
HAL Id: hal-00584322
https://hal.science/hal-00584322

Submitted on 8 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the observer canonical form for Nonlinear
Time-Delay Systems

Claudia Califano, Luis-Alejandro Marquez Martinez, Claude H. Moog

To cite this version:
Claudia Califano, Luis-Alejandro Marquez Martinez, Claude H. Moog. On the observer canonical
form for Nonlinear Time-Delay Systems. 18th IFAC World Congress, Aug 2011, Milano, Italy. �hal-
00584322�

https://hal.science/hal-00584322
https://hal.archives-ouvertes.fr


On the observer canonical form
for Nonlinear Time–Delay Systems

C. Califano ∗ L.A. Marquez-Martinez ∗∗ C.H. Moog ∗∗∗

∗ Dipartimento di Informatica e Sistemistica “Antonio Ruberti”,
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Abstract: Necessary and sufficient geometric conditions for the equivalence of a nonlinear time–
delay system with one output, under bicausal change of coordinates and output transformation,
to a linear weakly observable time–delay system up to output injection are given. These
conditions are derived through the use of the Extended Lie Bracket operator recently introduced
in the literature for dealing with time–delay systems. The results presented show how this
operator is useful in the analysis of this class of nonlinear systems.
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1. INTRODUCTION

Conditions are derived under which a given nonlinear
time–delay system is equivalent under bicausal change of
coordinates and output transformation and up to output
injection, to a linear weakly observable time–delay system.
As it is the case for delay–free nonlinear systems, such an
equivalence has the immediate benefit to transpose the
problem of the reconstruction of the state of a nonlinear
system, to a linear problem. In fact, it is possible to define
an observer candidate such that the error between the
state and its estimate is solution of a linear time–delay
differential equation. Thus, the stability results known for
such linear time–delay systems will be the tools to design
an asymptotic observer.

In the delay–free case, this problem has been widely stud-
ied both for continuous–time and discrete–time systems
(see for example Besancon et al. (1998)÷Califano et al.
(2009), Glumineau et al. (1996), Hammouri et al. (1996) ÷
Huijberts (1999), Monaco et al. (2009), Xia et al. (1989),
and the references therein). For time–delay systems the
problem of the design of an observer has been addressed
through several approaches. More precisely, in Marquez-
Martinez et al. (2002), sufficient conditions for the equiva-
lence to the observer canonical form up to output injection
are given through an algebraic approach while in Marquez-
Martinez et al. (2004) necessary and sufficient existence
conditions are given still through the use of one forms; in
Germani et al. (2002), the problem is solved through a
chain observer by admitting delays on the output function
only; finally in Anguelova et al. (2010) a new approach
for the definition of the conditions under which a weakly

observable system admits a unique state corresponding to
a given input–output behavior is proposed.

In the present paper the analysis is performed following
the geometric approach proposed in Califano et al. (2010)
with respect to the linear equivalence problem and used
in Califano et al. (2010b) for the analysis of time-delay
systems. It is shown that such a geometric framework
allows to define a constructive procedure for the com-
putation of the desired bicausal change of coordinates.
The results obtained not only may be generalized to the
multi–output case as done in Califano et al. (2009) with
reference to nonlinear discrete time systems, but enlighten
the importance of the Extended Lie bracket operator for
addressing control problems.

The paper is organized as follows. Some technical argu-
ments concerning the geometric framework are given in
Section 2. In Section 3 the main results are presented. An
example displays the technical computations.

2. PRELIMINARIES

The class of nonlinear systems is considered, where the
state and control variables are affected by possible multiple
constant commensurate delays. The given dynamics can be
modeled, without loss of generality through the equations

Σ :




ẋ(t) = F (x[s]) +

s∑

j=0

Gj(x[s])u(t− j)

y = H(x[s])
(1)



where x[s] = (x(t), · · ·x(t − s)), with x ∈ IRn, u ∈ IR,
y ∈ IR. Throughout the paper we will denote by x[s](−p) =
(x(t−p), · · ·x(t−s−p)). When no confusion is possible the
subindex will be omitted so that x and x(−p) will stand
for x[s] and x[s](−p) respectively.

Furthermore, K denotes the field of meromorphic functions
of a finite number of symbols in {x(t − i), u(t − i), u̇(t −
i), . . . , u(k)(t− i), i, k ∈ IN}; E is the vector space spanned
by the symbols {dx(t− i), du(t− i), du̇(t− i), . . . , du(k)(t−
i), i, k ∈ IN} over K. The elements of this space are
called 1-forms; d is the standard differential operator that
maps elements from K to E := spanK{dx(t − i), du(t −
i), du̇(t − i), . . . , du(k)(t − i), i, k ∈ IN}; δ represents the
backward time-shift operator, that is for a(·), f(·) ∈
K: δ[ a(t) df(t)] = a(t − 1)δdf(t) = a(t − 1)df(t − 1);
K(δ] is the (left) ring of polynomials in δ with coeffi-
cients in K. Every element of K(δ] may be written as
α(δ] = α0(t) + α1(t) δ + · · · + αrα(t) δrα , αi ∈ K,
where rα = deg(α(δ]) the polynomial degree in δ of its
argument. Addition and multiplication on this ring are
defined by α(δ] + β(δ] =

∑max{rα, rβ}
i=0 (αi(t) + βi(t))δi

and α(δ]β(δ] =
∑rα

i=0

∑rβ

j=0 αi(t) βj(t − i)δi+j ; this ring
is a non-commutative, Euclidean ring, Xia et al. (2002);
∆(δ] = spanK(δ]{r1, . . . , rs}, is the right module spanned
over K(δ] by the column elements r1, . . . , rs ∈ Kn(δ].

ΣL, the differential form representation of Σ, is given by

ΣL :
{
dẋ = f(x[s] ,u[s], δ)dx+ g(x[s], δ)du
dy = h(x[s], δ)dx

(2)

with

f(x[s] ,u[s], δ) =
s∑

i=0

∂F (x[s])
∂x(t− i)

δi+
s∑

j=0

u(t− j)
s∑

i=0

∂Gj(x[s])
∂x(t − i)

δi

g(x[s], δ) =
s∑

j=0

Gj(x[s])δj, h(x[s], δ)=
s∑

i=0

∂H(x[s])
∂x(t − i)

δi.

In this context we will thus consider bicausal change of
coordinates as defined in Marquez-Martinez et al. (2002).
We have
Definition 1. Consider the dynamics Σ with state coor-
dinates x. z = φ(x[α]), φ ∈ Kn is a bicausal change of
coordinates for Σ if there exist an integer ` ∈ IN and a
function φ−1(z[`]) ∈ Kn such that x(t) = φ−1(z[`]).

Denoting by dz = T
(
x[γ] , δ

)
dx its associated differential

form representation, one has that the following properties
hold true:

P1) T
(
x[γ], δ

)
=

α∑
i=0

∂φ(x[α])
∂x(t − i)δ

i =
α∑

i=0

T i(x[γ])δi, with

γ ≤ α is unimodular 1

1 A polynomial matrix T (x, δ) is called unimodular if it has a
polynomial inverse.

P2) The inverse T−1 (z, δ) has polynomial degree ` ≤ (n−

1)α and is given by T−1 (z, δ) =
∑̀
i=0

∂φ−1(z[`])
∂z(t − i) δ

i.

Under the bicausal change of coordinates z(t) = φ(x[α]),
(2) is transformed into

dż(t) = f̃(z,u, δ)dz + g̃(z, δ)du
(3)

dy = h̃(z, δ)dz

with

f̃ (z,u, δ) =

=
[(
T (x, δ)f(x,u, δ)+Ṫ (x, δ)

)
T−1(x, δ)

]
|x=φ−1(z)

(4)

g̃(z, δ) = (T (x, δ)g(x, δ))|x=φ−1(z) , (5)

h̃(z, δ) =
(
h(x, δ)T−1(x, δ)

)
|x=φ−1(z)

. (6)

2.1 The Extended Lie bracket and its properties

The Extended Lie Bracket has been recently introduced for
dealing with time–delay systems in Califano et al. (2010)
where the linear equivalence problem has been addressed

and solved. Let ri(x, δ) =
s∑

j=0
rj
i (x)δj , and set rs+j

i (x) = 0

for any j > 0. We have:

Definition 2. Let ri(x, δ) =
s∑

j=0
rj
i (x)δj , i = i, 2. For any

k, l ≥ 0, the Extended Lie bracket [rk
1(·), rl

2(·, )]Ei, on
R(i+1)n, is recursively defined as

[rk
1(·), rl

2(·)]E0 =
(7)

k∑

i=0

∂rl
2(x)

∂x(t − i)
rk−i
1 (x(−i)) −

l∑

i=0

∂rk
1(x)

∂x(t− i)
rl−i
2 (x(−i)).

[
rk
1(·), rl

2(·)
]
Ei

=
(8)

min(k,l,i)∑

j=0

(
[rk−j

1 (·), rl−j
2 (·)]E0

)T

|x(−j)

∂

∂x(t − j)
.

As in the delay free case it is convenient to introduce an
Extended Lie derivative whose definition is given below
and is slightly different from the one given in Oguchi
(2007).
Definition 3. Given the function τ (x[s]) and the submod-

ule element ri(x, δ) =
s̄∑

j=0

rj
i (x)δj , the Extended Lie

derivative Lrj
i
(x)τ (x[s])

Lrj
i (x)τ (x[s]) =

j∑

l=0

∂τ (x[s])

∂x(t − l)
rj−l
i (x(−l)) (9)



Accordingly

[
rk
1(·), rl

2(·)
]
Ei

=

=
min(k,l,i)∑

j=0

(
Lrk−j

1 (x)r
l−j
2 (x)−Lrl−j

2 (x)r
k−j
1 (x)

)T

|x(−j)

∂

∂x(t− j)
.

thus recovering the definitions of Lie derivative and Lie
bracket in the delay free case.

From (1), consider now the module element

F(x, δ) =
ns∑

j=0

F j(x)δj =
ns∑

j=0

F (x)δj.

Thus, the i–th derivative of τ (x) computed for u = 0, is
given by τ (i)(x, 0) = Li

Fns(x)τ (x), for any i. It follows that
the observability rank condition can be easily checked by
considering the matrix O(x, δ) defined by

O(x, δ)dx =




dH(x)
dLFns(x)H(x)

...
dLn−1

Fns(x)
H(x)


 (10)

We have the following notions of observability.
Definition 4. System (1) is weakly observable locally
around u = 0 if O(x, δ) computed according to (10) has
full rank n locally around x0, is strongly observable if
O(x, δ) is unimodular.

We can now state the definition of nilpotent submodule,
which generalizes that of nilpotent distribution and which
is a key tool in many control problems.
Definition 5. A submodule ∆ = span{r1(x, δ), · · · , rj(x, δ)}
nonsingular locally around x0, with rl(x, δ) =

∑s
k=0 r

k
l (x)δk

is nilpotent of order 0 if

[rk
l , r

p
i ]E,2s = 0, ∀k ≤ p ∈ [0, 2s].

Definition 6. Consider the bicausal change of coordinates
z = φ(x[α]), with dz = T (x, δ)dx. In the new coordinates
the submodule element r(x,u, δ) is transformed as

r̃(z,u, δ) = [T (x, δ)r(x,u, δ)]|x=φ−1(z) . (11)

From (11), setting T j = 0 for j > α = deg(T (x, δ)) and
rj = 0 for j > deg(r(x,u, δ)) one has

r̃l(z,u) =
l∑

p=0

(
T p(x)rl−p(x(−p),u(−p))

)
|x=φ−1(z)

. (12)

As a consequence one has the following result concerning
the action of a bicausal change of coordinates on the
extended Lie bracket (Califano et al. (2010)).

Lemma 1. Let ri(x,u, δ) =
s∑

j=0
rj
i (x,u)δj, i = 1, 2. Under

the bicausal change of coordinates z(t) = φ(x[α]), charac-

terized by dz = T (x, δ)dx, T (x, δ) =
∑α

j=0 T
j(x)δj one

has, for k ≤ l,

[r̃k
1(z,u), r̃l

2(z,u)]Ek =

=
(
Γl−k(x)[rk

1(x,u), rl
2(x,u)]Ek

)
|x=φ−1(z)

where, setting T j = 0 for j > α,

Γl−k(x) =



T 0(x) · · · T l−k(x)

. . .
0 T 0(x(−l + k))


 .

Next theorem (Califano et al. (2010b)), enlightens the
conditions under which a set of n one-forms are exact and
can be used to define a bicausal change of coordinates.
Theorem 1. Let Pn(x, δ) = [r1(x, δ), · · · , rn(x, δ)] be a

full rank matrix, with ri =
s∑

j=0

rj
i (x[β])δj which can be

factorized as Pn(x, δ) = T (x, δ)Q(δ), with T (x[β] , δ) =
s̄∑

i=0
T i(x[β])δi unimodular and such that β ≤ s̄. Then

T−1(x, δ) defines a bicausal change of coordinates if and
only if ∀l, j ∈ [1, n]; and ∀i ≤ k ∈ [0, 2s]

[ri
j(x), rk

l (x)]Ei = 0, (13)

or equivalently ∀l, j ∈ [1, n]; and ∀i ≤ k ∈ [0, 2s]

[ri
j(x), rk

l (x)]E0 = 0. (14)

3. MAIN RESULTS

One major drawback encountered when dealing with non-
linear delay systems, is that they are infinite dimensional
systems, so that the direct application of Frobenius The-
orem is not possible. It is shown hereafter that thanks to
the mathematical preliminaries in Section 2, it is possible
to fully characterize those nonlinear time–delay systems
which are equivalent under bicausal change of coordinates
to the weakly observable linear canonical form up to non-
linear output injections. The constructive proof allows to
compute the required change of coordinates.

Problem Statement (The Problem of the Equivalence to
the Observer Form up to output injection): Given system
(1) find, if possible, a bicausal change of coordinates
z = φ(x[α]), such that in the new coordinates the given
system is weakly observable and reads

ż(t) =
s∑

j=0

Ajz(t− j) + ψ(y[s],u[s], )

(15)
y =

s∑

j=0

Cjz(t − j)

To solve the problem, search for a submodule element
r1(x, δ) solution of



O(x, δ)r1(x, δ) = (0 · · · 0 a(x, δ))T (16)

with a(x, δ) of minimal degree. If such an element exists,
we can also compute iteratively, for i = 2, · · ·n+ 1

ri(x,u, δ) = f(x,u, δ)ri−1(x,u, δ)− ṙi−1(x,u, δ). (17)

Immediate consequences are the following:
Proposition 1. If r1(x, δ) satisfying (16) exists, then the
observability matrix has full rank loc. around u = 0, x0.

The proof is omitted for reasons of space and is based on
the consideration that the matrix O(x, δ) satisfies

O(x, δ) (r1(x, 0, δ) · · ·rn(x, 0, δ)) =




0 · · · a(x, δ)
... · · · ∗

a(x, δ) ∗ ∗




thus proving the result.
Proposition 2. Under any bicausal change of coordinates
z = φ(x[α]), with dz = T (x, δ)dx, the submodule elements
ri(x,u, δ) for i ≥ 1 defined by (16), (17) are transformed
according to (11).

Proof. We first have to show that (11) is satisfied for
i = 1. In fact we have that in the new coordinates H̃(z) =

H (φ(x)) and F̃ (z) =
[

α∑
i=0

∂φ(x)
∂x(t − i)F (x(−i))

]

|x=φ−1 (z)

. It-

eratively, assume that Li−1

F̃ns̄(z)
H(z) =

(
Li−1

Fns(x)H(x)
)
|x=φ−1 (z)

which is true for i = 1 then we have that,

Li
F̃ns̄(z)

H(z) =LF̃ (ns̄z)

(
Li−1

Fns(x)H(x)
)
|x=φ−1(z)

=
ns̄∑

j=0

ns∑

l=0

∂
(
Li−1

Fns(x)H(x)
)

∂x(t − l)

∣∣∣∣∣∣
x=φ−1(z)

∂φ−1(z(−l))
∂z(t− j)

F̃ (z(−j))

=
ns∑

l=0

∂
(
Li−1

F (x)H(x)
)

∂x(t − l)
F (x(−l))

∣∣∣∣∣∣
x=φ−1(z)

=
(
Li

Fns(x)H(x)
)
|x=φ−1 (z)

.

It follows that

O(x, δ)r1(x, δ) = Õ(z, δ)z=φ(x)T (x, δ)r1(x, δ)

= (0 · · · 0 a(x, δ))T

which implies that r̃1(z, δ) = [T (x, δ)r1(x, δ)]x=φ−1(z), due
to the bicausality of the change of coordinates. Assume
now that (11) is true for i − 1. According to (4) we have

r̃i(z,u, δ) = f̃(z,u, δ)r̃i−1(z,u, δ) − ˙̃ri−1(z,u, δ)

= [T (x, δ)ri(x,u, δ)]x=φ−1(z)

which ends the proof. /

3.1 Linear equivalence under bicausal change of coordinates
up to output injection

In the present section necessary and sufficient conditions
for the equivalence to the weakly observable canonical
form up to output injection under bicausal change of
coordinates are given. The solution uses the submodule
elements ri(x,u, δ), i ∈ [1, n], computed according to (16)
and (17). We have:
Theorem 2. System (1) is equivalent, under a bicausal
change of coordinates, to a linear weakly observable delay
system up to output injection if and only if there exist
r1(x, δ) solution of (16) with a(x, δ) = a(δ) and two
matrices T−1(x, δ) unimodular, and Q(δ) of full rank such
that

a) On(x,u) = (r1(x, δ), · · ·rn(x,u, δ)) = T−1(x, δ)Q(δ)
b) for i, j ∈ [1, n] and l ≤ k ∈ [0, 2s̄], the following

relation are satisfied

[rl
i(x), rk

j (x)]E0 = 0.
c) rn+1(x,u, δ) = T−1(x, δ)q2(y,u, δ)

Proof. Necessity. First consider the time–delay system
(15) which is already in the canonical observer form up to
output injection. Is is easily verified that for this system
r1(x, δ) = r1(δ) solution of (16) with a(x, δ) = a(δ) exists
and conditions a)÷ c) are satisfied since by construction
for i ∈ [1, n], ri(·, δ) = ri(δ) and according to Proposition 1
they are linearly independent. Furthermore

rn+1 = f(z,u, δ)rn(δ) = A(δ)rn(δ) + η(y,u, δ)

= q2(y,u, δ). (18)

From Proposition 2 and Lemma 1, conditions a)÷b) are in-
variant under a bicausal change of coordinates. Condition
c) is an immediate consequence of (18) and Proposition 2.

Sufficiency. Assume that the conditions are satisfied. Ac-
cording to Theorem 1, since T−1(x, δ) is unimodular and
b) is satisfied, we can consider the bicausal change of co-
ordinates z = φ(x[α]) such that dz = T (x, δ)dx. According
to a) the ri(x,u, δ)’s do not depend on the control variable
and thus in the new coordinates, due to Proposition 2,

(r̃1(z, δ), · · · r̃n(z, δ)) =

= [T (x, δ)(r1(x, δ), · · ·rn(x, δ))]x=φ−1(z) = Q(δ)

It follows that the output H(z[s]) is such that

s∑

i=0

∂H

∂z(t − i)
δi(r̃1(z, δ), · · · r̃n(z, δ)) =

h(z, δ)(r̃1(z, δ), · · · r̃n(z, δ))

=
(
h(x, δ)T−1(x, δ)

)
x=φ−1(z)

(r̃1(z, δ), · · · r̃n(z, δ))

= (0 0 · · · 0 a(δ))



Multiplying on the right by adj[Q(δ)], one gets

h(z, δ)[det(Q(δ)] = a(δ) (q̄n1 q̄n2 · · · q̄nn)

=C(δ)[det(Q(δ)] (19)

where (q̄n1 q̄n2 · · · q̄nn) denotes the last row of the matrix
adj[Q(δ)]. Relation (19) shows in fact the linearity of the
output function in the new coordinates, due to the identity
of polynomials. As for the forced dynamics, similarly, we
have that due to c),

f̃ (z,u, δ)(r̃1(δ), · · · r̃n(δ)) =

(r̃2(z, δ), · · · , r̃n(z, δ), r̃n+1(z,u, δ)) = [Q1(δ), q2(y,u, δ)].

Multiplying again on the right by adj[Q(δ)]a(δ), one gets

f̃(z,u, δ)[det(Q(δ)]a(δ) =

= Q2(δ) + q2(y,u, δ) (q̄n1 q̄n2 · · · q̄nn) a(δ)

= A(δ)[det(Q(δ)]a(δ) + q̄2(y,u, δ)C(δ)[det(Q(δ)]a(δ)

that is, the system in the z–coordinates reads (15) since
f̃ (z,u, δ) = A(δ) + q̄2(y,u, δ)C(δ). /

An immediate consequence is the following.
Corollary 1. System (1) is equivalent, under a bicausal
change of coordinates, to a linear weakly observable delay
system, if and only if there exist two matrices T−1(x, δ)
unimodular, and Q(δ) of full rank such that conditions a)÷
c) of Theorem 2 are satisfied and

d’) rn+1(x,u, δ) ∈ spanK(δ]{r1(x, δ), · · · , rn(x, δ)}

Remark. Under appropriate assumptions, necessary and
sufficient existence conditions equivalent to Theorem 2
were given in Marquez-Martinez et al. (2004). However the
conditions given in Theorem 2 are constructive, since the
module elements ri(x, δ) characterize the change of coor-
dinates. In particular if the system is strongly observable,
then On(x, δ) is exactly the inverse of the bicausal change
of coordinates differential form representation. /

3.2 An Example

Consider the following nonlinear delay system

ẋ1(t) = x2(t− 1) + 2x2(t) + [x1(t) − x2
2(t− 1)]2

+2x2(t − 1)([x1(t− 2) − x2
2(t− 3)]2 + u(t − 1))

ẋ2(t) = [x1(t− 1) − x2
2(t− 2))2 + u(t)

y(t) = x1(t) − x2
2(t− 1)

We have that LFH(x) = x2(t − 1) + 2x2(t) + [x1(t) −
x2

2(t−1)]2, so that, setting c(x) = 2(x1(t)−x2
2(t−1)), the

observability matrix is

O =
(

1 −2x2(t− 1)δ
c(x) 2 + δ − c(x)2x2(t − 1)δ)

)

which is of full rank but not unimodular. Let us thus
compute, if it exists, r1(x, δ) solution of (16), that is s.t.

(
1 −2x2(t − 1)δ

c(x) 2 + δ − c(x)2x2(t− 1)δ)

)
r1(x, δ) =

(
0

a(δ)

)

Standard computations show that

r1(x, δ) =
(

2x2(t− 1)δ
1

)
=

(
0
1

)
+

(
2x2(t− 1)

0

)
δ

To check the conditions of Theorem 2, we have now to
compute r2(x,u, δ), and r3(x,u, δ). We have that

r2(x,u, δ) =
(
δ + 2

0

)
=

(
2
0

)
+

(
1
0

)
δ

r3(x,u, δ) =
(

2x2(t − 1)δ 1
1 0

) (
2c(x(−1))δ

2c(x)

)

Condition a) of Theorem 2 is thus satisfied. As for condi-
tion b) and d) we readily have that

On = (r1(x, δ), r2(x, δ)) =
(

2x2(t − 1)δ δ + 2
1 0

)

=
(

2x2(t− 1)δ 1
1 0

)(
1 0
0 δ + 2

)

so that it is easily verified that they are satisfied with

T−1(x, δ) =
(

2x2(t − 1)δ 1
1 0

)
, Q(δ) =

(
1 0
0 δ + 2

)
, and

q2(y,u, δ) =
(

2y(t − 1)δ
2y(t)

)
.

Finally we have to test condition c) that is the nilpotency
of ∆ = spanK(δ]{r1(x, δ), r2(x, δ)}, where the maximum
delay s = 1. The nilpotency can be easily verified by
referring to the following matrix constructed starting form
r1(x, δ) and r2(x, δ)




R0
1 R

0
2 R1

1 R1
2 R2

1 R2
2

0 2 2x2(t− 1) 1 0
1 0 0 0 0

0 2 2x2(t − 2) 1
1 0 0 0
0 0 0 2
0 0 1 0




which shows that [r01, r02]E0 = [r01, r11]E0 = [r01, r12]E0 =

[r01, r21]E0 = [r01, r22]E0 = [r11, r21]E0 = 0 as well as

[r02, r22]E0 = [r12, r22]E0 = [r21, r22]E0 = 0. It follows that

the bicausal change of coordinates z1(t) = x2(t), z2(t) =
x1(t) − x2

2(t− 1) transforms the given dynamics into



ż1(t) = y2(t − 1) + u(t)

ż2(t) = 2z1(t) + z1(t − 1) + y2(t)

y(t) = z2(t)
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