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Abstract: We study the problem of flatness of two-input driftless control systems. Although
a characterization of flat systems of that class is known, the problems of describing all flat
outputs and of calculating them is open. We show that all x-flat outputs are parameterized
by an arbitrary function of three canonically defined variables. We also construct a system of
1st order PDE’s whose solutions give all x-flat outputs of 2-input driftless systems. We illustrate
our results by describing all flat outputs of models of a rolling disk and a nonholonomic car.
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1. INTRODUCTION

The notion of flatness has been introduced by Fliess,
Lévine, Martin and Rouchon (see Fliess et al. (1992), Fliess
et al. (1995), Fliess et al. (1999)) in order to describe
the class of control systems, whose set of trajectories can
be parameterized by a finite number of functions and
their time-derivatives. More formally, a system with m
controls is flat if we can find m functions (of the state
and control variables and their time-derivatives), called
flat outputs, such that the evolution in time of the state
and control can be expressed in terms of flat outputs and
their time derivatives (see Section 2 for a precise definition
and references).

This paper is organized as follows. In Section 2, we define
the crucial notion of flatness and recall a description of
flat driftless 2-input systems. In section 3, we give our
main results. We characterize all flat outputs of driftless
2-input systems and give a way of parameterizing them: it
turns out that all flat outputs can be parameterized by an
arbitrary function of intrinsically defined three variables.
We also construct a system of 1st order PDE’s whose
solutions are flat outputs of a given system. We illustrate
our results by describing, in Section 4, all flat outputs of
a nonholonomic model of a disk rolling on a plane and of
a nonholonomic car (1-trailer system). The latter is well
known to be flat, with the position (x, y) of the trailer
being a flat output. Based on our results we will find less
intuitive choices of flat outputs.

2. FLATNESS OF DRIFTLESS TWO-INPUT
CONTROL SYSTEMS

Throughout this paper, the word smooth will always mean
C∞-smooth. Consider a smooth nonlinear control system
Ξ : ẋ = f(x, u), where x ∈ X , an n-dimensional manifold
and u ∈ U , an m-dimensional manifold. Given any integer
l, we associate to Ξ its l-prolongation Ξl given by

Ξl :

ẋ = f(x, u0)
u̇0 = u1

...
u̇l = ul+1,

which can be considered as a control system on X l = X ×
U × R

ml, whose state variables are (x, u0, u1, . . . , ul) and
whose m controls are the m components of ul+1. Denote
ūl = (u0, u1, . . . , ul).

Definition 1. The system Ξ is called flat at a point
(x0, ū

l
0) ∈ X l = X×U ×R

ml, for some l ≥ 0, if there exist
a neighborhood Ol of (x0, ū

l
0) and m smooth functions

hi = hi(x, u0, u1, . . . , ul), 1 ≤ i ≤ m,

called flat outputs, defined in Ol, having the following
property: there exist an integer s and smooth functions
γi, 1 ≤ i ≤ n, and δi, 1 ≤ i ≤ m, such that we have

xi = γi(h, ḣ, . . . , h(s))

ui = δi(h, ḣ, . . . , h(s)),

where h = (h1, . . . , hm)⊤, along any trajectory x(t) given
by a control u(t) that satisfy (x(t), u(t), u̇(t), . . . , u(l)(t)) ∈
Ol.

The compositions γi(h, ḣ, . . . , h(s)) and δi(h, ḣ, . . . , h(s))
are, a priori, defined in an open set Os+l ⊂ Xs+l = X×U×
R

m(s+l). The above definition requires that π(Os+l) ⊃ Ol,
where π(x, ūs+l) = (x, ūl), and that for all such (x, ūs+l),
the compositions yield, respectively, xi and ui. If hi =
hi(x, u0, u1, . . . , ur), r ≤ l, we will say that the system is
(x, u, . . . , ur)-flat and, in particular, x-flat if hi = hi(x).
In the case hi = hi(x, u0, u1, . . . , ur), we will assume
that they are defined on Or ⊂ Xr = X × U × R

mr,
where π−1(Or) ⊃ Ol and π stands for the projection
π(x, u0, . . . , ur, . . . , ul) = (x, u0, . . . , ur).

The notion of flatness has been introduced in control
theory by Fliess, Lévine, Martin and Rouchon (Fliess et al.
(1992), Fliess et al. (1995), Fliess et al. (1999), see also



Isidori et al. (1995), Jakubczyk (1993), Pomet (1995)) and
has attracted a lot of attention because of its extensive
applications in constructive controllability and trajectory
tracking, compare Martin et al. (2002) and references
therein. A similar notion (of underdetermined systems
of differential equations that are integrable without inte-
gration) has already been studied by Hilbert (1912) and
Cartan (1914).

In this paper, we deal only with two-input driftless (equiv-
alently, control-linear) systems of the form

Σ : ẋ = f1(x)u1 + f2(x)u2,

on an (n+2)-dimensional manifold M , where f1 and f2 are
C∞-smooth vector fields independent everywhere on M
and u = (u1, u2)

⊤ ∈ R
2. To this system, we associate the

distribution D spanned by the vector fields f1, f2, which
will be denoted by D = span {f1, f2}. Consider another
2-input driftless system

Σ̃ : ˙̃x = f̃1(x̃)ũ1 + f̃2(x̃)ũ2,

where f̃1 and f̃2 are C∞-smooth vector fields on M̃ .
Form the matrices f(x) = (f1(x), f2(x)) and f̃(x̃) =

(f̃1(x̃), f̃2(x̃)). The systems Σ and Σ̃ are feedback equiv-
alent if there exist an invertible 2 × 2-matrix β, whose
entries βij , 1 ≤ i, j ≤ 2, are C∞-smooth functions on

M , and a diffeomorphism ϕ : M → M̃ such that Dϕ(x) ·

f(x) · β(x) = f̃(ϕ(x)). It is easily seen that Σ and Σ̃ are
locally feedback equivalent if and only if the associated
distributions D = span {f1, f2} and D̃ = span {f̃1, f̃2} are

locally equivalent via ϕ, i.e., Dϕ(x)(D(x)) = D̃(ϕ(x)).

The derived flag of a distribution D is the sequence of
modules of vector fields D(0) ⊂ D(1) ⊂ · · · defined
inductively by

D(0) = D and D(i+1) = D(i) + [D(i),D(i)], for i ≥ 0.

The Lie flag of D is the sequence of modules of vector
fields D0 ⊂ D1 ⊂ · · · defined inductively by

D0 = D and Di+1 = Di + [D0,Di], for i ≥ 0.

In general, the derived and Lie flags are different though
for any point x, the inclusion Di(x) ⊂ D(i)(x) holds, for
i ≥ 0.

A characteristic vector field of a distribution D is a vector
field f that belongs to D and satisfies [f,D] ⊂ D. The
characteristic distribution of D, which will be denoted by
C, is the subdistribution spanned by all its characteristic
vector fields. It follows directly from the Jacobi identity
that the characteristic distribution is always involutive
but, in general, it need not be of constant rank.

The problem of flatness of driftless 2-input systems has
been studied and solved by Martin and Rouchon (1993)
(see also Martin and Rouchon (1994) and a related work
of Cartan Cartan (1914)). Their important result proves
that a system is flat if and only if its associated distribution
D satisfies, on an open and dense subset M ′ of M , the
conditions

rankD(i) = i + 2, 0 ≤ i ≤ n. (1)

A distribution D is called a Goursat structure (also a
”système en drapeau” in Kumpera and Ruiz (1982) and a
Goursat flag in Mormul (2000)) if it satisfies the conditions

(1) at any point x ∈ M . It is known since the work of von
Weber (1898), Cartan (1914) and Goursat (1923) that the
conditions (1) imply that on an open and dense subset M ′′

of M , the distribution D can be brought into the Goursat
normal form, or equivalently, the corresponding control
system is feedback equivalent to the chained form:

Σchain :































ż1 = v1

ż2 = z3 · v1

ż3 = z4 · v1

...
żn+1 = zn+2 · v1

żn+2 = v2.

It is easy to see that Σchain is x-flat with x-flat outputs cho-
sen as h = (h1, h2) = (z1, z2) and provided that the control
v1 6= 0. Giaro, Kumpera and Ruiz (Giaro et al. (1978))
were the first to observe the existence of singular points in
the problem of transforming a distribution of rank two into
the Goursat normal form. Murry (1994) proved that the
feedback equivalence of Σ to the chained form Σchain (or,
in other words, equivalence of the associated distribution
to the Goursat normal form), around an arbitrary point x0

requires, in addition to (1), the regularity condition (see
Theorem 2 below)

dimD(i)(x0) = dimDi(x0), 0 ≤ i ≤ n. (2)

A natural question arises: can Σ be locally flat at a
singular point of D, i.e., at a point not satisfying the
regularity condition (2)? In other words, can a driftless
2-input system be flat without being locally equivalent to
the chained form? Theorem 2 answers this question (in
what concerns x-flatness).

Let D be any distribution of rank two such that rankD(1) =
3 and rankD(2) = 4. Then there exists a distribution
C1 ⊂ D of corank one which is characteristic for D(1),
i.e., [C1,D

(1)] ⊂ D(1). Indeed, the above rank assumptions
imply that (after permuting f1 and f2, if necessary) there
exists a smooth function α such that

[f2, [f1, f2]] = α[f1, [f1, f2]] mod D(1).

It follows that [f2 − αf1, [f1, f2]] = 0 modD(1) and hence
C1 = span {f2 − αf1}. Let Using(x) be the 1-dimensional
subspace of R

2 such that for any feedback control
(u1(x), u2(x))⊤ = u(x) ∈ Using(x), we have f1(x)u1(x) +
f2(x)u2(x) ∈ C1(x) (clearly, Using(x) is spanned by
(α(x),−1)⊤). Any control u(t) ∈ Using(x(t)) will be called
singular and the trajectories of the system governed by
a singular control remain tangent to the characteristic
subdistribution C1. We have just given the definition of
Using(x) for dimM ≥ 4 (since we have used rankD(2) = 4).
If dimM = 3, we define Using(x) = 0 ∈ R

2. Note that if
l = 0, we will denote a fixed control value by u0 (instead
of more complicated u0

0).

Theorem 2. Consider a 2-input driftless control system
Σ : ẋ = f1(x)u1 + f2(x)u2, where x ∈ M , an (n + 2)-
dimensional manifold, n ≥ 1. Assume that the distribution
D = span {f1, f2} associated to Σ is a Goursat structure,
that is, satisfies rankD(i) = i+2, for 0 ≤ i ≤ n, everywhere
on M . Then the following conditions are equivalent:

(i) Σ is x-flat at (x0, ū
l
0) ∈ M × R

2(l+1), for a certain
l ≥ 0;

(ii) Σ is x-flat at (x0, u0) ∈ M × R
2;



(iii) dimD(i)(x0) = dimDi(x0), for 0 ≤ i ≤ n, and
u0 6∈ Using(x0);

(iv) Σ is locally, around x0, feedback equivalent to the
chained form Σchain and u0 6∈ Using(x0).

We assume that D satisfies rankD(i) = i + 2, for 0 ≤
i ≤ n, so the characteristic distribution C1 and the set of
singular controls Using are well defined. The above theorem
implies that a driftless 2-input system is never flat at
(x0, u0) such that u0 ∈ Using(x0). Therefore any x-flat
outputs (ϕ1, ϕ2) become singular in the control space (at
u0 ∈ Using) but they may also exhibit singularities in the
state space M . To formalize this, assume that a pair of
functions (ϕ1, ϕ2) defined in an open set M ⊂ M is an
x-flat output at (x0, u0) ∈ M × R

2, that is, there exists
a neighborhood O0 ⊂ M × R

2, satisfying O0 ⊂ π−1(M),
where π(x, u) = x, in which the conditions of Definition 1
hold. By Sing(ϕ1, ϕ2), called the singular locus of (ϕ1, ϕ2),
we will mean the set of points x ∈ M such that (ϕ1, ϕ2)
is not x-flat output at (x, u) for any u ∈ R

2.

The interest of the above theorem is two-fold. First, to-
gether with its proof, it will allow us to characterize all
x-flat outputs of driftless 2-input systems (see Section 3).
Secondly, it shows that a Goursat structure is x-flat at
points x0 satisfying dimD(i)(x0) = dimDi(x0), for 0 ≤ i ≤
n, only, that is, at regular points of D. Martin and Rou-
chon (1993) asked (see also Martin and Rouchon (1994))
whether a Goursat structure D is flat (dynamically lin-
earizable) at points that do not satisfy dimD(i)(x0) =
dimDi(x0). So our result gives a negative answer to their
question (for x-flatness). Any Goursat structure can be
brought to a generalization of the Goursat normal form,
called Kumpera-Ruiz normal form (see Kumpera and Ruiz
(1982), Mormul (2000), Pasillas and Respondek (2001)). It
follows that none of Kumpera-Ruiz normal forms is x-flat
(except for the regular Kumpera-Ruiz normal form, that
is, Goursat normal form). In particular, the system



















ẋ1 = x5u1

ẋ2 = x3x5u1

ẋ3 = x4x5u1

ẋ4 = u1

ẋ5 = u2

which is the first historically discovered Kumpera-Ruiz
normal form (Giaro et al. (1978)), is not x-flat at any
point of its singular locus {x ∈ R

5 : x = 0}. This an-
swers negatively another question of Martin and Rouchon
(1993).

3. CHARACTERIZATION OF FLAT OUTPUTS

3.1 Main Theorems

Recall a useful result due to Cartan (1914) whose proof
can be found in Kumpera and Ruiz (1982) and Martin
and Rouchon (1994).

Lemma 3. (E. Cartan) Consider a rank two distribution
D defined on a manifold M of dimension n + 2, for n ≥ 2.
If D satisfies rankD(i) = i + 2, for 0 ≤ i ≤ n, everywhere
on M , then each distribution D(i), for 0 ≤ i ≤ n − 2,
contains a unique involutive subdistribution Ci+1 that is
characteristic for D(i+1) and of corank one in D(i).

Theorem 2 implies that the only Goursat structures that
are x-flat are those equivalent to the chained form (equiva-
lently, whose associated distribution D is equivalent to the
Goursat normal form). For this reason, we will consider
in two theorems below such distributions only. Moreover,
any distribution equivalent to the Goursat normal form
obviously satisfies the assumptions of Lemma 3 and de-
fines the involutive distribution Cn−1 that is characteristic
distribution for D(n−1) and of corank one in D(n−2).

Theorem 4. (Characterization of flat outputs, first ver-
sion) Consider a driftless 2-input smooth control system Σ
defined on a manifold M of dimension n + 2 whose asso-
ciated distribution D satisfies rankD(i) = rankDi = i + 2,
for 0 ≤ i ≤ n. Fix x0 ∈ M and let g be an arbitrary
vector field in D such that g(x0) /∈ Cn−1(x0) and ϕ1, ϕ2

be two smooth functions defined in a neighborhood M
of x0. Then (ϕ1, ϕ2) is an x-flat output of Σ at (x0, u0),
u0 6∈ Using(x0), if and only if the following conditions hold:

(i) dϕ1(x0) ∧ dϕ2(x0) 6= 0, i.e., dϕ1 and dϕ2 are inde-
pendent at x0;

(ii) Lcϕ1 ≡ Lcϕ2 ≡ Lc(
Lgϕ2

Lgϕ1
) ≡ 0, for any c ∈ Cn−1,

where ϕ1 and ϕ2 are ordered such that Lgϕ1(x0) 6= 0
which is always possible due to item (iii);

(iii) (Lgϕ1(x0), Lgϕ2(x0)) 6= (0, 0).

Moreover, if a pair of functions (ϕ1, ϕ2) satisfies (i) every-
where in M and forms an x-flat output at (x, u) for any

x ∈ M̃ and certain u = u(x), where M̃ is open and dense
in M, then

Sing(ϕ1, ϕ2) = {x ∈ M : (Lgϕ1(x), Lgϕ2(x)) = (0, 0)}.

Theorem 5. (Characterization of flat outputs, second ver-
sion) Consider a driftless 2-input smooth control system Σ
defined on a manifold M of dimension n + 2 whose asso-
ciated distribution D satisfies rankD(i) = rankDi = i + 2,
for 0 ≤ i ≤ n. Fix x0 ∈ M and let ϕ1, ϕ2 be two
smooth functions defined in a neighborhood M of x0. Then
(ϕ1, ϕ2) is an x-flat output of Σ at (x0, u0), u0 6∈ Using(x0),
if and only if the following conditions hold:

(i)
′

dϕ1(x0) ∧ dϕ2(x0) 6= 0;
(ii)′ L = (span {dϕ1, dϕ2})

⊥ ⊂ Dn−1 in M;
(iii)′ D(x0) is not contained in L(x0).

Moreover, if a pair of functions (ϕ1, ϕ2) satisfies (i)′

everywhere in M and forms an x-flat output at (x, u) for

any x ∈ M̃ and certain u = u(x), where M̃ is open and
dense in M, then

Sing(ϕ1, ϕ2) = {x ∈ M : D(x) ⊂ L(x)}.

Remark 1. Notice that Theorem 5 is valid for any n ≥ 1
(i.e., dimM ≥ 3) while Theorem 4 is true for n ≥ 2 only
(i.e., dimM ≥ 4). In fact, in Theorem 4 we use the charac-
teristic distribution Cn−1 of D(n−1) but if dimM = 3, such
a distribution does not exist and therefore Theorem 4 can
not be applied in that case.
Remark 2. The two items (iii) and (iii)′ describing the
singular locus of an x-flat output (ϕ1, ϕ2) are equivalent
under the condition rankD(i) = rankDi = i + 2, for
0 ≤ i ≤ n.
Remark 3. The conditions of both theorems are verifiable,
i.e., given a pair of functions (ϕ1, ϕ2) in a neighborhood of



a point x0, we can easily verify whether (ϕ1, ϕ2) forms an
x-flat output of a control system under considerations and
verification involves derivations and algebraic operations
only (without solving PDE’s or bringing the system to a
normal form). Moreover, the theorems allow us to find the
singular locus of a given flat output (ϕ1, ϕ2).

A natural question to ask is if there is a lot of pairs
(ϕ1, ϕ2) which satisfy the conditions of Theorem 4 or 5?
In other words, is there a lot of pairs (ϕ1, ϕ2) which are x-
flat outputs for a 2-input driftless control system? This
question has an elegant answer given by the following
theorem.

Theorem 6. (Uniqueness of flat outputs) Consider a drift-
less 2-input smooth control system Σ whose associated
distribution D satisfies rankD(i) = rankDi = i + 2, for
0 ≤ i ≤ n, locally around a point x0 ∈ M , a manifold of
dimension n+2. Let g be an arbitrary vector field in D such
that g(x0) /∈ Cn−1(x0). Then for a given arbitrary smooth
function ϕ1 such that Lcϕ1 = 0, for any c ∈ Cn−1, and
Lgϕ1(x0) 6= 0, there always exists a function ϕ2 such that
(ϕ1, ϕ2) is an x-flat output of Σ at (x0, u0), u0 6∈ Using(x0).
Moreover, if for a given function ϕ1 as above, the pairs
(ϕ1, ϕ2) and (ϕ1, ϕ̃2) are both x-flat outputs of Σ at
(x0, u0), then

span {dϕ1, dϕ2}(x) = span {dϕ1, dϕ̃2}(x),

for any x in a neighborhood of x0.

Remark. Observe that x-flat outputs (h1, . . . , hm) and

(h̃1, . . . , h̃m) of a system with m controls such that

span { dh1, . . . , dhm} = span { dh̃1, . . . , dh̃m} can be con-
sidered as statically equivalent. Indeed, in that case there
exist smooth functions Hi and H̃i of m variables such
that hi = Hi(h̃1, . . . , h̃m) and h̃i = H̃i(h1, . . . , hm). It
thus follows from Theorem 6 that for a given arbitrary
ϕ1 (satisfying the assumptions of the theorem), the choice
of ϕ2 is unique in the sense that all functions ϕ2 giving
x-flat outputs (ϕ1, ϕ2) yield, actually, statically equivalent
x-flat outputs.

3.2 Finding x-flat outputs

The importance of Theorem 4 is that it not only allows to
check whether a given pair of functions forms an x-flat
output but also, together with Theorem 6, to express
explicitly a system of 1st order PDE’s to be solved in order
to calculate all x-flat outputs for a given 2-input driftless
system. Recall that the characteristic distribution Cn−1

of D(n−1) can be easily calculated as (see Bryant et al.
(1991))

Cn−1 = {f ∈ D(n−1) : fy dω ∈ (D(n−1))⊥},

where ω is any non-zero differential 1-form annihilating
D(n−1).

Theorem 7. Assume that a control system Σ is x-flat at
(x0, u0), u0 6∈ Using(x0), that is, the associated distribution
D is, locally at x0, equivalent to the Goursat normal
form on an (n + 2)-dimensional manifold M . Let Cn−1 =
span {c1, . . . , cn−1} be the characteristic distribution of
D(n−1) such that cn−1(x0) 6∈ Cn−2(x0) and g any vector
field in D such that g(x0) 6∈ Cn−1(x0). Then

(i) For any smooth function ϕ1 such that

(Flat 1)
Lci

ϕ1 = 0, 1 ≤ i ≤ n − 1,
Lgϕ1(x0) 6= 0,

the distribution L = span {c1, . . . , cn−1, v} is involu-
tive, where v = (Lgϕ1)[cn−1, g] − (L[cn−1,g]ϕ1)g.

(ii) A pair of functions (ϕ1, ϕ2) forms an x-flat output
of Σ at (x0, u0), u0 6∈ Using(x0), if and only if after
a permutation (if necessary) ϕ1 satisfies (Flat 1),
dϕ1(x0) ∧ dϕ2(x0) 6= 0, and ϕ2 satisfies

(Flat 2)
Lci

ϕ2 = 0, 1 ≤ i ≤ n − 1
Lvϕ2 = 0.

Remark. In (ii) only one implication may need permuting
ϕ1 and ϕ2. Indeed, if (ϕ1, ϕ2) satisfies (Flat 1) and (Flat 2),
then it is an x-flat output (and no permutation is needed).
If (ϕ1, ϕ2) is an x-flat output, then at least one ϕi, 1 ≤
i ≤ 2, satisfies Lgϕi(x0) 6= 0 and we choose ϕ1 such that
Lgϕ1(x0) 6= 0.

Example 8. Consider a 2-input driftless control system

ẋ = f1(x)u1 + f2(x)u2

on a 4-dimensional manifold M . Assume that the sys-
tem is x-flat, that is, the associated distributions D =
span {f1, f2} satisfies the conditions of Theorem 7. Choose
a vector field c ∈ C1 characteristic for D(1) and g ∈ D such
that g(x0)∧c(x0) 6= 0. According to Theorem 7 we take as
ϕ1 an arbitrary solution of Lcϕ1 = 0, Lgϕ1(x0) 6= 0 and,
in order to find ϕ2, we have to solve Lcϕ2 = 0, Lvϕ2 = 0,
where v = (Lgϕ1)[c, g]−(L[c, g]ϕ1)g. Notice that the above

system of three 1st order PDE’s contains a fourth one;
indeed we have

Lvϕ1 = (Lgϕ1)L[c,g]ϕ1 − (L[c,g]ϕ1)Lgϕ1 = 0.

The system

Lcϕi = Lvϕi = 0, 1 ≤ i ≤ 2, (3)

admits two independent functions ϕ1 and ϕ2 as solutions
if and only if the distribution span{c, v} is integrable.
A direct calculation shows that this is the case (see Li
(2010), Li and Respondek (2010)). All becomes clear: the
involutive distribution span {c, v} is just the distribution
L of Theorem 5 while ϕ1 and ϕ2 satisfying (3) are x-flat
outputs since their differentials span L⊥. We also see that
L is not unique: different choices of ϕ1 lead to different
vector fields v which, in turn, give different distributions
L = span {c, v}, although all of them are involutive and
thus define (via span {dϕ1, dϕ2} = L⊥) non equivalent flat
outputs. This is in a perfect accordance with Theorem 6.

4. EXAMPLES

Example 9. (Vertical rolling disk) Consider a vertical disk
of radius R rolling without slipping on a horizontal plane.
Denote by (x, y) the position of the contact point in the
xy-plane, and by θ and φ, respectively, the rotation angle
of the disk and the orientation of the disk. The controls
u1 and u2 allow the disk to rotate and turn. This leads
to the following model given by a driftless system on
Q = R

2 × S1 × S1:

Σdisk :









ẋ
ẏ

θ̇

φ̇









=







R cosφ
R sin φ

1
0






u1 +







0
0
0
1






u2 = f1u1 + f2u2.



x

y

(x, y)
φ

θ

Fig. 1. the rolling disk

A direct computation shows that rankD(i) = rankDi = i+
2, for 0 ≤ i ≤ 2, and C1 = span {f1}. Therefore by
Theorem 2, the model Σdisk is x-flat at any point of its
configuration space Q. Moreover, it satisfies the hypothesis
of Theorems 4, 5 and 6 and Using is given by Using =
{u = (u1, u2)

⊤ : u2 = 0}. Thus the singular control
corresponds to rolling the disk along a straight line. Now
let us calculate all its x-flat outputs by using the procedure

given in Section 3.2. We choose c = f1 = R cosφ ∂
∂x

+

R sinφ ∂
∂y + ∂

∂θ , and take g = f2 = ∂
∂φ . Then as a first flat

output we can take any function ϕ1 satisfying the following
system of equations

Lcϕ1 = R cosφ
∂ϕ1

∂x
+ R sin φ

∂ϕ1

∂y
+

∂ϕ1

∂θ
≡ 0

Lgϕ1(q0) 6= 0.

Solving this system of equations, we get that ϕ1 is any
function of the form

ϕ1 = ϕ1(φ, x − Rθ cosφ, y − Rθ sin φ)

satisfying ∂ϕ1
∂φ

(q0) 6= 0. Choose one such ϕ1 and then

ϕ2 is any function independent with ϕ1 that satisfies
Lcϕ2 = Lvϕ2 = 0, where the vector field v is given by

v = (Lgϕ1)[c, g] − (L[c,g]ϕ1)g.

To illustrate this, choose the function ϕ1 = x − Rθ cosφ
around a point q0 such that Lgϕ1(q0) = Rθ sinφ 6= 0 and

then v = R2θ sin2 φ ∂
∂x

− R2θ sin φ cosφ ∂
∂y

− R sin φ ∂
∂φ

.

Solving the system of equations Lcϕ2 = Lvϕ2 = 0, we
get ϕ2 = ϕ2(x − Rθ cosφ, y − Rθ sinφ) satisfying ( dϕ1 ∧
dϕ2)(q0) 6= 0. All such functions satisfy span {dϕ1, dϕ2} =
span {dϕ1, dϕ̃2} and we can take, for instance, ϕ2 = y −
Rθ sin φ. Moreover, the singular locus of the x-flat output
(x − Rθ cosφ, y − Rθ sin φ) is given by

Sing(ϕ1, ϕ2) = {q ∈ Q : (Lgϕ1(q), Lgϕ2(q)) = (0, 0)}

= {q ∈ Q : θ = 0}.

To see that sinφ = 0 is, indeed, not a singularity, we just
permute ϕ1 and ϕ2.

To consider another possibility, we choose ϕ1 = φ and then

we have v = R sinφ ∂
∂x

− R cosφ ∂
∂y

. Solving the system

of equations Lcϕ2 = Lvϕ2 = 0, we get ϕ2 = ϕ2(φ, Rθ −
x cosφ − y sin φ) satisfying ( dϕ1 ∧ dϕ2)(q0) 6= 0. We can
take, for instance, ϕ2 = Rθ−x cosφ− y sinφ and a simple
calculation shows that there does not exist singular point
of the x-flat output (φ, Rθ − x cosφ− y sin φ) in the state
space Q. In other words, (φ, Rθ − x cosφ − y sin φ) is an

x-flat output at any point (q, u) ∈ Q × R
2 provided that

u 6∈ Using(q).

For various choices of functions, our result allows to elim-
inate them as candidates for x-flat outputs. For example,
we can conclude that if (ϕ1, ϕ2) is an x-flat output, then

Lcϕi ≡ 0, for i = 1, 2, where c = R cosφ ∂
∂x

+ R sin φ ∂
∂y

+

∂
∂θ

is a characteristic vector field of D(1). It follows that

independently of the choice of ϕ2, neither (x, ϕ2), nor
(y, ϕ2), nor (θ, ϕ2) can serve as an x-flat output.

Example 10. (Nonholonomic car)

x

y

θ1

θ0

Fig. 2. nonholonomic car

Consider a model of a nonholonomic car Σcar, equivalently
of a unicycle-like robot towing a trailer (see Jean (1998),
Laumond (1997)),

Σcar :









ẋ
ẏ

θ̇0

θ̇1









=







cos(θ1 − θ0) cos θ0

cos(θ1 − θ0) sin θ0

sin(θ1 − θ0)
0






u1 +







0
0
0
1






u2,

where q = (x, y, θ0, θ1) ∈ R
2 × S1 × S1. It is well known

that the system is x-flat and that the position (x, y) of the
mid-point of the rear wheels is an x-flat output (see Fliess
et al. (1995) and Jakubczyk (1993)). We will illustrate
our results by providing other (statically non-equivalent)
x-flat outputs that are less intuitive. We choose as a

characteristic vector field c = ∂
∂θ1

and take g = cos(θ1 −

θ0) cos θ0
∂
∂x

+ cos(θ1 − θ0) sin θ0
∂
∂y

+ sin(θ1 − θ0)
∂

∂θ0
.

As a first x-flat output we can take any function

ϕ1 satisfying Lcϕ1 = ∂ϕ1
∂θ1

≡ 0 and Lgϕ1(q) 6=

0, that is any function ϕ1 = ϕ1(x, y, θ0) such that
Lgϕ1(q) 6= 0. Let us choose one such ϕ1 then ϕ2 satisfies
Lcϕ2 = Lvϕ2 = 0, where the vector field v is given

by v = (Lgϕ1)[c, g] − (L[c,g]ϕ1)g = −
∂ϕ1
∂θ0

cos θ0
∂
∂x

−

∂ϕ1
∂θ0

sin θ0
∂
∂y

+ (
∂ϕ1
∂x

cos θ0 +
∂ϕ1
∂y

sin θ0)
∂

∂θ0
. Therefore

ϕ2 can be taken as any functions ϕ2(x, y, θ0) satisfying
Lvϕ2 = 0 and ( dϕ1 ∧ dϕ2)(q) 6= 0. Given ϕ1 as above,
the space of solutions for ϕ2 is thus parameterized by



one function of two variables but any two solutions ϕ2

and ϕ̃2 give statically equivalent flat outputs, that is
span {dϕ1, dϕ2} = span {dϕ1, dϕ̃2}. On the other hand,
different choices of ϕ1 will lead to nonequivalent pairs
(ϕ1, ϕ2) of x-flat outputs.

To illustrate this, take ϕ1 = x, then v = cos θ0
∂

∂θ0
and

Lcϕ2 = Lvϕ2 = 0 imply that ϕ2 is any function of the

form ϕ2(x, y) satisfying ∂ϕ2
∂y

(q) 6= 0 (because of ( dϕ1 ∧

dϕ2)(q) 6= 0). All such functions satisfy span {dx, dϕ2} =
span {dx, dϕ̃2} and we can take, for instance, ϕ2 = y. This
gives the well-known x-flat output (x, y).

To see another choice, take ϕ1 = θ0, then v = − cos θ0
∂
∂x

−

sin θ0
∂
∂y

and the general solution of Lcϕ2 = Lvϕ2 = 0

is ϕ2 = ϕ2(θ0, x sin θ0 − y cos θ0), which gives as an x-
flat output (θ0, x sin θ0−y cos θ0). Notice that the singular
loci of the two choices of x-flat outputs are different. In
fact, Sing(x, y) = {θ1 − θ0 = ±π

2 } and Sing(θ0, x sin θ0 −

y cos θ0) = {θ1 − θ0 = 0,±π}.

Now take ϕ1 = x + θ0 around cos θ0 6= 0, then v =

− cos θ0
∂
∂x

− sin θ0
∂
∂y

+ cos θ0
∂

∂θ0
. Thus the general solu-

tion of Lcϕ2 = Lvϕ2 = 0 is ϕ2 = ϕ2(x+θ0, y−ln | cos θ0|)).
We can take, for instance, ϕ2 = y − ln | cos θ0| which gives
a third x-flat output (x+ θ0, y− ln | cos θ0|) of Σcar and its
singular locus is defined by Sing(x + θ0, y − ln | cos θ0|) =
{cos θ0 = 0} ∪ {cos(θ1 − θ0) cos θ0 + sin(θ1 − θ0) = 0}.
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M. Fliess, J. Lévine, P. Martin and P. Rouchon. Sur les
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