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ABSTRACT 

 

This paper deals with texture modeling for classification or 

retrieval systems using multivariate statistical features. We 

propose to model neighborhoods of wavelet coefficients 

using Spherically Invariant Random Vectors (SIRVs). Under 

this multivariate model we provide a closed form of 

Kullback-Leibler divergence between joint distributions to 

measure similarity. The performances of the proposed model 

in retrieval are conducted on the VisTex image database 

aiming to compare the recognition rates with conventional 

approach of using univariate models such as the Generalized 

Gaussian distribution and with a recent multivariate model 

of wavelet coefficients called Multivariate Bessel K forms 

(MBKF). 

Index Terms— image texture analysis, multivariate 

model, Kullback-Leibler Divergence, wavelet transforms, 

information retrieval 

 

1. INTRODUCTION 

 

The accurate characterization of texture is fundamental in 

various image processing applications, ranging from 

retrieval in large image databases to segmentation and 

texture synthesis. 

Some of the most popular texture extraction methods 

for retrieval are based on filtering or wavelet-like 

approaches. The conventional scheme of multiscale texture 

analysis consists of modeling subband coefficients and uses 

the model hyperparameters as a signature for a specific 

texture class. 

Many univariate prior models such as the Generalized 

Gaussian distribution (GGD) [1] and the Student t-

distribution model [2] have been used to successfully 

characterize the marginal probability distribution of wavelet 

coefficients of textured and natural images in subbands. In 

order to model coefficients magnitude, Gamma and Weibull 

distributions have been introduced to achieve good retrieval 

rates [3] [4].This kind of representation leads to a simple 

and attractive approach but univariate modeling does not 

provide a complete statistical description of the images. 

Latterly, researchers started to study the joint statistics 

of the wavelet coefficients of both textured and natural 

images. Some models and methods were formulated to 

explore statistical dependences existing across scale, 

orientation and position. Portilla and Simoncelli presented a 

statistical model based on joint statistics of steerable 

pyramid coefficients [5]. In their work, efficient algorithm of 

texture synthesis was developed giving increased synthesis 

quality. However this model is not tractable for 

classification applications due to the largeness of the 

signature. Tzagkarakis et al. [6] proposed a computationally 

complex Gaussianization procedure of the filter banks 

output in order to model wavelet coefficients with a 

multivariate normal distribution. Powerful statistical 

algorithms have been developed for image denoising using a 

Multivariate Generalized Gaussian Distribution (MGGD) 

[7] and Elliptically Contoured Distribution (ECD) [8], but 

no closed expression exists for the Kullback-Leibler 

Divergence (KLD) between these joint distributions to 

measure similarity in a retrieval or classification context. 

Recently, Boubchir et al. [9] introduced Multivariate Bessel 

K Forms density (MBKF) to characterize joint statistics in 

wavelet domain. Oppositely to MGGD and ECD, we can 

develop a closed solution for KLD between MBKF 

densities, so we can introduce MBKF model in a retrieval 

scheme. 

In this paper, we propose to model the joint probability 

distribution of wavelet coefficients in a neighborhood using 

SIRV based representation: the product of the square root of 

a positive scalar quantity and a d -dimensional zero mean 

Gaussian vector. Our contribution is to propose an accurate 

parametric model characterizing the joint statistics of 

wavelet detail subband coefficients and to provide closed 

form solution to the KLD to measure similarity. 

The remainder of this paper is as follows. We review in 

section 2 the statistical retrieval framework. In section 3 

SIRV based multivariate model is introduced and the related 

KLD is calculated. Finally, in section 4 experimental results 

are given to evaluate retrieval performance and section 5 

concludes the paper and proposes an outlook on further 

research. 

 

2. PROBABILISTIC IMAGE RETRIEVAL 
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We establish the formal framework of probabilistic image 

retrieval. Consider an image database with M  

images MiIi 1, . Each image is represented by a data 

matrix ],,[ 1 inii xxD





 . From the probabilistic point of 

view, each data matrix contains n realizations of dii ..  

random vectors nXX





,1 , which follow a parametric joint 

distribution with probability density function 

(PDF) );( iX xp 


. 

The retrieval task is to search the N most similar 

images to a given query image qI . It is natural to select the 

most similar image rI to qI as the one whose parameter 

s leads to a maximization of the log-likelihood function, 

i.e. 
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Using the weak law of large number, we have 
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where the term 
q

 denotes the expectation with respect to 

);( qX xp 


. Equation (3) can be rewritten as the following 

minimizing problem 
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This can be seen as equivalent to minimizing the KLD 

between );( qX xp 


and );( iX xp 


noted )( iq ppKLD . So, to 

select the N top matches to the query image qI  we retrieve 

the set of images  
Nkkk III ,,,

21
 where 
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3. SIRV BASED MODELING 

 

Spherically Invariant Random Vectors (SIRVs) has been 

appropriately used in modeling non-Gaussian problems. 

This is for instance, the case for radar clutter returns [10], 

radio fading analysis [11], or sonar interferences [12]. The 

joint statistics of wavelet coefficients also exhibit the evident 

non-Gaussianity and SIRV model is suitable to characterize 

these statistics. 

Consider an image decomposed into oriented subbands 

at multiple scales. We denote as ),(, mnx os the wavelet 

coefficient at scale s , orientation o and centered at spatial 

location )2,2( mn ss . We denote as x


a neighborhood of 

coefficients clustered around this reference coefficient. 

We assume the coefficients within each local neighborhood 

around a reference coefficient of a subband are characterized 

by a SIRV model. Formally, a random vector x


is a 

Spherically Invariant Random Vector [13] if it is the product 

of the square root of positive random variable  called the 

texture and a d -dimensional independent zero-mean 

Gaussian vector g


with covariance )( ggM t 
 verifying 

dMTr )( : 

gx


   (7) 

The joint density of vector x


is determined by the 

covariance matrix M and the mixing density )(p : 
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To complete the model, we need to specify the probability 

density )(p . We propose Weibull distribution as an 

appropriate description of the texture , given by: 
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where 0a is the shape parameter and 0b is the scale 

parameter.  

By inserting Eq. (9) to Eq. (8), the joint density which 

models the vector of wavelet neighbors is: 
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In this case, the hyperparameters of the correspondent joint 

distribution )(xp
X


 are noted ),,( baM . 

To estimate these parameters we will first use a fixed point 

(FP) estimate for M . We note Nixi ,,1,  the realizations 

of the d -dimensional vector x


(in our case, d  is the size of 

the neighborhood). In their recent work [14], Pascal et al 

provide the proof of existence and uniqueness of M̂ as the 

solution of the following: 

 MfM ˆˆ   (11) 

where f is given by 
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Equation (11) is solved using an iterative procedure with the 

initial guess from the Maximum Likelihood (ML) estimate 
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Experiments show that typically only around five iteration 

steps are required to obtain convergence. We note that FP 

estimation of the covariance matrix M does not depend on 

the texture  but only on the vectors ix . 

Then, the ML estimate of texture  is given by: 
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(a) Fabric.0007 (b) multiplier  histogram fitted with Weibull density 

 
(c) empirical joint density of the related bivariate 

Gaussian vector g


 

Fig. 1.Example texture and SIRV representation in the case of bivariate modeling for the subband 11B  resulting from steerable pyramid 

decomposition ( soB denotes the subband at scale s and orientation o ) 

 

Once we estimate Nii ,,1,ˆ  , the Weibull parameters 

),( ba  can be estimated using ML which we can found in 

[15]: 
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Using SIRV modeling, joint distribution of wavelet 

coefficient is represented by a univariate Weibull 

distribution and a multivariate Gaussian distribution. Taking 

a neighborhood of dimension equal to 2, this is illustrated in 

Fig.1 (b) that shows the good fitting of Weibull density with 

the normalized histogram of the multiplier   estimated from 

a detail subband obtained by steerable pyramid 

decomposition; the empirical density of the correspondent 

bivariate Gaussian vectors g


is presented in Fig.1 (c). 

In the best of our knowledge, the proposed joint 

distribution in Eq. (10) doesn’t have a closed analytical 

form. However, we can derive a closed form solution for the 

KLD thanks to SIRV representation. 

Consider two joint distributions ),,;( 1111 baMxf


and 

),,;( 2222 baMxf


. In a SIRV representation, the texture and 

the Gaussian vector g


are independent so the KLD between 

the two joint distributions is the sum of the KLD between 

the KLD of the two Weibull distributions and the KLD 

between the two multivariate Gaussian densities: 
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In other hand 
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where  denotes the Euler-Mascheroni constant 

( 57721.0 ) and (.) the gamma function. 

and the KLD for the d -dimension Gaussian case is: 





























  d

M

M
MMtrMgpMgpKLD

Gaussian
1

2

1
1

22211 ln)(5.0));();((


 

4. EXPERIMENTAL RESULTS 

 

The experiments give an evaluation of the proposed model 

in the framework of texture retrieval. We use the same 

experimental setup presented in [1] and [4]. We work with 

40 texture classes from VisTex database [16]. From each of 

these texture images of size 640x640 pixels, 16 subimages 

of 160x160 are created. A test database of 640 texture 

images is thus obtained. A query image is any one of these 

images in the database. The relevant images for each query 

are the other 15 images obtained from the same original 

640x640 image. 

number of relevant retrieved images
recall

number of relevant images
  

number of relevant retrieved images
precision

number of retrieved images


 

We employ the steerable pyramid decomposition 

proposed in [5], we note Nsc the number of scales and 

Nor the number of orientations.Nevertheless, orthonormal or 

biorthogonal wavelet representations can be used. We use 

the conventional criterion of precision/ recall to compare the 

performance of the proposed SIRV model with the retrieval 

approach using GGD presented in [1] and with the MBKF 

distribution [9]. 

For multivariate modeling, the neighborhood may 

include wavelet coefficients from other subbands (i.e. 

corresponding to nearby scales and orientations) as well as 

from the same subband. In our experiments, we used a 

neighborhood drawn from the same subband. 
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Fig.2. Recall-Precision curves showing the impact improvement of 

using SIRV model compared to GGD and MBKF models 

( 2Nsc , 6Nor ) 

Nsc  Nor  GGD MBKF SIRV 

1 5 63.4473 63.9941 77.6270 

1 6 64.5996 65.6152 78.0957 

2 5 72.5098 71.8262 78.3984 

2 6 73.1152 72.8711 79.3164 

Table 1: Average retrieval rate (%) comparison 
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Fig.3. models convergence comparison 

We use KLD as image similarity for the tree compared 

model. For MBKF distributions, developing thesolution 

leads to: 
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where (.) is the digamma function. 

The recall/precision curves presented in Fig.2 show the 

improvement obtained by using SIRV model. 

The results of average retrieval rates according to different 

scales and orientations are summarized in Table 1. We can 

see that SIRV modeling significantly improves recognition 

rates, e.g from 73% to 79%, compared with GGD and 

MBKF. 

Furthermore, we observe also that the proposed method 

converge faster than the two others. For example we retrieve 

90% of the relevant images with a query of size 45 when we 

must consider a query of size 75 to retrieve the same 

percentage if we employ the two others models 

5. CONCLUSION 

In this work we have shown that image retrieval improve 

considerably when wavelet coefficients are jointly modeled 

using SIRV model. In a statistical retrieval framework, we 

have proposed a closed form for the Kullback-Leibler 

Divergence as a similarity measure. The model is validated 

in the retrieval system and achieves better recognition rates 

compared to GGD and MBKF distributions. Future work 

includes a novel wavelet-based Bayesian denoiser based on 

the presented model. 
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