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Abstract. A Brain-Computer Interface (BCI) is a specific type of human-computer
interface that enables the direct communication between human and computers
through decoding of brain activity. As such, event-related potentials (ERPs) like the
P300 can be obtained with an oddball paradigm whose targets are selected by the
user. This paper deals with methods to reduce the needed set of EEG sensors in the
P300 speller application. A reduced number of sensors yields more comfort for the
user, decreases installation time duration, may substantially reduce the financial cost
of the BCI setup and may reduce the power consumption for wireless EEG caps. Our
new approach to select relevant sensors is based on backward elimination using a cost
function based on the signal to signal-plus-noise ratio, after some spatial filtering. We
show that this cost function select sensors subsets that provide a better accuracy in
the speller recognition rate during the test sessions than selected subsets based on
classification accuracy. We validate our selection strategy on data from 20 healthy
subjects.
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1. Introduction

A Brain-computer interface (BCI) is a direct communication pathway between a human

brain and an external device. It enables people to communicate through the direct and

real-time measurements of brain activity, without requiring any peripheral (muscular)

activity [1]. BCIs may represent the only communication pathway for patients who are

unable to communicate via conventional means because of severe motor disabilities like

spinal cord injuries or amyotrophic lateral sclerosis (ALS) [2]. Hence BCIs are presented

as a promising system to restore control and communication in some patients [3].

Nowadays, one important challenge is to reduce the number of electrodes in an

optimal fashion for each user. Reducing the number of sensors yields more comfort

for the user, decreases installation time duration and may substantially reduce the

financial cost of the BCI setup since the cost of an EEG cap and an amplifier vary in

relation to the number of channels. Besides, the reduction of the number of sensors

can also reduce the power consumption for wireless EEG caps [4]. Finally sensor

selection could improve the accuracy of P300 detection by selecting a reduced and

more relevant set of input features by removing irrelevant featues and by avoiding

overfitting. Pattern recognition and signal processing techniques are usually used in BCI

for both detection and classification of specific brain signals. Among these techniques,

machine learning models [5, 6, 7, 8] have been proved quite efficient. In addition

to knowledge in neuroscience and neurophysiology that guide the process of signal

extraction, machine learning techniques allow modeling signal variability across subjects

and over time. Neural networks [9, 10, 11, 12, 13, 14], support vector machines [15, 16],

linear discriminant analysis (classical, stepwise, Bayesian) [17, 18] and hidden Markov

models [19, 20] have already been applied to BCI and EEG data classification. For

these techniques, the choice of an optimal set of input features can be decisive for the

classification performance. Hence feature selection serves several purposes: to improve

the classifier accuracy, to adapt to the user and to reduce the general BCI cost for the

user/patient both in terms of financial and attentional efforts.

We distinguish sensor selection and feature selection. Indeed, a sensor generally

corresponds to a set of features. It is the case in BCI where an input signal often

corresponds to a matrix with one dimension in the space domain (sensors) and the

other one in the time or frequency domain. This paper will focus on sensor selection.‡

Several strategies exist for selecting a subset of sensors. For instance, one can

select sensors based on prior knowledge from the literature or previous experiments. In

that case, the subset is fixed and may jeopardize the performance in some subjects as

the optimal sensor subset is highly subject-dependent [17]. Therefore, it is mandatory

to identify subject-specific optimal sensor subsets. For a N sensors set, there are 2N

different possible subsets. To find the optimal subset, three main searching approaches

can be considered: complete, random or sequential search. The complete (exhaustive)

‡ In the following parts, we consider the sensors as the sensors that provide the signal, as opposed to
sensors dedicated to the reference and ground.



A Robust Sensor Selection Method for P300-BCI 3

search is usually intractable as the search space is often exponentially prohibitive.

The random search starts with a randomly selected subset and add randomness in

the sequential approach or generates new random subsets as with the Las Vegas

algorithm [21]. Finally, the sequential search does not guarantee optimality as it gives

up completeness. However, it is easily implementable and can provide optimal solutions

given some evaluation criterion. Several variations are described in the literature like the

greedy hill-climbing approach, forward selection, backward elimination or bi-directional

selection. For instance, Recursive Feature Elimination was used for sensor selection in

BCI based on motor imagery [22, 23].

In this paper, we consider a backward elimination strategy to address the following

issues: to find an efficient criterion to exclude the least relevant sensors; or equivalently,

to evaluate the relevance of a given sensor subset. The effect of sensor selection then

needs to be evaluated on the P300-speller performance.

The rest of the paper is organized as follows. The P300-speller paradigm is

described in the next section. The sensor selection strategy and the different criteria

for sensor evaluation are described in the third section. Section four is dedicated to the

computation of the spatial filtering, the signal to signal-plus-noise ratio and the P300

classifier. The experimental design is presented in the fifth section. Results of sensor

selection based on different criteria are compared and discussed in the last two sections.

2. P300 speller

The P300-speller enables a user to write symbols (letters, digits,...) on a computer

screen. This BCI is based on the following principle: a matrix containing all the

available symbols is displayed on screen [24, 25]. In the experiments, we consider a

6× 6 matrix, as used in classical P300 spellers [24]. To spell a symbol, the user has to

focus her/his attention on the character she/he wants to spell. The rows and columns of

the matrix are alternatively and randomly intensified. Hence the intensification of the

target is a rare and unexpected event, which causes a P300 time-locked EEG response

(a positive voltage deflection at latency of about 300ms). Stimulation is organized in

block of 12 flashes such that each row/column is intensified once per block§. Blocks of

12 intensifications are repeated Nepoch times for each symbol. Therefore, 2×Nepoch P300

responses might be detected to identify the target.

The P300-speller is made of two classification steps: first, signal classification that

aims at identifying a P300 response from other responses in the EEG streaming data;

second, the decision about what was the target based on the classifications of the row

and column signals respectively. These two steps are sequential. Detection of a P300

response corresponds to a binary classification (present/absent). This step usually

requires averaging over several epochs since a drop of attention may prevent a P300

response to occur. Besides, the background EEG and movements or other artefacts

might impair the detection performance. In the symbol recognition step, the outputs of

§ One block thus corresponds to intensification of the six rows and six columns in a random fashion.
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the P300 classification are combined to make a final decision. The target is defined by

a single row/column pair. We note V ∈ R
12×Nepoch the matrix containing the cumulated

probabilities of a P300 detection for each intensification (or flash) and each epoch:

V (i, j) =
j
∑

k=1

EP300(P (i, k)) (1)

where P (i, k) ∈ R
Nf×Ne is the response pattern to the flash i, at epoch k, (i, k) ∈

{1, . . . , 12} × {1, . . . , Nepoch}. Nf and Ne indicate the number of virtual sensors and

the number of sampling points in the extracted signal to process, respectively. Finally,

EP300(.) is a classifier returning a confidence value v ∈ [0, 1]: 1 (resp. 0) denotes a

perfect confidence that a P300 response is present (resp. absent).

At each epoch j, one can evaluate the coordinate (xj, yj) of the selected symbol by:

xj = argmax
1≤i≤6
V (i, j) (2)

yj = argmax
7≤i≤12

V (i, j). (3)

We denote by ESpeller({P (1, Nepoch), . . . , P (12, Nepoch)}) = (row, column), the selected

symbol.

3. Sensor selection

3.1. Backward elimination

The chosen method for adaptively selecting a relevant subset of sensors is based on

backward elimination. Starting with all sensors, it consists in alternatively testing

each sensor for its significance and in removing the least relevant one at each iteration

step. An irrelevant sensor is a sensor whose removal barely impairs the performance or

selection criterion. In this work, we eliminate two sensors at a time, leaving us with

the most significant remaining subset. Elimination goes on until every sensor has been

eliminated. At the end of the process, sensors can be ranked according to their revealed

significance. Basically, a relevant sensor will be eliminated at the end of the iterative

process while a useless one will be eliminated along the very first iterations. The rank

of a sensor R(s) is defined by Ns/2 − i where i is the iteration where the sensor has

been removed and Ns is the number of sensors. As a consequence, the higher the rank

of a given sensor is, the more relevant the sensor is.

3.2. Subset evaluation

The distinction between dependent and independent selection criteria to establish the

performance or score of a given subset of sensors is important. Dependent criteria rely

on a subsequent measure of classification accuracy to establish the relevance of a given

subset, while independent criteria do not. Therefore, a dependent criterion might be

more suitable given the ultimate goal of the task but is often computationally more
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expensive since measuring classification accuracy for a large number of possible subsets

calls for a cumbersome K-fold cross-validation procedure. Instead, independent criteria

can be based on simple measures of the goodness of fit of the extracted signal features,

like information measures, distance measures, dependency measures or consistency

measures [26]. In the P300-speller, subset evaluation can be assessed at three different

levels: (i) a global measure of the EEG signal (e.g., Signal to Noise Ratio (SNR) or

Signal to Signal plus Noise Ratio (SSNR), (ii) the recognition rate of the P300 response

(EP300), i.e., how well the P300 is detected individually, and (iii) the accuracy of the

speller (ESpeller). Those criteria can be compared, whether pre-processing include some

spatial filtering (SF) or not. We distinguish four main criteria for the evaluation that

are presented hereafter.

3.3. Criterion based on the SSNR

The first criterion is based on the SSNR. We consider an analytical model of the recorded

signalsX that is composed of three parts: the P300 responses (D1A1), a response related

to every superimposed evoked potentials (D2A2) and the residual noise (H)

X = D1A1 +D2A2 +H. (4)

where X ∈ R
Nt×Ns , Nt and Ns are the number of sampling points over time and the

number of sensors, respectively. A1 ∈ R
N1
e×Ns and A2 ∈ R

N2
e×Ns are the matrices of

ERP signals. N1

e and N2

e are the number of sampling points that describe the P300

response and the superimposed evoked potentials, respectively. In the following parts,

N1

e and N2

e are chosen to correspond to 0.6 second. D1 and D2 are two real Toeplitz

matrices of size Nt ×N1 and Nt ×N2 respectively. D1 has its first column elements set

to zero except for those that correspond to a target, which are represented with a value

equal to one. For D2, its first column elements are set to zero except for those that

correspond to stimuli onset. N1 and N2 are the number of sampling points representing

the target (the P300 response) and superimposed evoked potentials, respectively. H is

a real matrix of size Nt ×Ns.

The SSNR is defined by :

SSNR =
Tr(ÂT

1
DT

1
D1Â1)

Tr(XTX)
(5)

where Â1 corresponds to the least mean square estimation of A1.

Â =

[

Â1

Â2

]

= ([D1;D2]
T [D1;D2])

−1[D1;D2]
TX (6)

where [D1;D2] is a matrix of size Nt × (N1 +N2) composed of D1 and D2.

3.4. Criterion based on the signal power

The power P(i) of the P300 across the signal on the ith sensor si is estimated by:

P(i) = â1
T (i)DT

1
D1â1(i) (7)
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where 1 ≤ i ≤ Ns and Â1 = [â1(i), . . . , â1(Ns)]. The power over the P of the P300 over

the signal is defined by:

P =
Ns
∑

i=1

P(i). (8)

3.5. Criterion based on the P300

We define the criterion based on the P300, AccP300, as the average recognition rate of

the P300 classifier across the different epochs, every intensification of the row/column

and the total number of symbols to spell (Nsymb). The recognition rate of the classifier

takes also into account the fact that a non P300 signal must not be recognized as a

P300. The Bayesian linear discriminant analysis (BLDA) is used here for the binary

classification of P300 and no P300 responses [17, 27].

3.6. Criteria based on the speller accuracy

Finally, the criterion based on the recognition rate of character for the P300 speller,

AccSpeller, is related to the application. AccSpeller is defined as the average recognition

rate over every epoch. This criterion is not the speller accuracy for a specific epoch:

it takes into account every repetition to provide a more detailed measure. Indeed, if

we consider the accuracy for a particular number of epochs, this value may not vary

so much with a small database of characters. It is worth mentioning that to compute

the speller accuracy, every step for computing the P300 accuracy are also needed. This

definition of an average accuracy is used as a criterion for sensor selection. Later, in

the evaluation of the P300 speller during the test phase, classification accuracy will be

computed for a specific number of epochs.

4. Spatial filters

The criteria defined in section 3.3, 3.4, 3.5 and 3.6 can be combined with spatial filters

for enhancing the signal. Spatial filters are one of the first steps for processing the

signal in order to enhance its peculiar characteristics. Several types are described in the

literature. For fixed spatial filters, the weights for each sensor are fixed manually. For

instance, with the average combination, each electrode has the same weight. A common

approach is to use a bipolar or Laplacian combination of the sensors for canceling the

common noise signals [28]. Adaptive spatial filters usually consider statistical methods

like ICA [29] and Common Spatial Pattern (CSP) [30, 31, 32, 33, 34]. The filters are

obtained by solving a generalized eigenvalue problem. Spatial filters can also be set with

a generative approach. Such filters are set as a function of the expected signal to detect,

like the minimum energy combination and the maximum contrast combination [35].

Finally, spatial filters can be directly embedded in the classifier as described in [10].

The considered method for the creating spatial filters is based on the xDAWN

algorithm [36, 37]. This method assumes two hypotheses. First, there exists a typical



A Robust Sensor Selection Method for P300-BCI 7

response synchronized with the target stimuli superimposed with an evoked response by

all the stimuli (target and non-target). Second, the evoked responses to target stimuli

could be enhanced by spatial filtering.

We consider spatial filters U1 ∈ R
Ns×Nf to enhance the signal to signal-plus-noise

ratio (SSNR) of the enhanced P300 responses (D1A1U1), where Nf is the number of

spatial filters

XU1 = D1A1U1 +D2A2U1 +HU1. (9)

We define the SSNR in relation to the spatial filters by:

SSNR(U1) =
Tr(UT

1
ÂT

1
DT

1
D1Â1U1)

Tr(UT1 X
TXU1)

(10)

The SSNR is maximized by:

Û1 = argmax U1
SSNR(U1). (11)

The procedure for computing Û1 and SSNR(U1) are detailed in the appendix.

The enhanced signal can be computed by:

X̂ = XÛ1. (12)

The power of the filtered signal is determined by:

PU = Tr(UT
1
Â1

T
DT

1
D1Â1U

T
1

) (13)

which is equal to the SSNR of the enhanced signal multiplied by Nf .

5. Experiments

5.1. Objectives

The objectives of the experiments are to evaluate and compare different evaluation

criteria that we have considered for backward elimination. These criteria are summarized

in Table 1. The criteria defined in section 3.3, 3.4, 3.5 and 3.6 are applied without (C1,

C2, C3, C4) or with (C1SF , C2SF , C3SF , C4SF ) spatial filtering (SF) as preprocessing.

C1 and C1SF rely on the signal to signal-plus-noise ratio (SSNR). C1 and C1SF are

defined in Eq. (5) and (A.3), respectively. C2 and C2SF rely on the signal power

defined in Eq. (8) and (13), respectively. As C1SF and C2SF are equivalent, we will

only mention C1SF in the next sections. C3 and C3SF are based on the classification

accuracy of the P300 responses (AccP300) defined in section 3.5 and C4 and C4SF rely

on the classification accuracy of symbol recognition (AccSpeller) defined in section 3.6.

Note that the latter involves classification of the P300 responses. And the more steps

required by a criterion, the higher the computational cost. The challenge here is to

determine the best criterion for selecting an optimal subset of sensors, given a desired

number of sensors.
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C1: SSNR

C2: Power

C3: AccP300

C4: AccSpeller
C1SF : SF + SSNR

C2SF : SF + Power

C3SF : SF + AccP300

C4SF : SF + AccSpeller

Table 1. The various criteria for backward selecting the more relevant sensors.

5.2. Data acquisition

The EEG signal was recorded on 20 healthy subjects (13 males, 7 females) with the

OpenViBE framework [38]. The average age is 26 years, with a standard deviation of

5.7. Subjects were wearing an EEG cap with 32 electrodes [39]. The EEG activity

was recorded continuously from 32 active electrodes (actiCap, Brain Products GmbH,

Munich). The electrodes for reference and the ground were placed on the nose and

on the forehead, respectively. For testing the different subset evaluations methods, we

consider four sessions: one for training the classifier, the others for testing. The sessions

have the following parameters:

• Training session : 50 characters with 10 epochs.

• Test session 1: 60 characters with 5 epochs.

• Test session 2: 60 characters with 8 epochs.

• Test session 3: 60 characters with 10 epochs.

5.3. Pre-processing

The EEG signal was sampled at 100Hz. As preprocessing, time series were bandpass

filtered between 1Hz and 12.5Hz with a Butterworth filter (order=4) and resampled

down to 25Hz. For each sensor, the signals were then normalized so that they had a

zero mean value and a standard deviation equal to one.

5.4. Off-line classification accuracy

The P300-speller is evaluated with different sensor subsets as defined in the previous

section. For each sensor subset, the signal was enhanced by using the spatial filters

presented in Eq. (A.4). The BLDA classifier described in section 3.5 is used for the

detection of the P300. Only the four first components of the enhanced signal are

considered. It is worth noting that the number of components depends on the number

of selected sensors (Nf = 4 if Ns ≥ 4 and Nf = Ns otherwise).

The purpose of the off-line classification is to prove: (i) the efficiency of the spatial

filtering method for selecting sensors, (ii) compare the efficiency of the different criteria,
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(iii) prove the interest of C1SF that provides in one step the spatial filters and the

SSNR.

6. Results

6.1. Global speller accuracy

In the P300-Speller scenario, the speller accuracy is the most important criterion for

determining the efficiency of the methods for selecting sensors. Figure 1 presents the

accuracy on the session 3 of the test database (10 epochs), for each subset evaluation

method and different sizes of the subset. The selection methods that do not consider the

spatial filters provide the worst results (e.g., between 66.42% (C4) and 89.58% (C1) for

a subset of eight sensors). With eight sensors, the average recognition rate of the speller

is 94.92%, 94.00% and 93.00% when using C1SF , C3SF and C4SF respectively. The

latter performances suggest that sampling down to eight suitably selected sensors does

not impair the recognition rate significantly. Indeed, the highest accuracy for the speller

is obtained with 32 sensors, it reaches 95.83% of good detection. Importantly, spatial

filtering proves essential in performing a relevant sensor selection. When sampling down

to eight sensors, it improves the speller accuracy by 5.34%, 11.25% and 26.58% for C1SF ,

C3SF and C4SF respectively. This also suggests that the criterion based on the SSNR

is less dependent upon the spatial filters.

It also proves that spatial filtering has a critical impact on the selection of suitable

sensors. Finally, C1SF is sufficient for creating suboptimal sets of sensors. The

performance gap between C1SF and C3SF is rather small and it is not possible to

rank these methods based on the selected sensor subsets. The computational cost is

indeed less important with C1SF . This criterion based of the SSNR evaluation with

spatial filtering as preprocessing (C1SF ) can be done in one step thanks to the xDAWN

algorithm. It avoids considering further steps like the AccP300 (C3SF ) or AccSpeller
(C4SF ), which increase the complexity of the sensor selection procedure and provide

slightly less relevant sensors. The criteria based on the speller accuracy provide the

worst results. These results can be explained by the low number of symbols that is

taken into account for the evaluation of the speller accuracy. In addition, the speller

accuracy is based on the intersection of the several detected P300. It is possible to not

recognize correctly a symbol but by having correctly recognized individually the row

or the column. The speller accuracy therefore yields to a less precise estimation of the

P300 detection.

The accuracy of the P300 speller in relation to the number of epochs is presented

in Fig. 2. The more epochs are used, the more the speller accuracy increases. However,

the speller accuracy remains acceptable till about five epochs. The best performance is

always produced with C1SF and C3SF with 87.08% and 87.75 % respectively, with five

epochs.
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Figure 1. Accuracy of the P300 speller in relation to the number of selected sensors.
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Figure 2. Accuracy of the P300 speller in relation to the number of epochs, for eight
selected sensors.

6.2. Effect of spatial filtering

The evolution of each sensor selection criterion defined in section 3.2 over the number

of selected sensors is presented in Fig. 3. For Fig 3(a), the classification accuracy is

calculated with the function defined in sections 3.5 and 3.6 for criteria (C3, C3SF ) and

(C4, C4SF ), respectively. As expected, the selection criterion value decreases in relation

to the number of remaining sensors in the backward elimination for C3SF and C4SF .

In addition, the values of C3SF are always inferior to C4SF , showing the difficulty to

reach a high accuracy for the P300 detection. Yet, we observe the inverse behavior

when there is no spatial filters, i.e. for C3 and C4. The large number of input features

compared to the low number of training samples is probably the cause of this behavior.

With spatial filtering as preprocessing, feature reduction improves the accuracy for the

selected classifier by avoiding overfitting of training data.

In Fig 3(b), the evolution of the values for C1 and C1SF also decreases in relation

to the number of remaining sensors during the backward elimination. In addition, it

shows that spatial filtering reduces the influence of the noise and allows keeping the
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SSNR higher while decreasing the number of sensors. The impact of the spatial filters

is higher when the number of remaining sensors is low as the gap between C1 and C1SF
is large. With the sensor selection used with C1, the sensors with the worst SSNR are

removed at each iteration. This greedy strategy that focuses on the SSNR of each sensor

is not optimal. Besides, the performance between C1 and C2 is almost equivalent.
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Figure 3. Evolution of the different criteria in relation to the number of selected
sensors.

6.3. SSNR analysis

When selecting a set of sensors, it is tempting to focus only on the sensors with the

highest SSNR. Actually, the sensors that are removed during the backward elimination

with the method C1 do not provide the best SSNR of the obtained subset. This

observation indicates that the best sensor subset does not only contain the sensors with

the best SSNR. Spatial filtering proves the efficiency of a global approach for evaluating

the SSNR. This part deals with the relationships between spatial filtering, SSNR, and

sensor selection. In Figure 4, the evaluation of the different subsets extracted with

C1 and C1SF are compared with the two evaluation methods of the SSNR: before and

after spatial filtering, i.e. with Eq. (5) and Eq. (A.3). Figure 4 allows the evaluation

of the impact of the best spatial filter on the SSNR for two fixed set of sensors. It is

worth noting that only the filter maximizing the SSNR is considered here, contrary to

figure 3(b). For C1 and C1(SF ), like for C1SF and C1SF (SF ), the SSNR are evaluated

on the same set of sensors (same number of sensors and same locations). As expected,

spatial filtering increases the SSNR as defined in Eq. (A.3). Without spatial filtering,

the subsets obtained with criterion C1 provide the best results as these subsets were set

in relation to the SSNR before applying spatial filtering. Before spatial filtering, the less

sensors are considered, the better the SSNR is increased. Indeed, the sensor selection

procedure improves the global SSNR by removing sensors, which contain a lot of noise

and few relevant information. For both criteria, the SSNR increases with the use of

spatial filtering C1(SF ) and C1SF (SF ), compared to C1 and C1SF respectively. In

addition, the subsets of sensors selected with C1SF yields to the best SSNR after spatial
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filtering: whereas the method C1 selects sensors with the best SSNR before spatial

filtering, the method C1SF selects sensors by maximizing enhanced SSNR, i.e. with

spatial filtering. Whereas the subsets obtained with C1SF provide lower SSNR before

spatial filtering compared to the subsets given by C1, the gain obtained with spatial

filtering is greater for C1SF than for C1. Indeed, by maximizing the SSNR after spatial

filtering (C1SF (SF )), the noise impact is taken into account. Method C1SF selects

sensors with lower SSNR before spatial filtering than the method C1, however these

sensors allow increasing the relevance of the informative sensors after spatial filtering.

This means that a strategy based on the elimination of the sensors with the worst SSNR

before spatial filtering leads to remove sensors that could have helped at improving the

SSNR of the whole sensor set.
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Figure 4. Evolution of the SSNR with and without spatial filtering (SF) in relation
to number of selected sensors (Nss) for the selection method C1 and C1SF .

6.4. Speller accuracy across sessions

We evaluate the accuracy of the speller for three sessions in relation to the number of

selected sensors, as depicted in Fig. 5, to check the robustness of the selected sensors

across sessions. In the left column, the number of epochs is different for each session.

The difference between 8 and 10 epochs is relatively small. However, using only 5 epochs

involves a drop in the performance. For instance, the performance between 10 and 5

epochs decreases in average of 7.42%. In the second column, we limit the evaluation till

5 epochs for evaluating the stability of the method across the sessions. For C1SF and

C3SF , the performance is stable between the three sessions. Though, we observe more

differences with C4SF , showing that the criterion based on the application is not very

robust.

6.5. Sensor rank analysis

For a better understanding of the sensor selection impact across subjects, we propose

to analyze the differences and similarities of selected sensors for each subject (Fig. 6).

This figure contains the mean of the rank over every subject (a). We define a binary

rank R2(s) that is equal to one if the sensor s is selected, zero otherwise. The mean,
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(c) C3SF
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(e) C4SF
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Figure 5. Accuracy of the P300 speller across different sessions. The criterion is
C1SF for (a,b), C3SF for (c,d) and C4SF for (e,f).

the standard deviation (S.D.) and the kurtosis of R2 across the 20 subjects with eight

selected sensors are depicted in Fig. 6 in the column (b), (c) and (d) respectively. Like for

the previous figures, a dark (resp. light) graylevel denotes a high (resp. low) rank. The

first column represents the mean for every subject and sensor, without normalization.

The average sensor selection is very similar between the method C1SF and C3SF , with

a clear selection of Pz, Oz, and P8. The same remark arises with the normalized rank

R2 (b) in Fig. 6, which restricts itself to the mean across subjects for the subset of eight

electrodes. Pz, Oz and P8 are selected at the three most common sensors for both C1SF
and C3SF . Indeed Pz, Oz and P8 are selected 14, 13 and 14 times (resp. 14, 15 and

14 times) for C1SF (resp. C3SF ) across the 20 subjects. For C4SF the ideal sensor

placement is more heterogeneous. It is challenging to extract some sensors that may be

useful for every subject. For C4SF , the S.D. of the sensor rank is at around 0.4 for most

of the sensors. For C1SF and C3SF , the S.D. is low on the frontal area as these sensors

are almost never selected. However, the S.D. is higher in the occipital and parietal area,

suggesting that the order of these sensors can vary a lot while keeping a high rank in
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the selection. Finally, the figures of the last column (d) aim at depicting the sensors

that could be relevant for few subjects. The kurtosis of the sensor rank suggests that

although the majority of the relevant sensors are in the occipital and parietal area,

some sensors in the frontal area remain important for some subjects. This observation

proves the necessity to personalize the sensor location for optimal performance. Figure 7

presents the sensor rank and the different P300 waves on each sensor, starting after the

flash and during 0.6s, for three subjects. The P300 waves are estimated in Â1. These

results highlight the differences of sensor subsets and the P300 curves on each sensor.
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Figure 6. Global rank for every sensor.

Rank 1 2 3 4 5 6 7 8

C1SF PZ ; 14 P8; 14 OZ ; 13 P3; 11 P7; 10 PO9; 9 O1; 9 CP6; 7

C3SF OZ ; 15 PZ ; 14 P8; 14 P7; 12 O1; 12 PO9; 10 T8; 9 P3; 9

C4SF P8; 13 OZ ; 11 P7; 9 PZ ; 8 F4; 7 P3; 7 P4; 7 PO10; 7

Table 2. Top 8 sensors for C1SF , C3SF , and C4SF . Each cell represents the electrode
position in the international EEG 10-20 system, and the number of times this electrode
has been selected as one of the eight best sensors across the 20 subjects.

Table 2 presents the eight best sensors for C1SF , C3SF and C4SF . Each cell of the

table represents the location of the sensor and the number of times where it was selected

as one of eight best sensors across the 20 subjects. The eight best sensors of C1SF and

C3SF share almost the same sensors. The only difference is CP6 for C1SF and T8 for

C3SF but these two sensors are spatially very close. This similarity explains why the

speller accuracies for these two criteria are so closed (cf. Fig 1).
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(a) Subject 1 (b) Subject 15 (c) Subject 16

(d) Subject 1 (e) Subject 15 (f) Subject 16

Figure 7. Rank for every sensor (a), (b) and (c) ; P300 waves on the different sensors,
starting after the flash and during 0.6s, based on estimated evoked potentials in Â1

(d), (e) and (f).

The comparison of the speller accuracy between the set of the eight best common

sensors (common), the eight best sensors for each individual (individual), and the whole

set of sensors (all, i.e., with 32 sensors) in relation to each subject is presented in

Fig. 8. These results correspond to the speller accuracy on the third test session with

10 epochs. The adaptive selection of the sensor subset provides usually the best results.

It it particularly the case for Subject 1, 6 and 12. The sensor selection for Subject 1 is

essential as the performance almost doubles. For several subjects (2, 3, 4, 13, 14), the

accuracy is similar for the three sets of sensors.
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(a) C1SF (Spatial filtering + SSNR evaluation)
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(b) C3SF (Spatial filtering + P300 evaluation)
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(c) C4SF (Spatial filtering + Speller evaluation)

Figure 8. Impact of the adaptive sensor selection (session 3, 10 epochs)

7. Discussion

7.1. Sensors location

Although the problem of feature selection is largely discussed topic in the pattern

recognition literature, the problem of sensor selection in BCI and particularly for P300

based BCI has not been really explored. The classical approach for determining the

best sensor selection is to chose a set among several predefined sets like in [18], where

four sets of sensors were analyzed and compared. Contrary to this kind of approach,

the proposed method allows determining the subsets without an a priori knowledge of

the ideal sensor location.

The experiments have shown that it is possible to achieve relatively good
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performance with only eight sensors chosen individually, with an accuracy of around

94% with 10 epochs. The analysis of the sensor rank obtained with C1SF (SSNR with

spatial filters) suggests that several sensors are common to every subject. For the

different subsets of eight sensors, which are personalized to each subject, five sensors

are common to half of the subjects (Pz, P8, Oz, P3, P7). One sensor is located on the

occipital area, confirming previous works suggesting that occipital sites have also an

important role [40, 18]. Although the P300 response has been discovered for over 40

years [41], its full understanding remains challenging and elusive [42]. The best locations

for the sensors depend on the person and highlight both the complexity underlying the

P300 process and the need of a personalized/adaptive P300-BCI.

7.2. Variation across subjects

The results described in section 6.4 suggest a certain reliability of the results over time.

A performance drop between several sessions could be indeed a major drawback for

commercial and/or clinical BCI applications. The variation across subjects could be

an issue for creating an EEG cap, which would contain only a restricted number of

electrodes placed at the occipital and parietal area. While it could provide a high

performance for most of the subjects, it would be a drawback for people where the P300

response is easier to detect near the frontal area. A recent work based on demographic

observations dealing with SSVEP-BCI has suggested that age and gender influence the

performance [43]. The same way that EEG caps have different sizes and should be placed

according to head measurements, the choice of a sensor sets for P300-BCIs would benefit

from a demographic study where some well identified group of persons might need the

same set of sensors [44, 45].

The proposed solution does not consider a specific criterion for stopping the

backward elimination. It may be judicious to know when removing sensors depreciates

the performance. Table 3 presents the correlation factor between the accuracy of the

speller during the test and the evolution of the corresponding criterion in relation of the

number of selected sensors. For a high correlation factor, it would be possible to set

some thresholds that would provide some hints for stopping the backward elimination

when a desired accuracy is required. For C3 and C4, the lack of spatial filters do not

allow to find a high correlation between the speller accuracy and the criteria. For the

other methods and particularly for C1SF and C3SF , it would be possible to stop the

backward elimination procedure in relation to a desired accuracy.

Criterion C1 C3 C4 C1SF C3SF C4SF
Correlation factor (5 epochs) 0.926 -0.896 -0.779 0.895 0.992 0.981

Correlation factor (10 epochs) 0.881 -0.878 -0.756 0.823 0.982 0.991

Table 3. Correlation between the criterion value and the classification accuracy.

A sensor selection step for each subject is essential and justified. When we consider

adaptive subsets, the average performance with eight sensors is equivalent to the whole
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set of 32 sensors. It can reduce the BCI cost and the time for preparing a user or a

patient. Moreover, it is better to choose the sensor locations in relation to the subject.

With a fixed sensor subset for every subject, Subject 1 would achieve poor performance.

The average accuracy of the speller is higher with personalized sensor subsets than with

a fixed predetermined subset.

In this paper, several questions have been answered for the sensor selection problem.

A first outcome is the highlight of the unnecessary step of the speller evaluation. It is

useless to base the strategy of the sensor subset evaluation on the speller accuracy.

This is the last step in the different processing tasks leading to the recognition of letter

from some EEG signal. The previous statement can be extended to the recognition

of the P300 response, which is not needed either. The proposed method is based on

the evaluation of the SSNR and provides equivalent results. The rawest evaluation of

the signal provides the best sensor subsets. No direct information related to the P300

response was used for selecting the sensors, the only hypothesis is the presence of a

response synchronized with the target stimuli. Thus, the proposed method could be

adapted to other BCI paradigms for sensor selection like for motor imagery BCIs. In

addition to its genericity, the computational task during the evaluation of the subsets

is reduced.

8. Conclusion

Several strategies for the sensors subset evaluation of a P300-BCI speller have been

evaluated. They were defined in relation to several points of view: the application aspect

with the speller accuracy, the machine learning aspect with the P300 classification, and

the signal processing aspect with the SSNR evaluation. The results clearly indicate

that the best strategies always consider spatial filters as pre-processing. The two best

methods are based on the evaluation of the SSNR and the P300 recognition, showing

that it is useless to take into account the speller stage. While the SSNR and the P300

recognition provide both equivalent results, both consider spatial filters based on the

xDAWN algorithm. Hence, the SSNR is directly computed during the creation of the

spatial filters whereas the P300 classification requires several training and testing. This

reveals the sufficiency of the evaluation of the SSNR preceded by spatial filtering for

creating suboptimal sets of sensors, i.e., suboptimal sets of features for the classifier.

Finally, as the SSNR and spatial filtering can be both obtained in the same procedure,

it reinforces the choice of the proposed strategy. It allows avoiding further processing

while keeping good performance.
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Appendix A.

This appendix describes the different steps for computing the SSNR of the signal after

spatial filtering and how to determine the spatial filters. In the definition of the SSNR

defined in section 4, we replace Â1 by BT
1
X where BT

1
is a part of the least mean square

estimation Eq. (6). Then, we apply a QR decomposition on D1 = Q1R1 and X = QxRx.

Finally, one can express Eq. (10) as:

SSNR(V1) =
Tr(V T

1
(QTxB1R

T
1
R1B

T
1
Qx)V1)

Tr(V T1 V1)
, (A.1)

where V1 = RxU1. V1 is therefore obtained from the Rayleigh quotient, whose solution

is the concatenation of Nf eigenvectors associated with the Nf largest eigenvalues

of QTxB1R
T
1
R1B

T
1
Qx [46]. These vectors are estimated thanks to a singular value

decomposition (SVD) of R1B
T
1
Qx = ΦΛΨT , Φ and Ψ being two orthogonal matrices

and Λ being a diagonal matrix with nonnegative diagonal elements in decreasing order.

After simplification, we obtain:

SSNR(V1) =
Tr(V T

1
(ΨΛ2ΨT )V1)

Tr(V T1 V1)
. (A.2)

By considering again the Rayleigh quotient for V1, the associated solution corresponds

to the Nf largest eigenvalues of ΨΛ2ΨT , which are Λ2. In addition, the denominator

can be easily simplified to the trace of the identity of size Nf × Nf , as Ψ and Qx are

orthogonal matrices. Therefore, the SSNR of the enhanced signal, i.e., after spatial

filtering, can be defined by:

SSNR = Tr(Λ2)/Nf . (A.3)

The solution of Eq. (11) provides the spatial filters, which are ordered in decreasing

order by relevance impact.

Û1 = R−1

x Ψ. (A.4)
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