A Class of Non-Local Models for Pedestrian Traffic

Abstract : We present a new class of macroscopic models for pedestrian flows. Each individual is assumed to move towards a fixed target, deviating from the best path according to the instantaneous crowd distribution. The resulting equation is a conservation law with a nonlocal flux. Each equation in this class generates a Lipschitz semigroup of solutions and is stable with respect to the functions and parameters defining it. Moreover, key qualitative properties such as the boundedness of the crowd density are proved. Specific models are presented and their qualitative properties are shown through numerical integrations.
Type de document :
Pré-publication, Document de travail
2011
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00586008
Contributeur : Magali Lécureux-Mercier <>
Soumis le : vendredi 15 avril 2011 - 11:16:01
Dernière modification le : mardi 22 mars 2016 - 01:19:48
Document(s) archivé(s) le : samedi 3 décembre 2016 - 05:05:25

Fichiers

pietonsbis.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00586008, version 2
  • ARXIV : 1104.2985

Collections

Citation

Rinaldo Colombo, Mauro Garavello, Magali Lécureux-Mercier. A Class of Non-Local Models for Pedestrian Traffic. 2011. <hal-00586008v2>

Partager

Métriques

Consultations de
la notice

223

Téléchargements du document

92