to blame for this
mismatch, as well as the fact that electrical engineers havelong
preferred to have a more practical and test-driven approachto
the understanding of these facilities. Still, the lack of the clear
definition of a diffused field has been an invisible obstacle,in
our opinion, to the cross-fertilization that should have existed
between the EMC community and the acoustics one. Indeed,
EMC engineers could benefit from the deeper understanding
and modeling tools developed in acoustics. In this respect,we
will regard the concepts of overmoded RC and that of diffused
field as synonyms, as both refer to a cavity that ensures,
asymptotically, to expect a very specific statistical behavior
for field-related quantities.

Yet, both fields lacked a proper physics-based model capable
of explaining under what conditions a cavity can be considered
to allow a diffused field to establish. Acoustics, too, tendsto
consider the idea of a threshold frequency [1], often referred
to as Lowest Usable Frequency (LUF) in EMC. In a recent
paper [2], we have proposed such a model, establishing a
direct link between the physics of an RC and the statistical
properties of the field it supports. In this paper we recall
the most important steps and assumptions that have led to
this result, and show how it can explain another phenomenon
with an unsatisfying description, that of local statistical non-
compliancy of field-related quantities.

Our definition of an ovemoded cavity (and thus of a diffused
field) is based on the use of a modal description of the field
excited within an RC, coupled to a statistical approach. The
interest of this approach is that it allows avoiding making
non-physical assumptions on the need for a threshold on the
modal density, as apparently assumed on the EMC side, or on
the sheer fact that a threshold frequency exists. Of particular
importance is the prediction that losses should not be regarded
as a limitation or nuisance in the operation of RCs, but that
they rather lie at the heart of its functioning. Without losses,
an RC would never be capable of supporting a diffused field,
independently of the modal density it supports: hence, our
regarding the use of the term overmoded as a potentially
treacherous habit, as the mere availability of a high modal
density is not a sufficient condition. In the following, it will be
shown that an overmoded RC is a cavity that supports a large
number of overlapped modes, which is not the same as just
supporting a large number of modes, as estimated by looking at
modal density alone. This fact was unacknowledged in EMC,
while well understood in acoustics and, as we will show in
this paper, this misinterpretation can be regarded as one ofthe
reasons why the phenomenon of local non-compliancy is still
characterized by an unsatisfying explanation.

II. D EFINING THE OVERMODED CONDITION

The common sense given to the concept of overmoded
cavity is tightly linked to the expectation of the following
properties: 1) field statistics are independent of the position
in space where they are tested, at least in a sub-volume of
the cavity; 2) the three orthogonal components of the elec-
tric (respectively, magnetic) field behave as independent and



identically (iid) distributed random variables; 3) they follow
a Gaussian distribution law, with zero mean-value. It has
been shown that these hypothesis are met whenever the field
distribution can be described by means of a continuous random
plane-wave spectrum, with specific statistical properties[3].
Although such type of model well approximates the behavior
of real-life RCs in their high-frequency range, it is well-known
that there might exist some frequencies where it is incapable
of predicting a drift from it [4]. These disagreements are
often explained through a stirrer inefficiency or a sub-optimal
alignment for the sources [5], though we are quite skepticalof
these explanations [6], whereas in the lower frequency range
they are usually just fitted to alternative probability distribution
functions [7].

It is, in our opinion, by far more interesting and useful to
get back to the basics of the physics of cavities, while taking
on a more statistical approach from the beginning. To this
end, we will consider a modal expansion for the electric field
distribution observed at the positionr within an RC at the
working frequencyf [8]

E(r, f) =
∑

i∈M

γi(r, f)ψi(f)ξ̂i(r, f) , (1)

where theγi(r, f) reflect the excitation of each mode, de-
pending on the nature of the source and its position relative
to the modal topographies,ψi(f) is the bell-shaped frequency
response of each mode andξ̂i(r, f) is the polarization of the
electric field contribution provided by each mode. The sum
in (1) is taken over the setM of modes that are effectively
excited at the working frequency. A proper justification for
this model has been provided in [2]. Rather than attempting
to apply (1) in a deterministic way, we will regard all of these
modal quantities as random ones, with statistical properties
dictated (or suggested) by their physical properties.

In this respect, the modal weights{γi} can be expected
to behave as centered random variables, as they are directly
related to the scalar projection of the equivalent currents
representing a source and the modal topographies, which
are standing waves, thus characterized by a pseudo-periodic
change in their sign over space. No further assumption is
needed on the nature of the probability law for theγi. The
functions {ψi(f)} represent the responses of second-order
systems, defined as follows

ψi(f) =
1

f2

i (1 + j/2Qi)2 − f2
, (2)

wherefi is the resonance frequency of thei-th mode andQi its
quality factor. As the presence of a stirring technique implies,
from an ideal perspective, that the frequencies of resonance
of the modes are thoroughly mixed and swapped about the
working frequency, it is reasonable to assume that the variables
{fi} be uniformly distributed. Moreover, the quality factors
{Qi} can be characterized by means of their average (or
composite) value, as will be shown later. This latter quantity
can be experimentally assessed. Finally, the polarizationunit
vectors{ξ̂i} will be assumed to be uniformly distributed over

4π steradian, again as a consequence of the assumption of
an ideal stirring technique at work. It is important to notice
that assuming a perfect stirring is actually sensible, as weare
interested in assessing whether it is possible to explain the
eventual non-compliancy of an RC even having enforced an
ideal performance on the stirring technique.

With this model at our disposal, we now aim at studying
the first two statistical moments of the electric energy density

W (r, f) = ǫ0‖E(r, f)‖2 , (3)

with ǫ0 the dielectric permittivity of the medium filling the
cavity. The electric energy density can be described, in thecase
of an ideally diffused field, as a random variable distributed
as aχ2

6 law, as a consequence of the features recalled at the
beginning of this Section. As opposed to this hypothesis, by
computing the first two moments ofW (r, f) and employing
the previously introduced assumptions on the statistics ofthe
modal quantities should allow to check under what conditions
the ideal behavior is actually met. The procedure for this
calculation has been presented in details in [2], and leads to
the following standardized variance

ς2W =

(

σW
µW

)2

=
1

3
+

1

π

µ4

µ2
2

1

MM
, (4)

with MM = mBM the average number of modes overlapping
within the average−3 dB bandwidthBM = f/Q centered
around the working frequency, for a modal densitym(f) and
an average composite quality factorQ. The termsµn refer to
the moments of the modal weights{γi}

µn = E [|γi|n] , (5)

so thatµ4/µ
2
2 = 2 for the case of normally distributed modal

weights, which is the usual assumption applied for these
quantities. Other distribution laws do not have much of an
effect on this ratio, so that the final result is weakly dependent
on any assumption on the nature of the modal weights.

Comparing (4) to the standardized varianceς2
χ2

6

= 1/3

obtained for the ideal diffused field scenario shows what is
needed for an RC to be as close as possible to the ideal case,
i.e., presenting a large number of overlapped modesMM .
Whence, it is clear that there is no reason for assuming that
any threshold frequency ensures an RC to support a diffused
field, asMM is actually a complex function of frequency,
with a non monotonous trend. As a matter of fact, both the
composite quality factorQ and the modal densitym are non-
monotonous; attention must be paid to the fact that the often
used Weyl’s approximation is indeed a smooth fitting curve to
the realm(f), which is generally not known. Local variations
around this smooth function can be far from negligible, leading
to modal depletion or excess: it can therefore be intuitively
understood thatMM follows a similar trend, whose range
of variations is made further wider and unpredictable by the
dominant role of the composite quality factorQ.

As a result, the standardized varianceς2W can get quite larger
than the1/3 value expected in the ideal case. This value is
attained only asymptotically asMM → ∞, a condition that
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Fig. 1. Estimates of the standardized variance of the energydensityW , as
assessed from experimental results obtained for : (a) an empty cavity (apart for
the excitation antenna) and (b) one loaded with a set of 4 pyramidal absorbers
about 30 cm high.

can be thought as well approximated as the working frequency
increases, since the modal density will increase (on average)
quadratically with the frequency, while the composite quality
factor has typically a slower rate of growth. In any case, (4)
links the rate of convergence of the statistics ofW to the
average number of overlapped modesMM : hence, by settling
on an acceptable error between the real and idealς2, we can
come up with a threshold on the minimum number of modes
that should overlap on each other bandwidth, as a way to
ensure this maximum error.

In fact, the results here recalled are just sensible and can be
understood by recalling that any component of the electric field
is actually made up by a discrete superposition of contribu-
tions, with a small number of them dominating the final result.
If all of these terms are treated as random variables, ideally
independent, the central-limit theorem ensures that theirsum,
even weighted, can be expected to converge to a normally

distributed random variable, with a degree of accuracy that
broadly increases with the number of terms involved. In other
words, a large number of independent degrees of freedom are
needed. Here we can see two physical reasons that can put in
jeopardy the normal-distribution hypothesis: 1) there is no way
of ensuring that the modes are excited as independent random
variables by a single source, even when applying a stirring
technique; 2) the number of degrees of freedom is actually
directly related to the number of modes effectively excitedat
the working frequency. The first point is hard to be assessed,
as the actual excitation of the modes is intimately related to
the modal topographies, which are hardly accessible in real-
life configurations. We are convinced that a given amount of
residual correlation is always present, and that it can leadto
surprising results when neglected [6]. Concerning the second
point, the advantage of a modal approach is that it makes
visible the intrinsical discrete nature of the degrees of freedom
actually needed to describe the electromagnetic field within
a cavity. Even more importantly, it allows not getting out of
sight of a fundamental phenomenon, i.e., the bandwidth of the
frequency response of each mode is strongly dependent on the
amount of losses associated to each modal topography. In such
conditions, the central-limit theorem cannot be fully invoked,
so that disagreements with the ideal-scenario requirements
should not come as a surprise.

SinceMM (f) can be reasonably expected to broadly in-
crease with the frequency, (4) predicts that the standardized
variance of the energy density should converge to the asymp-
totic value1/3 at high frequency. This fact is demonstrated
in Fig. 1a, where experimentally determined estimates ofς2W
are shown over a wide frequency range, as obtained with
a 100-step mechanical stirrer in an RC with a volume of
13.8 m3. The RC was excited by means of a log-periodic
dipole antenna pointed at one corner, while the field samples
were measured with an electro-optical probe positioned at the
center of the cavity. Fig. 1 confirms that indeed the error
ǫς2 = ς2W − 1/3 broadly decreases with the frequency, while
it is far from negligible in the lower frequency range. The
thicker line in Fig. 1 has been obtained by applying (4), using
a loose estimate forMM . This latter quantity was derived by
using the average modal density predicted by Weyl’s formula
and a smooth majorant of an experimentally-derived estimate
of the composite quality factor. This operation was aimed at
assessing whether (4) is capable of providing a loose upper-
bound for the error observed in practice on the standardized
varianceς2W . Indeed, a good agreement between the prediction
of the maximum error yielded by (4) and the experimental
results is observed, with an envelop well identified by the
former. The case treated in Fig. 1b deals with the introduction
of additional losses: in this case too our model predicts in a
fairly good way the reduction of the variability ofW . Further
details about the validity of (4) are provided in [2], particularly
about the role of losses in the statistical compliance of the
energy density in an RC.
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Fig. 2. Empirical cumulative distribution functions for the real and imaginary
parts of the three Cartesian components of the electric field, as estimated
from 100-sample populations for two frequencies: (a) 1.438GHz and (b)
1.441 GHz.

III. STATISTICAL COMPLIANCE

In the present work we are rather more interested in utilizing
the physical understanding brought by (4), for interpreting
why an RC can present a non-compliant behavior at some
specific frequencies. As already recalled, the idea of unstirred
field components and ineffective stirring techniques are often
invoked in such cases. But another possibility is perhaps
more likely: the fact that if at a given frequency the modal
overlapping (represented byMM ) is not large enough, the
number of degrees of freedom effectively involved in the
generation of the electromagnetic field is not high enough to
lead to a good approximation of a Gaussian law. Hence, a
larger variance for the electric energy density, with respect
to that expected in the asymptotic modeling. It is noteworthy
to recall that this argument is based on the assumption of an
ideal stirring technique, thus involving a random excitation
of the modes and a random positioning of their resonance

frequencies.
In order to assess the soundness of this explanation, we

have given a closer look at the field samples measured for an
empty cavity at two frequencies where our RC can be regarded
as behaving ideally or not; we have chosen1.438 GHz and
1.441 GHz to represent this phenomenon, with an errorǫς2
about 0 % and 100 %, respectively. These frequencies are
almost three times higher than the LUF of our RC, intervening
at about 550 MHz, assessed as required in [9]. The stirring
paddle is about 5 wavelengths wide, and non-periodic, so that
hardly any doubts can subsist on its effectiveness. At the same
time, the likeliness of the presence of unstirred components has
been minimized by orienting the excitation antenna in such a
way as to have its main lobe of radiation pointing towards a
corner of the RC, as to be reflected over the stirrer and avoid
any direct path towards the probe.

The empirical cumulative distribution functions (cdfs) ofthe
real and imaginary parts of the three Cartesian components of
the samples are shown in Fig. 2, for the two frequencies chosen
above. The first thing to notice is that forf = 1.441 GHz the
statistical non-compliancy of our RC cannot be explained by
any unstirred component alone. As a matter of fact, it even
seems, on a qualitative level, that some field components is
actually more biased forf = 1.438 GHz, though in this case
the energy density presents a very good agreement with a
χ2

6
law. A closer look suggests that the non-compliancy is

likely due to the higher kurtosis featured at1.441 GHz: 3.7
on average against 3.0 at 1.438 GHz, the latter corresponding
to the kurtosis of a Gaussian law. This is clearly visible in
the longer transitions from the central part of the cdf towards
its ends. Recalling that the field is related to the energy
density by a square power, the kurtosis is directly linked to
the variance ofW , while the field variance is rather related to
average value ofW . As predicted by (4), in the case of a low
modal overlapping, the standardized variance is to increase
with respect to the asymptotic case: this is what is observed
in these results.

Hence, it seems likely that the non-compliancy is better
explained by a local limitation of the RC rather than the
stirrer or other phenomena. As a matter of fact, it is hard
to imagine why a stirrer and the positioning of the sources
should work fine over a majority of frequencies, while leading
to a bad performance just over a handful of frequencies. On
the other hand, the concept of low modal overlapping can
easily explain this disturbing phenomenon, as the combination
of high composite quality factor and local modal depletion
can indeed appear. Moreover, the fact that the insertion of
losses yields an improved performance (see Fig. 1), i.e., a
lower incidence of non-compliant frequencies, supports this
interpretation, as already pointed out in [2].

A higher statistical dispersion has a direct impact on the
results of compliancy tests required in international stan-
dards [9]. As a matter of fact, the upper-bounds defined for
the maximum acceptable spatial variability of the maximum
field intensity are based on an asymptotic model [10]. Hence,
a higher variability for the field samples implies a higher
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probability for them to get closer to the upper-bound. The
context of this paper is not suitable for studying the statistical
properties of the extreme values ofW and the related squared
field components. Still, as shown in [11], there exists a direct
relationship between the average value of the energy density
components and their maximum value, as estimated from a
finite population of samples. A similar reasoning applies for
the energy densityW , which is our case of interest in this
paper.

It is therefore interesting to assess how the increment of
variability predicted by (4) could affect the probability of
having samples out of a given confidence margin. This latter
could be set, e.g., in order to ensure a minimum accuracy for
a measurement or, as it is the case for industrial tests, the

reproducibility of a test result.
To this end, let us consider a numberN of independent

samplesWi large enough as to have their arithmetic average
〈W 〉 converging towards a normal law, thanks to the central-
limit theorem. We aim at computing how a confidence margin
defined for a significance levelα under the hypothesis of an
asymptotic behavior, translates into another confidence margin
wheneverMM happens not to be high enough. A good and
intuitive way of assessing the effect of a finiteMM is to check
how the quantiles of the asymptotic case relate to those of the
modal description we have introduced. As we are dealing with
this problem under the approximation of a normally distributed
〈W 〉 (central-limit theorem), the quantiles are given by [12]

qp = µ+ σ
√
2erf−1(2p− 1) , (6)

where p = P (〈W 〉 < qp) is the probability associated to
the quantileqp, while µ and σ are the expected mean-value
and the standard deviation for〈W 〉. The central-limit theorem
allows to compute a good approximation of the quantiles just
by knowing these two moments, for the case of an idealχ2

6-
distributedWi and for the more realistic case provided by (4).
The result of this operation is presented in Fig. 3, where any
confidence margin established on the asymptotic case for a
given significance levelα is shown to lead to an inevitably
larger margin with the same significance level as soon asMM

is found to be finite. It is interesting to notice that the case
MM = 3, often regarded as a good compromise for a diffused
field in room acoustics, actually provides a more than twofold
increase in the original confidence margin, whereas the case
MM = 20 suggested as a tentative threshold onMM in [2]
settles to an about 50 % larger interval.

The other way round, choosing the same interval margin for
the ideal and non-ideal cases, if this interval correspondsto
a significance levelα for the former case, this will lead to a
corresponding significance levelα′ in the latter, related as

α′ = 1− erf

(

q1−α/2√
2

√

MM

18/π +MM

)

. (7)

This function is plotted in Fig. 4, for several values of
α. These results provide a direct feeling about the increased
probability of incurring into samples falling outside the orig-
inally intended confidence margin. The probabilityα′ of this
event increases not only whenMM is relatively low, but also
when the significance levelα is reduced. Such relationship
has a potentially harmful impact, asα is typically reduced in
order to improve the significance of the results of a statistical
test: when expecting asymptotic results from a realistic RC,
this risks leading to a higher rate of rejection of eventual
hypothesis tests, rather than the opposite. One straightforward
way of reducing this eventuality is to increase the average
modal overlapping for the RC, as suggested by (4): the most
practical approach is likely to slightly increase the average
amount of dissipated power, as long as this procedure is not
against minimum field intensity constraints.



IV. CONCLUSIONS

In this paper we have briefly recalled the reasons of our
introducing a physically-motivated definition of the over-
moded condition for an RC. The use of a modal approach,
though inevitably based on simplifying assumptions, has led
to pointing out that there is no threshold frequency for an
real RC to behave as an ideal one. Local disagreements for
the statistics of field-related quantities can appear at any
frequency, depending on eventual configurations featuringa
weak overlapping of modes. The probability for these events
is intuitively expected to decrease for an increasing frequency,
and the proposed model indeed supports this idea. Still, having
put the assumption of an ideal stirring technique at the heart
of our model, while it admits configurations where an RC can
present a non-compliant statistics, it is no more reasonable
to infer that statistical non-compliancy is a synonyms of non-
ideal stirring techniques. This fact was further discussedin this
paper, showing how the excess statistical dispersion foundin
practical configurations cannot be explained with respect to the
stirring techniques, but is more likely due to an intrinsical local
limitation of the RC, particularly its finite modal overlapping
at certain frequencies. This fact becomes critical as soon as
an ideal RC behavior is taken for granted.
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