Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet--to--Neumann maps

Abstract : Coarse grid correction is a key ingredient in order to have scalable domain decomposition methods. For smooth problems, the theory and practice of such two-level methods is well established, but this is not the case for problems with complicated variation and high contrasts in the coefficients. Stable coarse spaces for high contrast problems are also important purely for approximation purposes, when it is not desirable to resolve all the fine scale variations in the problem. In a previous study, two of the authors introduced a coarse space adapted to highly heterogeneous coefficients using the low frequency modes of the subdomain DtN maps. In this work, we present a rigorous analysis of a two-level overlapping additive Schwarz method (ASM) with this coarse space, which provides an automatic criterion for the number of modes that need to be added per subdomain to obtain a convergence rate of the order of the constant coefficient case. Our method is suitable for parallel implementation and its efficiency is demonstrated by numerical examples on some challenging problems with high heterogeneities for automatic partitionings.
Type de document :
Article dans une revue
computer methods in applied mathematics, 2012, 12 (4), pp.391-414
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00586246
Contributeur : Frédéric Nataf <>
Soumis le : vendredi 15 avril 2011 - 13:02:15
Dernière modification le : mardi 30 mai 2017 - 01:17:20
Document(s) archivé(s) le : samedi 16 juillet 2011 - 02:47:43

Fichier

paper14avril.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00586246, version 1

Collections

Citation

Victorita Dolean, Frédéric Nataf, Robert Scheichl, Nicole Spillane. Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet--to--Neumann maps. computer methods in applied mathematics, 2012, 12 (4), pp.391-414. 〈hal-00586246〉

Partager

Métriques

Consultations de
la notice

925

Téléchargements du document

540