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Abstract - Parallel robots admit generally several solutions to 

the direct kinematics problem. The aspects are associated with 

the maximal singularity free domains without any singular 

configurations. Inside these regions, some trajectories are 

possible between two solutions of the direct kinematic problem 

without meeting any type of singularity: non-singular assembly 

mode trajectories. An established condition for such 

trajectories is to have cusp points inside the joint space that 

must be encircled. This paper presents an approach based on 

the notion of uniqueness domains to explain this behaviour. 1 

I. INTRODUCTION 

The direct and inverse kinematics problem of parallel 

robots have been study in many papers to define first the 

maximal numbers of solution for each problem and secondly 

to characterize the joint space and workspace. The mobile 

platform can admit several positions and orientations (or 

configurations) in the workspace for one given set of input 

joint values. Conversely, the robot can admit several input 

joint values for a given mobile platform configurations. 

The notion of assembly modes has been defined to 

represent the different solutions to the direct kinematic 

problem while the notion of working mode has been 

introduced to separate the solutions to the inverse kinematic 

problem [1]. 

To cope with the existence of multiple inverse kinematic 

solutions in serial mechanisms, the notion of aspects was 

introduced [2]. The aspects were defined as the maximal 

singularity-free domains in the joint space. The same notion 

was extended for parallel mechanism with several inverse 

and direct kinematic solutions [1, 3]. 

For path planning, we need to define a one-to-one 

mapping between the joint space and the workspace, which 

makes it possible to associate one single solution to the 

inverse and direct kinematic problem. One way to solve this 

problem is to introduce the definition of the uniqueness 

domains. Like for serial mechanisms, the aspects do not 

define the uniqueness domains of the inverse and direct 

kinematic problem because some parallel robots are able to 
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change assembly-mode without passing through a 

singularity, thus meaning that there is more than one direct 

kinematic solution in one aspect [4]. This feature was first 

analyzed for the 3-RPR parallel robot and more recently for 

other ones such as the RPR-2PRR [5]. 

The change of assembly-mode was first analyzed in the 

joint space. However, it did not make it possible to explain 

the non-singular assembly-mode phenomenon. To solve this 

problem, a configuration-space was defined by the input 

joint value plus one coordinate of the platform configuration 

[6]. This approach makes it possible to show that a cusp 

point is encircled during a non-singular assembly-mode 

motion. A second problem is to find trajectories that induce 

an assembly mode changing. This problem can be solved by 

defining the uniqueness domains as defined for serial robots 

in [7] and for parallel robots in [8]. 

To compute the aspects and the uniqueness domains, new 

algebraic tools based on Groebner basis are introduced in 

this paper. These tools make it possible to obtain the analytic 

expression of the border of these domains and, by using a 

cylindrical algebraic decomposition, they define completely 

these regions. As a matter of fact, only numerical methods 

have been used to generate these regions, such as Octree 

models by the subdivision of the joint space and workspace).  

The paper is organised as follows. In the next section, we 

recall the notion of working mode, aspects and uniqueness 

domains. Then, we will introduce the algebraic tools used for 

the first time to describe these domains. Finally, assembly-

mode changing motions are analyzed with an example 

trajectory. 

II. DEFINITION OF THE UNIQUENESS DOMAINS 

In this section, we recall briefly the definition of 

uniqueness domains. 

A. Definition of the kinematics 

The vector of input variables q and the vector of output 

variables X for a n-DOF parallel manipulator are linked by a 

system of non linear algebraic equations: 

 ,F q X 0  (1) 

where 0 is the n-dimensional zero vector. Differentiating 
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(1) with respect to time leads to the velocity model: 

0 A X B q   (2) 

where A et B are n  n Jacobian matrices. These matrices are 

functions of q and X: 

F F 

 
 A B

X q
 (3) 

These matrices are useful for the determination of the 

singular configurations [9]. 

B. Working modes 

The notion of working modes was introduced in [1] for 

parallel manipulators with several solutions to the inverse 

kinematic problem and whose matrix B is diagonal. 

A working mode, denoted by 
i

M f , is the set of robot 

configurations for which the sign of 
jj

B  ( 1, ,j n   for a 

parallel manipulator with n degrees of freedom) does not 

change and 
jj

B  does not vanish. A robot configuration is 

represented by the vector (X, q). 

( , )  such that sign( )=cst  

for 1, ,  and det( ) 0

jj

i

W Q B
Mf

j n

   
  

   

X q

B
 

Therefore, the set of working modes (
i

M f , i I ) is 

obtained using all combinations of sign of each term 
jj

B . 

Changing working mode is equivalent to changing the 

posture of one or several legs. A working mode is defined in 

W Q because the terms of 
jj

B depend on both X and q. 

For a working mode 
i

M f , we have only one inverse 

kinematic solution. So, we can define an application that 

maps X onto q: 

 i
g X q  (4) 

Then the images in W of a posture q in Q is denoted by: 

   
1

\ ( , )
i i

g M f


 q X X q  (5) 

C. Generalized aspect 

The generalized aspects 
ij

A  were defined in [1] as the 

maximal sets in W Q  such that 

    

 is connected

, \det 0

ij

ij

ij i

A W Q

A

A M f

 

  X q A

 (6) 

The projection 
W

 of the generalized aspects 
ij

A  onto the 

workspace are the regions 
ij

W A W  and are also connected. 

These regions, called W-aspects, define the maximal 

singularity-free regions of the workspace for a given 

working mode Mf
i
.  

The projection 
Q

  of the generalized aspects onto the 

jointspace are the regions 
ij

QA Q  and are also connected. 

These regions, called Q-aspects, define the maximal 

singularity-free regions of the joint space for a given 

working mode Mf
i
.  

D. Characteristic surfaces 

The characteristic surfaces were introduced in [10] to 

define the uniqueness domains for serial cuspidal robots. 

This definition was extended to parallel robots with one 

inverse kinematic solution in [3] and to parallel robots with 

several inverse kinematic solutions in [8]. 

Let 
ij

W A  be one W-aspect. The characteristic surfaces, 

denoted by ( )
C ij

S W A , are defined as the preimage in 
ij

W A  of 

the boundary 
ij

WA  that delimits 
ij

W A  

    1

C ij i i ij ij
S WA g g WA WA


    (7) 

where : 

 
i

g  is defined in eq. (4) 

 1

i
g

  is a notation defined in eq. (5). Let C  Q : 

  1
( ) /

i i
g W g C


  C X X  

When the robot admits only two W-aspects for each 

working mode, the characteristic surfaces coincide with the 

pseudo-singularities defined by: 

    1

ij i i ij
Sc WA g g WA


   (8) 

E. Basic components and basic regions 

Let 
ij

W A  be an W-aspect. The basic regions of 
ijk

W A , 

denoted  ,
ijk

W Ab k K , are defined as the connected 

components of the set  ij C ij
W A S W A  (  means the 

difference between sets). The basic regions induce a 

partition on 
ij

W A : 

   ij k K ijk C ij
WA WAb S WA


    

Let  ijk ijk
QAb g W Ab , 

ijk
QAb  is a domain in the 

reachable joint space Q called basic components. Let 
ij

W A  

an W-aspect and 
ij

Q A  its image under g. The following 

relation holds: 

    ij k K ijk C ij
QA QAb g S WA


    

F. Uniqueness domain 

The uniqueness domains 
il

W u  are the union of two sets, 

(i) the set of adjacent basic regions 
'

( )
k K ijk

W Ab


  of the 

same W-aspect 
ij

W A  whose respective preimages are disjoint 

basic components, and (ii) the set of the characteristic 

surfaces  C ijk
S W Ab  for 'k K  which separate these basic 

components: 

  'il k K ijk C ijk
Wu WAb S WAb


    (9) 

with 'K K  such that 

1 2
, 'k k JK  ,    

1 2ij ij
g W Ab g W Ab   . 

III. ALGEBRAIC TOOLS 

A. Projection or Groebner basis elimination 

We use the Groebner basis theory to compute the 



projections 
Q

 and 
W

. Let P be a set of polynomials in the 

variables X=(x1, .., xn) and q=(q1, .., qn). Moreover, let V be 

the set of common roots of the polynomial in P, let W be the 

projection of V on the workspace and Q the projection on the 

joint space. It might not be possible to represent W (resp. Q) 

by polynomial equations. Let W  (resp. Q ) be the smallest 

set defined by polynomial equations that contain W (resp. 

Q). Our goal is to compute the polynomial equations 

defining W  (resp. Q ). 

A Groebner basis P is a polynomial system equivalent to 

P, satisfying some additional specific properties. The 

Groebner basis of a system depends on the chosen ordering 

on the monomials (cf [11], Chapter 3). 

For the projection 
W

, when we choose an ordering 

eliminating q, the Groebner basis of P contains exactly the 

polynomials defining W . 

For the projection 
Q

, when we choose an ordering 

eliminating X, the Groebner basis of P contains exactly the 

polynomials defining Q . 

B. Discussing the number of solutions of the parametric 

system 

The joint space (resp. workspace) analysis requires the 

discussion of the number of solutions of the parametric 

system associated with the direct (resp. inverse) kinematics. 

More precisely we want to decompose the joint space (resp. 

workspace) in cells 
1 k
,...,CC , such that: 

 
i

C  is an open connected subset of the joint space (resp. 

workspace). 

 for all joint (resp. pose) values in 
i

C , the direct (resp. 

inverse) kinematics problem has a constant number of 

solutions. 

 
i

C  is maximal in the sense that if 
i

C  is contained in a set 

E, then E does not satisfy the first or the second condition. 

This analysis is done in 3 steps: 

 computation of a subset of the jointspace (resp. 

workspace) where the number of solutions changes: the 

Discriminant Variety. 

 description of the complementary of the discriminant 

variety in connected cells: the Generic Cylindrical Algebraic 

Decomposition 

 connecting the cells that belong to the same connected 

component of the complementary of the discriminant 

variety: interval comparisons. 

From a general point of view, the discriminant variety can 

be defined for any system of polynomial equations and 

inequalities. Let 
1 1
,  ... ,  ,  ...,   

m l
p p q q  be polynomials with 

rational coefficients depending on the unknowns 
1
,  ...,  

n
X X  

and on the parameters 
1
,  ...,  

d
U U . Let us consider the 

constructible set: 

 n+d

1 1
 = , ( ) 0,..., ( ) 0, ( ) 0, ..., ( ) 0

m l
p p q q    v v v v vC C

If we assume that C  is a finite number of points for almost 

all the parameter values, a discriminant variety 
D 

V  of C  is 

a variety in the parameter space d
C  such that, over each 

connected open set U  satisfying 
D

V  U , C  defines 

an analytic covering. In particular, the number of points of 

C  over any point of U  is constant. 

Let us now consider the following semi-algebraic set: 

 n+d

1 1
, ( ) 0,..., ( ) 0, ( ) 0, ..., ( ) 0

m l
p p q q     v v v v vS C  

If we assume that S  has a finite number of solutions over 

at least one real point that does not belong to 
D

V , then 
d

D
V  R  can be viewed as a real discriminant variety of S , 

with the same property: over each connected open set 
d

U R  such that 
D

V  U , C  defines an analytic 

covering. In particular, the number of points of R  over any 

point of U  is constant. 

Discriminant varieties can be computed using basic and 

well known tools from computer algebra such as Groebner 

bases (see [16]) and a full package computing such objects 

in a general framework is available in Maple software 

through the RootFinding[Parametric] package. 

C. The complementary of a discriminant variety 

At this stage, we know, by construction, that over any 

simply connected open set that does not intersect the 

discriminant variety (so-called regions), the system has a 

constant number of (real) roots. The goal of this part is now 

to provide a description of the regions for which the number 

of solutions of the system at hand is constant. Accordingly, 

we compute an open CAD [12, 13]. 

Let  d 1
, ...,

d
U UP Q  be a set of polynomials. For 

1...0i d  , we introduce a set of polynomials 

 i 1
, ...,

d i
U U


P Q  defined by a backward recursion:  

 
d

P : the polynomials defining the discriminant variety 

 
d

P : 
   

  1

D iscrim inant , , LeadingC oefficient , ,

R esultant ,  , , \ ,

i i

i i

p U p U

p q U p q


  
 

  P
 

We can associate to each 
i

P  an algebraic variety of 

dimension at most 1i  : 

 
1

i i p
V V p


   P

p  

The 
i

V  are used to define recursively a finite union of 

simply connected open subsets of 
i

R  of dimension i: 

1 ,

in

k i k
 U  such that 

,i i k
V   U , and one point 

,i k
u  with 

rational coordinates in each 
,i k

U . 

In order to define the 
,i k

U , we introduce the following 

notations. If p is a univariate polynomial with n real roots: 

 if 0

Root( , ) the  real roots of  if 1

 if 

th

l

p l l p l n

l n

 


  

 


\[  



Moreover, if p is a n-variate polynomial, and v  is a 1n  -

uplet, then p
V  denotes the univariate polynomial where the 

first 1n   variables have been replaced by v .  

Roughly speaking, the recursive process defining the 
,i k

U  

is the following: 

 For 1i  , let 
1

i p
p


  P

p . Taking 
,

]Root( , );
i k

p kU  

Root( , 1)[p k   for k from 0 to n where n is the number of 

real roots of   
1

p , one gets a partition of R  that fits the 

above definition. Moreover, one can chose arbitrarily one 

rational point 
,i k

u  in each 
,i k

U . 

 Then, let 
1

i p
p


  P

p . The regions 
,i k

U  and the points 

,i k
u  are of the form: 

   1 1 1 1

,

, ..., , | : , ...,

                     Root( , ) ; Root( , 1) 

i i i

i k

i i i

v v v v v

v p l p l

 
  
 

  
     

V V

v

U =|  

 , 1 1
, ..., ,

i k i i
u   


 , 

with 
 1 1 1,

1, 1,

, ...,

Root( , ) ; Root( , 1) i i

i i j

u j u j

i i i

u

p l p l

 



 

 





    

 

where ,i j  are fixed integer. 

D. Connecting the cells 

Finally, we need to connect the cells that belong to the 

same connected component in the complementary of the 

discriminant variety. This property is represented by an 

undirected unweighted graph G where each node represents 

a cell: if an edge connects two nodes, then the corresponding 

cells are adjacent (i.e. their closures have a non empty 

intersection) and are in the same connected component in the 

complementary of the discriminant variety.  

We use the cylindrical shape of the cells output in the 

Cylindrical Algebraic Decomposition to compute the edges 

of G. Our method only works when the joint space (resp. 

workspace) has dimension 2. 

In this case, let 
1 2 , i

C  U  and 
2 2 , j

C  U  be 2 cells of the 

cylindrical algebraic decomposition computed in the 

previous subsection. First, a necessary condition for these 

cells to be adjacent is that their projection is adjacent. In the 

case of dimension 2 cells, the projection of 
1

C  (resp. 
2

C ) on 

the horizontal axis is an interval 
1

I  (resp. 
2

I ). Without loss 

of generality, we can assume that the values in 
2

I  are greater 

that the values in 
1

I . In this case, 
1

I  and 
2

I  are adjacent if 

and only if the right bound of 
1

I  equals the left bound of 
2

I . 

In the following, we denote this bound by b. Then, let e be a 

real value small enough such that 
2

b e I  . By the 

cylindrical properties of 
1

C  and 
2

C , the subset of 
1

C  (resp. 

2
C ) that projects on b e  (resp. b e ) is an interval 

1
J  

(resp. 
2

J ). If 
1

J  and 
2

J  overlap, then let 
1 2

c J J   and let 

1
P  (resp. 

2
P ) be the point ( , )b e c  (resp. ( , )b e c ). Then 

the two cells 
1

C  and 
2

C  are adjacent and belong to the same 

connected component of the complementary of the 

discriminant variety if the line segment 
1 2

[ ]P P  does not cross 

the discriminant variety. This property can be checked by 

using Descartes' rule of sign [14] or Sturm's theorem [15]. 

IV. MECHANISM UNDER STUDY 

A. Kinematic equations 

The aim of this section is to recall briefly the kinematic 

equations of the RPR-2PRR mechanism [5]. 

B
1

B x y
2
( , )

B
3

A
3

A
1 A

2

y

x

















C
2

C
3

l


l


a

b

 
Figure 1 : RPR-2PRR mechanism with 

2 3
3l l   and 1a b   

The kinematic equations are defined in [5] 

2 2 2

2 2

2 2 2

1

3 3

3 3 3

   cos( )  0

          sin( )   0

(     cos( ))  (     sin( )) - 0

         cos( )    cos( )   0

   sin( )    sin( )   0

l x

l y

x a y a

l b x

l b y

 



  

 

  

  

 

   

  

   

 (10) 

In the following, we have fixed 
2 3

3l l   and 1a b   

in certain units of length that we need not specify. The 

position of the end-effector in B2 is such that for a given 

value of y, we have either 
2 2

arcsin( / )y l   or 

2 2
arcsin( / )y l   . This allows us to study the 

mechanism in a 2D slice of the workspace or in the joint 

space. 

B. Singularity analysis 

Matrices A and B  can be derived from eq. (10). The roots 

of the determinant of these matrices define the parallel and 

serial singularities. The serial singularities, denoted by 
S

S , 

are defined by 
1 2 3 2 3

: cos( ) sin( ) 0
S

l l   S  

This singularity occurs when 
2

/ 2 k     or 

3
0 k   . The parallel singularities, denoted by 

P
S , are 

defined by  

: cos( ) sin( ) sin( ) sin( ) cos( ) 0
P

ya xa b x ab       S  

This singularity occurs whenever the axes (A1B1), (A2B2) 

and (A3C3) intersect (possibly at infinity). The parallel 

singularities do not depend on the choice of the inverse 

kinematic solution.   

C. Projection of the singularities into the workspace and 

joint space 

To determine the polynomial equations that characterize 



the serial and parallel singularities in the joint space and 

workspace, we use the operators 
W

 and 
Q

, 
8 2 2 6

P 1 2 3 1

2 2 2

3 2 3

2 4 4 4

2 3 2 1

4 2 6

3 3 2

4 2 2

3 2 2

( ) : (42 cos( ) 52 12 cos( ) )

(468 cos( ) 960 1584 cos( ) 558 cos( )

cos( ) 18 cos( ) 657 cos( ) )

( 2988 cos( ) 5760 cos( ) 4536 cos( )

2430 cos( ) cos( ) 7168 18432 cos( )

1

    

  

   

  

  

  

   

 

   

  



Q
S

4 6 2

2 3 3

2 2 4 2 4

2 3 2 1 2

2 2 2 4

3 2 2 3

2 2 2 2

3 2 3

5840 cos( ) 324 cos( ) 13320 cos( )

cos( ) 7290 cos( ) cos( ) ) (9 cos( )

18 cos( ) cos( ) 24 cos( ) 9 cos( )

12 cos( ) 16)(36 cos( ) 32 9 cos( ) ) 0

  

    

   

  

 

 

  

    

 (11) 

3 0,  3 0,  

( ) : (2(cos( ) 3 )) /(cos( ) 1) 0,  

(2(cos( ) 3 )) /(cos( ) 1) 0

S

y y

x

x

  

 

    
 

    

 
    

W
S  

Figure 2 and 3 depict a slice of the workspace for y=1/2 

and the joint space, respectively, with in red the serial 

singularities and in blue the parallel singularities.  
 

 



x
 





 
Figure 2: The workspace 

analysis for y=1/2 with in blue the 

parallel singularities and in red the 

serial singularities 

Figure 3: The joint space analysis 

for 
2

arcsin(1 / 6)   with in blue 

the parallel singularities and in red 

the serial singularities 

For the joint space analysis, the sample plot was obtain for 

2
arcsin(1 / 6)   , i.e. another working mode. It can be 

noticed as is written in [5] that there exist four cusp points in 

this cross-section. 

D. The generalized aspects 

Form the definition of the parallel and serial singularities 

in the workspace, and thanks to the property that the location 

of the parallel singularities does not depend on the working 

mode, we can define 2x4 generalized aspects.  
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Figure 4: A slice of the 

workspace for y=1/2 with 2 W-

aspects 

Figure 5: A slice of the joint 

space for 
2

arcsin(1 / 6)   with 2 

Q-aspects 

Each W-aspect of Fig. 4 is described by 41 cells. Same for 

each Q-aspect of Fig. 5. We do a connectivity analysis to 

extract the W-aspects from the set of cells obtained by the 

cell decomposition. Then, we add the constraint on the sign 

of  W P
S  to isolate the red and blue regions. 
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Figure 6: The two W-aspects associated with a same working mode 

Figure 6 represents the W-aspects obtained with the CAD 

decomposition. The borders are the projection onto the 

workspace of the serial and parallel singularities. Each W-

aspect is described by 411 cells. For instance, the cell 116 is 

defined by the set of points x0, y0, 0: 
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The main benefit of the formulation is that we have the 

complete definition of the space and we can find easily in 

which cell a given point belongs. 

E. Characteristic surface 

The characteristic surface is defined by: 
4 3 2 2

2 2

2
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with   . Figure 7 represents the singularities and the 

characteristic surfaces. The projections of the cusps points 

lie on the intersections of the parallel singularities and the 

characteristic surfaces. 

 
Figure 7: The joint space analysis for 

2
arcsin(1 / 6)   with in red the 

serial singularities, in blue the parallel singularities and in green the 

characteristic surface 



The two expressions defining the parallel singularities and 

the characteristic surfaces can be used to study the kinematic 

equations of the robot defined in Eq. (10). As the sign of the 

two expressions can be positive or negative, we obtain four 

regions in the workspace 

0 0

0 0

0 0

0 04 2
4 2

44 44

44 44  
Figure 8 : The workspace analysis for 

2
arcsin(1 / 6)   with in red the 

number of inverse kinematic solutions and in blue the number of direct 

kinematic solution associated with each image 

The cell decomposition and the connectivity analysis yield 

10 regions, as shown in Fig. 8. The analysis of the inverse 

kinematic solution allows us to compute the basic regions. 

Figure 9 represents the 4 uniqueness domains for each 

working mode.  

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Figure 9 : The four uniqueness domains with in red and in blue the 

common regions. 

F. Application to trajectory planning 

For any trajectory inside a uniqueness domain do no 

change of assembly mode occurs. Figure 10 (a) shows a 

trajectory defined between two regions in green. As the end 

points of the trajectory are in two separate uniqueness 

domains, a non-singular assembly mode changing trajectory 

occurs. We can also notice that in Fig.  10 (b), the two 

images of the trajectory in the joint space encircle a cusp 

point. 

V. CONCLUSIONS 

In this paper, the notion of uniqueness domains and non-

singular assembly-mode changing motion was revisited and 

exemplified using a RPR-2PRR parallel robot. The implicit 

definition of the parallel and serial singularities as well as 

the characteristic surface were obtained with a new approach 

based on algebraic tools such as Discriminant Varieties and 

Cylindrical Algebraic Decompositions. Moreover, this 

allowed us to get algebraic formula describing the basic 

regions, the basic components and the uniqueness domains. 


x
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 (b) 

Figure 10 : Trajectory for y=1/2 and [x,]= [[-1,1], [0,1/2], [1,-1],[1/2,-

2]] (a) in the workspace and (b) in the joint space 
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