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We describe a general framework based on modal expansion for the study of optical-frequency combs generated

with monolithic whispering-gallery-mode resonators. We obtain a set of time-domain rate equations describing

the dynamics of each mode as a function of the main characteristics of the cavity, namely, Kerr nonlinearity,

absorption, coupling losses, and cavity dispersion (geometrical and material). A stability analysis of the various

side modes is performed, which finds analytically the threshold power needed for comb generation. We show that

the various whispering gallery modes are excited in a nontrivial way, strongly dependent on the value of the overall

cavity dispersion. We demonstrate that the combs are not simply generated through a direct transfer of energy

from the pumped mode to all their neighbors but rather through complex intermediate interactions. Anomalous

cavity dispersion is also demonstrated to be critical for these cascading processes, and comb generation is thereby

unambiguously linked to modulational instability. This theory accurately describes the emergence of spectral

modulation and free spectral-range tunability in the comb. It also enables a clear understanding of the various

phenomena responsible for the spectral span limitation. Our theoretical predictions are in excellent agreement with

the numerical simulations, and they successfully explain the internal mechanisms responsible for the generation

of hundreds of Kerr modes in monolithic whispering-gallery-mode resonators.
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I. INTRODUCTION

Optical-frequency combs are sets of regularly spaced

spectral lines in the ultraviolet, visible, or infrared ranges.

They have for long been generated with mode-locked ultrafast

lasers, as periodic trains of ultrashort laser pulses yield such

equidistant lines in the spectral domain. When their frequency

span covers one octave, the combs can be autoreferenced, and

it is therefore possible to transfer the metrologic precision

of optical laser frequencies down to the GHz or THz ranges

(see Refs. [1–3], and references therein). Many applica-

tions can benefit from these combs: fundamental physics,

time-frequency metrology, navigation systems, spectroscopy,

sensing, or ultralow phase noise microwave and terahertz

generation.

An interesting method has been demonstrated recently

for the generation of these combs, and it relies on the

hyperparametric excitation of the whispering gallery modes

(WGMs) of an ultrahigh Q monolithic resonator [4–7]. In

this configuration, the dielectric microresonator is shaped as

a cylinder, a sphere, or a toroid whose principal dimension

ranges from a few tens of micrometers to few millimeters (see

review articles [8–10], and references therein). Provided that

the bulk material is low loss and the resonator has smooth

surfaces (subnanometer surface irregularities), the light can

be trapped for few microseconds by total internal reflection.

Their free-spectral range (FSR) may vary from a few gigahertz

to a few terahertz, depending on the resonator’s radius, and

their quality factor Q can be exceptionally high, of the

order of 1010 [11]. In these resonators, the small volume of
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confinement, high photon density, and long photon storage

time (proportional to the quality factor Q) induce a very

strong light-matter interaction. Depending on the dielectric

material, this strong coupling can generate a highly efficient

four-wave mixing (FWM), where two pump photons are

transformed into two sideband photons through the Kerr

nonlinearity. Provided that the pump is powerful enough, an

optical-frequency comb, sometimes referred to as a Kerr comb

[4], is generated through a cascaded creation of such sideband

photons, resulting from a huge sum of weighted interactions

involving any four photons fulfilling energy and angular

momentum conservation requirements [4,12,13]. The essential

advantages of this method for comb generation are intrinsic

simplicity, small size, and very low power consumption.

There have been noteworthy contributions to the theoretical

understanding of optical-frequency comb generation in WGM

resonators. The pioneering articles on this topic mainly

focused on sideband parametric generation, where the pump

excites a signal and an idler side mode through degenerate

four-wave mixing. Along this line, threshold conditions were

analyzed and discussed by several authors [14–16], and the

effect of dispersion on parametric sideband generation was

investigated in Ref. [17]. As far as wide-span WGM-comb

generation is concerned, an interesting study was reported in

Ref. [18], and the authors proposed a fully numerical approach

where the laser light beam in the resonator was treated as if

propagating along an unfolded periodic trajectory.

These previous works provide some understanding of

comb generation with WGM resonators. However, there are

still several important issues that need to be addressed. For

example, there are some hints about the physical phenomena

limiting the spectral span of the comb, but the lack of a coherent

theoretical background does not give any indication about

their relative importance. Along the same line, the role of
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cavity dispersion is recognized as critical, but no one knows

exactly to which extent. Even the issue of equidistance is

wide open because to the best of our knowledge, there is

no theoretical insight about the importance of degenerate

FWM (leading to only pairwise equidistance) relative to

nondegenerate FWM (ensuring comblike equidistance). No

stability diagram has ever been proposed for WGM combs so

that the conditions under which they are stable and stationary

are unknown. It is also interesting to note that recently, a

very important phenomenon—here referred to as versatility—

has been experimentally demonstrated in these WGM comb

generators. It relates to the capacity for the system to generate

various combs whose FSRs are integer multiples of the cavity

FSR. The spectral periodicity of the comb can be tuned through

a frequency shift of the pumping laser [6] or a variation of the

coupling strength [7]. This phenomenon remains unexplained.

Our aim in this article is to describe a coherent theoretical

framework based on modal expansion in order to address the

aforementioned open issues. In particular, we will use the

nonlinear dynamics formalism to investigate the interaction

between nonlinearity, Q factor of the resonator, and cavity

dispersion as well as the spectral profile and the temporal

dynamics of the comb. This article also presents the explicit

demonstration of the theoretical results reported in Ref. [19].

The outline of the article is as follows. The system under

study is presented in Sec. II. The following three sections are

devoted to the introduction of the multimode approach used

in our theoretical analysis, the analytical determination of the

WGMs, and the explicit derivation of the modal equations,

respectively. Then we perform in Sec. VI the threshold analysis

for comb generation. The role of cavity dispersion is specifi-

cally investigated in Sec. VII, while Sec. VIII is dedicated to

the study of the comb dynamics above threshold. We discuss

the various possibilities to expand the comb span beyond one

octave in Sec. IX, and the last section concludes the article.

II. THE SYSTEM UNDER STUDY

The typical scheme of a WGM comb generator is displayed

in Fig. 1. A continuous-wave laser with a very narrow linewidth

is used to pump a nonlinear dielectric cavity. After polarization

control, the laser beam is coupled into a resonant cavity

mode using evanescent fields. The intracavity photons interact

FIG. 1. (Color online) Optical-frequency comb generator with

a calcium fluoride cavity and angle-polished fiber couplings. CW,

continuous-wave; PC, polarization control; OSA, optical spectrum

analyzer. The OSA displays the spectrum of the optical-frequency

comb.

through FWM and generate the optical-frequency comb,

whose evanescent field can also be extracted and monitored

with an optical spectrum analyzer.

Optical-frequency comb generators can be made of a wide

variety of WGM resonators. The first element to consider is the

size of the cavity (characterized by its circumference), which

determines the FSR of the comb. The bulk medium filling

the cavity can be amorphous (e.g., fused silica) or crystalline

(e.g., calcium fluoride). In the latter case, however, an inversion

symmetry is required for the Kerr nonlinearity to be significant.

The evanescent coupling is generally performed using prisms

or tapered or angle-polished fibers. So far, comb generation

has been observed with cavities whose Q factors range from

107 to 1010. The bulk cavity is generally a toroid or a disk

whose rim has a local curvature (truncated sphere or ovoid).

We develop the theoretical framework independently of

the various elements cited earlier. In particular, we have built

a theory that is valid for optical-frequency combs generated

with any cavity with axial symmetry, provided that the bulk

medium is homogeneous and isotropic. In this study, we focus

without loss of generality on spherical CaF2 resonators with

FSR of about 10 GHz and optical wavelength at 1560 nm.

III. THE MULTIMODE APPROACH TO COMB

GENERATION IN WGM RESONATORS

Modeling a spatiotemporal system typically corresponds to

establish a (set of) partial differential equation(s) describing

what is occurring in each point and at each instant within

the volume of interest. Even though this full spatiotemporal

description is synthetic and elegant, it has some severe

limitations. A typical case is when the system is sharply

multimodal. In that case, if the spatial distribution of the modes

can be analytically determined, the spatiotemporal modeling

is redundant as only the temporal variation of the modal

amplitudes is unknown. Moreover, the redundant part is the

most difficult part of theoretical analysis (partial differential

equations) and the most time-consuming part of an eventual

numerical modeling (finite element algorithms).

Modal expansion methods, on the other hand, rely on the

fact that when spatial mode distributions are known (this is

an essential point), the initial spatiotemporal equation can

be decomposed into a finite set of coupled time-domain

differential equations for the modal amplitudes. These models

outperform spatiotemporal models in this context by speeding

up numerical simulations and decreasing complexity; in

particular, the dimensionality of the governing equations drops

sharply from infinity to a finite value, of the order of the

number of modes. Modal expansion also enables simpler

stability analysis and analytical treatment, and it allows an

easier determination of some critical parameters such as modal

characteristics (linewidths, frequency shifts, coupling, etc.),

oscillation thresholds, and bifurcation values.

The starting point of our analysis will therefore be the

Maxwell wave equation in a bulk spherical cavity that is

assumed to be absorptive, dispersive, and nonlinear. We

consider an homogeneous and isotropic dielectric sphere of

radius a, submitted to an external electromagnetic field of

frequency �0 (in our case, the laser excitation). The electric

field therefore obeys everywhere (inside and outside the cavity)
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the classical wave equation
[

� −
ǫ(r,ω,‖E‖2)

c2

∂2

∂t2

]

E(r,t) = 0, (1)

where the relative permittivity ǫ is defined as

ǫ(r,ω,‖E‖2) =
{

n2(ω,‖E‖2) if r � a,

1 if r > a,
(2)

with n being the refractive index of the medium. Note that we

can legitimately keep the frequency dependence of ǫ in the

spatiotemporal Eq. (1) because this dependence is very weak

relative to the Fourier transform of the electric field and its

derivatives.

Since we know a priori that the cavity is sharply resonant

around its eigenmodes, we can expand this field as

E(r,t) =
∑

µ

1

2
Eµ(t) eiωµtϒµ(r) +

1

2
Eexte

i�0te0 + c.c., (3)

where µ labels the various modes under consideration, defined

by an infinite set of orthonormal and vectorial eigenmodes

ϒµ(r) of absolute frequency ωµ and by their time-varying

amplitude Eµ(t). The direction of the external pumping field

Eext is defined by the unit vector e0 whose modulus has the

dimension of a volumic density, while c.c. stands for the

complex conjugate of all the preceding terms. This expansion,

sometimes referred to as a slowly varying amplitude (SVA)

expansion in the literature, implicitly assumes the spatial

and temporal variations of the field are separable; hence

propagation effects are not accounted for, as a mode is assumed

to have the same amplitude everywhere. This amplitude of the

field is also generally assumed to vary slowly relative to its

nominal frequency [i.e., |Ėµ(t)| ≪ ωµ|Eµ(t)|]. Note that here

we consider that the external field is nearly resonant with

the cavity, in the sense that �0 is near an eigenfrequency

of the system. It is a free parameter, tunable within a few

bandwidths around the resonance frequency of the excited

mode. This pump frequency will also be a reference for all

practical purposes and in particular for the refractive index as

we consider n0 ≡ Re[n(�0)].

The parameter that determines all the dynamical features

of this system is the refractive index n(ω,‖E‖2). It contains all

the information about the dielectric material under study. The

three key phenomena we need to consider here are the linear

absorption, relevant for the Q factor of the dielectric cavity;

the chromatic dispersion, which discriminates the various

optical frequencies in terms of refractive index; and the Kerr

nonlinearity, responsible for four-wave mixing. Therefore we

have to define how these three features should be introduced

in our dielectric parameter.

At this semiclassical level, linear absorption is generally

introduced as a small imaginary part in the refractive index so

that the refraction index becomes n0 − ina(ω), with na(ω) > 0

for all ω (no lasing effects). Loss of energy in this cavity is

because of factors that are both internal (material absorption,

radiative losses, volume or surface scattering, etc.) and external

(out-coupling process) so that we can write na(ω) = nint(ω) +
next(ω). The frequency dependence of material absorption is

negligible around the pump frequency but not for relatively

wide frequency spans. On the other hand, out-coupling losses

are more frequency dependent for neighboring frequencies,

and the particular features of this frequency dependence are

defined by the coupling method. It is, however, important to

note that the out-coupling losses can be experimentally tuned.

This degree of freedom will be exploited further in the article.

Dispersion can be accounted for by allowing a frequency-

dependent component to the real part of the refraction index

around the central frequency, following n(ω) = n0 + nd (ω),

with nd (�0) = 0. This dispersion term is relevant even very

near the pump frequency. Finally, Kerr nonlinearity modifies

the refraction index following n0 + n2I , where n2 is the

nonlinear Kerr factor and I is the optical intensity (irradiance)

of the field.

These three corrections are small relative to the real

refractive index n0. Therefore, in the medium, the relative

permittivity can be explicitly expressed as

ǫ[r � a,ω,‖E‖2] = [n(ω) + �n(ω,‖E‖2)]2

≃ n2(ω) + 2n0�n(ω,‖E‖2), (4)

where n(ω) is real and includes the dispersive characteristics

of the refraction index, while

�n(ω,‖E‖2) = −i[nint(ω) + next(ω)] + n2

n0ε0c

2
‖E‖2 (5)

stands for the complex and nonlinear corrections to n0, ε0

being the vacuum permittivity.

Using Eqs. (3) and (4), we can finally rewrite the initial

Eq. (1) under the form

∑

µ

Eµ(t) eiωµt

{

� +
ω2

µ

c2
Re[ǫ(r,ω,0)]

}

ϒµ(r)

+
∑

µ

{

2n0�n(ω,‖E‖2)
ω2

µ

c2
Eµ(t)

−
ǫ(r,ω,‖E‖2 )

c2
[Ëµ(t) + 2iωµĖµ(t)]

}

eiωµtϒµ(r)

+
ǫ(r,ω,‖E‖2)

c2
�2

0Eexte
i�0t e0 = 0. (6)

This equation can be separated into two distinct parts. The

first part (spatial) is the first term. It should be equated to

zero as ϒµ(r) is by definition an eigenmode. The resolution of

the eigenmode equation will then give us an explicit solution

for ϒµ(r), which will be injected in the second part of the

equation (temporal), which is constituted with the remaining

terms of Eq. (6). This procedure will later enable us to obtain

time-domain ordinary differential equations for the modal

amplitudes Eµ(t).

IV. ANALYTICAL DETERMINATION OF THE WGMS

A. Eigenmode solutions

The eigenmodes are solutions of the equation
[

� +
ω2

µ

c2
ǫ(r,ωµ)

]

ϒµ(r) = 0 , (7)

with ǫ(r,ω) = n2(ω) for r � a and ǫ(r,ω) = 1 for r > a.
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In order to solve this problem, a convenient method is to

first set n(ω) to n0, that is, to neglect dispersion. This equation

can then be solved exactly in spherical coordinates, and the

solutions can either be transverse electric (TE) or transverse

magnetic (TM), following [20]

ϒTE
ℓmn(r) =

eimφ

kℓnpr
Sℓnp(r)Xℓm(θ ), (8)

ϒTM
ℓmn(r) =

eimφ

k2
ℓnpn2

0

{

1

r

d

dr
Sℓnp(r)Yℓm(θ ) +

1

r2
Sℓnp(r)Zℓm(θ )

}

,

(9)

where p stands for TE in the first equation and for TM in the

second. Also note that here θ is the colatitude while φ is the

longitude. The spherical vectors are explicitly defined as

Xℓm(θ ) = i
m

sin θ
P m

ℓ (cos θ ) eθ −
∂

∂θ
P m

ℓ (cos θ ) eφ,

Yℓm(θ ) =
∂

∂θ
P m

ℓ (cos θ ) eθ − i
m

sin θ
P m

ℓ (cos θ ) eφ, (10)

Zℓm(θ ) = ℓ(ℓ + 1)P m
ℓ (cos θ ) er ,

where P m
ℓ (cos θ ) are the associated Legendre polynomials, m

and ℓ being two integers fulfilling −ℓ � m � ℓ.

The function Sℓnp is the radial Debye potential

Sℓnp(r) =

{

ψℓ(n0kℓnpr) if r � a,

ψℓ(n0kℓnpa)

χℓ(kℓnpa)
χℓ(kℓnpr) if r > a,

(11)

where kℓnp is the nth solution of the algebraic equation

χ ′
ℓ(ka)

χℓ(ka)
= p

ψ ′
ℓ(ka)

ψℓ(ka)
with p =

{

n0 for TE modes,

1/n0 for TM modes,

(12)

while ψℓ and χℓ are the ℓth-order Riccati-Bessel functions.

B. THE WGMS

WGMs are generally defined as those cavity modes for

which the electric field is strongly confined in a narrow

torus near the equatorial circle and is quasinull everywhere

else. Mathematically, this configuration corresponds to the

fundamental radial mode with large but equal polar and

azimuthal eigenvalues (i.e., n = 1 and m ≡ ℓ ≫ 1). In that

case, having in mind that

P ℓ
ℓ (cos θ ) = [(−1)ℓ(2ℓ − 1)!!] sinℓ θ (13)

and θ ≃ π/2, it can be easily shown from Eqs. (10) that

the TE mode becomes asymptotically parallel to eθ , while

the TM mode becomes parallel to er , as both ∂θP
ℓ
ℓ (cos θ )

and ‖Yℓℓ(θ )‖/‖Zℓℓ(θ )‖ do vanish when θ → π/2. Hence

our eigenvectors only depend on two parameters: the angu-

lar eigenvalue ℓ, which is a degenerated scalar parameter,

and the vectorial polarization p, standing for TE or TM

modes.

It has also been shown earlier in the literature that for

this resonator, the eigenfrequencies can be approximated

as [21]

ωℓp = kℓ1pc

=
c

n(ωℓp) a

⎧

⎨

⎩

[

ℓ +
1

2

]

+ ξ1

[

ℓ + 1
2

2

]1/3

−
p

√

n2
0 − 1

+
3

20
ξ 2

1

[

ℓ + 1
2

2

]−1/3

+ O

(

ℓ +
1

2

)−2/3

⎫

⎬

⎭

, (14)

where p is polarization dependent, as explicitly defined in

Eq. (12), while ξn is the nth root of the Airy function

Ai(−z) and corresponds to the nth radial order. For WGMs,

we have n = 1 and ξ1 = 2.338. It is noteworthy that these

eigenfrequencies are weakly unequidistant because of material

and geometrical dispersion. Note that material dispersion has

been introduced a posteriori as a perturbation of the solutions

of the dispersionless cavity.

As a specific example, we use a resonator of principal

radius a = 2.5 mm, with n0 = 1.43 at the central wavelength

λ0 = 1560.5 nm (in vacuum). In the vicinity of the

pump, the angular number can be roughly estimated as

ℓ0 ∼ 2πan0/λ0 ∼ 144 00, and the free-spectral range (FSR)

can also be simply evaluated as

�ωFSR ≃
c

an0

≃ 2π × 13.36 GHz. (15)

It is interesting to note that this FSR corresponds to the period

of the photons inner circumferential motion (velocity c/n0

divided by the circumference 2πa).

C. Normalization

It is convenient to normalize the eigenvectors in this

analytical treatment because it simplifies calculations, and

it also enables us to have direct access to quantitative

values. Some important approximations, very useful for

the numerical computation of the modes, will also be

outlined.

The orthonormal solutions of Eq. (7) that we are going to

use in this article can therefore be labeled as ϒℓp(r), and they

are such that

ϒℓ,T E(r) =
ϒTE

ℓℓ1

Nℓ,T E

, ϒℓ,T M (r) =
ϒTM

ℓℓ1

Nℓ,T M

, (16)

where the normalization constants Nℓp are obtained through

the orthonormalization condition
∫

∞
ϒ∗

ℓp(r) · ϒℓ′p′ (r) dV = δℓℓ′δpp′ . (17)

While carrying out the integrals of Eq. (17), it should

be recalled that the WGMs are located near the equator at

θ ≃ θ0 = π/2 so that at the first order, we have sin θ ∼ 1

and cos θ ≃ θ0 − θ → 0. Moreover, it is known that spherical

modes degenerate to Gaussian modes when ℓ = m (see

Ref. [8]), and we have

P ℓ
ℓ (x) ≃ P ℓ

ℓ (0) e− 1
2
ℓx2

(18)
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so that the polar integral can be simplified as
∫ π

0

[

P ℓ
ℓ (cos θ )

]2
sin θ dθ ≃

[

P ℓ
ℓ (0)

]2
∫ +∞

−∞
e−ℓ(θ−θ0)2

dθ

= [(2ℓ − 1)!!]2

√

π

ℓ
. (19)

Here we have considered that the poles are at infinity relative

to the equator for the WGMs, whose polar dependence

is Gaussian with a typical waist of the order of 1/
√

ℓ

∼ 10−2 rad. The radial integral can also be simplified as we

know that the electric field is quasinull everywhere except in

a narrow torus near the circumference, whose tubular radius

is only few wavelengths wide; hence the variable r can be

replaced by a whenever it is not an argument of the Debye

potential Sℓ1p, and we can write
∫ +∞

0

S2
ℓ1p(r) r2dr ≃ a2

∫

∼a

S2
ℓ1p(r) dr, (20)

where ∼a stands for the neighborhood of a, equivalent here

for all practical purposes to a span of few tens of λ around

a. This approximation is extremely useful as it significantly

speeds up (at least by a factor 100) the computation time of

the modes and related parameters with almost no penalty in

accuracy. However, in the case of microresonators, the ratio

λ/a is not so small, and one may prevent a loss of accuracy by

keeping the r2 term inside the integral, still integrating over

the neighborhood of a.

Finally, the normalized eigenvectors ϒℓp(r) explicitly read

ϒℓ,TE(r) = iϒℓ,TE(r,θ,φ) eθ ,
(21)

ϒℓ,TM(r) = ϒℓ,TM(r,θ,φ) er ,

with

ϒℓp(r,θ,φ) =
(−1)ℓ ℓ

1
4

2
1
2 π

3
4 a

Sℓ1p(r) e− 1
2
ℓ(θ− π

2
)2

eiℓφ

√

∫

∼a
S2

ℓ1p(r) dr
. (22)

Figure 2 displays the color-coded two-dimensional variations

of a WGM cross section, according to Eq. (22). It can

be seen that it consists of a strongly confined bright spot

whose transverse spatial dimension is of the order of a few

FIG. 2. (Color online) Cross section at φ = 0 (half-plane y = 0

and x > 0) of the whispering gallery mode ‖ϒℓ,T E(r)‖2 in units

of m−3. The value of the polar eigennumber is ℓ0 = 143 50,

corresponding to λ0 = 1560.5 nm in vacuum. The spherical CaF2

cavity has a radius a = 2.5 mm and a refraction index n0 = 1.43 at λ0.

Note that the axes are not orthonormal: the radial confinement is in fact

10 times stronger than the polar one.

FIG. 3. Radial and polar profiles of the modes (arbitrary units)

for ℓ0 = 143 50 (plusses), for ℓ0 + 10 00 (open circles), and for

ℓ0 + 10 000 (solid circles). (a) Radial profiles for θ = 0 and φ = 0.

(b) Polar profiles for φ = 0 at intensity maxima. All other parameters

are those of Fig. 2.

wavelengths. For the values considered in this figure, the

confinement is in fact much stronger in the radial dimension

(typical waist of ∼0.001a) than in the polar one (∼0.01a).

This issue of relatively poor polar confinement can be solved

using toroidal cavities whose local curvature is smaller and

thereby does not allow for a large polar spreading [4]. Another

alternative is to use a disk whose rim radius is significantly

smaller than the principal radius [6,7] (this geometry somehow

corresponds to a toroidal cavity as well).

Figure 3 focuses on how the WGM is modified as the

eigennumber ℓ0 is changed. Figure 3(a) shows that when ℓ0

increases, the mode becomes more radially confined, while its

maximum becomes pronounced (increasing as
√

ℓ). On the

other hand, Fig. 3(b) also indicates that increasing the polar

eigennumber enhances the polar confinement, with a waist

decreasing as 1/
√

ℓ. Both figures evidence that even WGMs

separated by 1000 modes (a spectral span of ∼100 nm in our

case) are still quite satisfyingly overlapped and therefore may

experience strong mutual coupling. However, if the spectral

gap increases too much, for example, to 10 000 free spectral

ranges, then the spatial overlap is severely deteriorated, and

the modes would be poorly coupled.

V. THE MODAL EXPANSION MODEL

As explained earlier, the first term of Eq. (6) vanishes, and

we have found that µ = {ℓ,p}; that is, a WGM is exclusively

characterized by its angular number and its polarization. This

information should be used to derive the temporal behavior of

the modes from the remaining terms.
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Additional useful approximations can be introduced in

these remaining terms. Owing to the slowly varying amplitude

assumption, we can consider that |Ëµ(t)| ≪ |2ωµĖµ(t)| so

that the second derivative term can be neglected. Moreover,

the relative permittivity ǫ(r,ω,‖E‖2) can now be set to the

reference value ǫ(r,�0,0) as the perturbation �n can be

neglected at this stage when standing beside the principal value

n0. Therefore Eq. (6) can be rewritten as
∑

µ

ωµĖµ(t)eiωµtϒµ(r)

=
∑

µ

−iω2
µ

n0�n(ω,‖E‖2)

ǫ(r,�0,0)
Eµ(t)eiωµtϒµ(r)

−
1

2
i�2

0Eexte
i�0t e0. (23)

The preceding equation is a single global equation ruling

the collective dynamics of the modes, whereas we are

interested in the individual dynamics. However, owing to the

orthonormality of the eigenvectors, we can target the individual

dynamics Eη(t) of a given mode η by projecting this global

equation onto ϒη(r), in other words, by multiplying Eq. (23) by

ϒ∗
η(r)e−iωη t and spatially integrating over infinity (Hermitian

inner product). This projection gives the following result:

Ėη = −
1

ωη

∫

V

∑

µ

iω2
µ

�n(ω,‖E‖2)

n0

Eµei(ωµ−ωη)t

× [ϒ∗
η(r) · ϒµ(r)] dV

−
1

ωη

∫

∞

1

2
i�2

0Eexte
i(�0−ωη)t [ϒ∗

η(r) · e0] dV. (24)

Note that the first integral is only over the dielectric volume V

because �n ≡ 0 outside the cavity.

It may also be convenient to normalize the electric field as

Aη =

√

1

2

ε0n
2
0

h̄ωη

Eη, (25)

where |Aη|2 is the instantaneous number of photons in the

mode η (they are mostly inside the cavity). We can use Eq. (5)

and

‖E‖2 =
∑

α,β

EαE
∗
β ei(ωα−ωβ )t [ϒ∗

β(r) · ϒα(r)] (26)

to obtain finally the following explicit rate equations for the

modal field dynamics:

Ȧη = −
1

2
�ωη Aη − ig0

∑

α,β,µ

�αβµ
η AαA

∗
βAµ ei̟αβµη t

+
1

2
�ωη Fη ei(�0−ωη)t , (27)

which enable us to track the field amplitude in each mode

η. The parameters of Eq. (27) are defined and discussed

hereinafter.

The modal bandwidth

�ωη = 2Ŵη

ωη

n0

[nint(ωη) + next(ωη)]

= �ωint,η + �ωext,η (28)

obtained through this modal expansion formalism is consistent

with results found in the literature [20,22,23], and it is

physically the inverse of the modal photon lifetime τη. We

find that the modal linewidth linearly depends on its central

frequency ωη and on the loss coefficients nint and next,

which are themselves frequency dependent. The material loss

contribution to the modal bandwidth is fixed once and for

all and exclusively depends on the laser pumping frequency.

It is interesting to note that the absorption of CaF2 can

vary significantly over large wavelength spans. On the other

hand, the coupling-dependent contribution �ωext strongly

depends on the coupling architecture (prism, angle-polished

or tapered fiber, etc.), and the three main configurations are

undercoupling (�ωext < �ωint), critical coupling (�ωext =
�ωint), and overcoupling (�ωext > �ωint) [24–26]. The modal

bandwidth is also proportional to the confinement factor

Ŵη =
∫

V

‖ϒη(r)‖2 dV, (29)

measuring the energy portion of the mode that is within the

sphere. It should be noted that even though all the WGMs have

the same radial order n = 1, they have different angular orders

ℓ and therefore different radial profiles according to Eq. (11).

Since the WGMs are strongly confined, this factor is very close

to 1. Moreover, modes with close order ℓ also have quasiequal

confinement factors, however, this is not the case for modes

that are spectrally far away.

The four-wave mixing reference gain can be defined as

g0 =
n2c

n2
0

h̄ω2
η0

Vη0

, (30)

where ωη0
is the eigenfrequency of the pumped mode η0, while

Vη0
is its effective volume:

Vη =
[∫

V

‖ϒη(r)‖4dV

]−1

. (31)

This corresponds to the nonlinear gain for the modes that

are in the immediate neighborhood of the pump frequency

�0 ≃ ωη0
. It immediately follows that it is proportional to the

Kerr nonlinearity but inversely proportional to the effective

mode volume.

The intermodal coupling factor

�αβµ
η =

ω2
µ

ω2
η0

√

ωαωβωµ

ω3
η

∫

V
[ϒ∗

η · ϒµ][ϒ∗
β · ϒα] dV

∫

V
‖ϒη0

‖4dV
(32)

defines the coupling strength between the four interacting

modes α, β, µ, and η. This coupling essentially depends

on the power density overlap of the modes. The modes of a

narrow-span comb (close-by values of ℓ) have approximately

degenerated values for this coupling factor. Modes that are far

away can be relatively poorly coupled as their power density

overlap is not optimal (see Fig. 3). Hence the pumped WGM

is geometrically strongly coupled to its adjacent modes but

less efficiently coupled to extreme modes. This is another

factor that should be considered while analyzing the span-

limiting mechanisms in optical-frequency comb generation.

Interestingly, according to Eq. (32), this term does not vanish

when we consider pairwise crossed-polarized photons (e.g., α

and β are TE modes while µ and η are TM modes).
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The ideal resonance condition occurs when the modal four-

wave mixing frequency detuning

̟αβµη = ωα − ωβ + ωµ − ωη (33)

vanishes. This condition straightforwardly imposes that any

four photons involved in the four-wave mixing interactions

h̄ωα + h̄ωµ → h̄ωβ + h̄ωη should obey energy conservation

as well as the conservation of total angular momentum

following ℓα + ℓµ = ℓβ + ℓη. This ideal condition ̟αβµη = 0

would have been automatically fulfilled for an equidistant

eigenmode distribution, but since there is no such equidistance

in WGM resonators, ̟αβµη walks off from 0. In fact, four-wave

mixing is a priori still possible for a mode η as long as

the walk-off is smaller than the modal half-bandwidth, that

is, |̟αβµη| < �ωη/2. In reality, other detunings, such as

those induced by self- or cross-modulation, can impede the

phenomenon. Generally, in the literature, this walk-off from

perfect equidistance is considered to be the main mechanism

leading to a limited span for the comb. However, as we have

seen in the preceding paragraphs, many other phenomena

should be taken into account while investigating the span-

limiting mechanisms (nonuniform absorption, nondegenerate

confinement factors, power overlap coupling for the modes,

etc.).

Finally, the external pumping term

Fη = −
i�2

0

ωη�ωη

√

1

2

ε0n
2
0

h̄ωη

Eext

∫

∞
ϒ∗

η(r) · e0 dV (34)

quantifies how the external pumping interacts with the WGM

η. This term is only resonant with the reference mode of

frequency ωη0
≃ �0 and is totally rejected for any other mode

(since, in that case, |�0 − ωη| ≫ �ωη). It has been normalized

in a way that Fη has a comparable magnitude with Aη; in

particular, |Fη0
|2 can be interpreted as the number of photons

that are coupled into the cavity from the outside. On the basis

of this modal expansion model, we will investigate in detail the

threshold mechanisms of comb generation in the next section.

VI. COMB-GENERATION THRESHOLD

For the sake of simplicity, we only consider in this article the

simplest configuration, where the pumping field has a single

frequency and a fixed polarization. Therefore, starting from

this section, we assume that the modes η only depend on

their polar number ℓ. For convenience, we introduce a shifted

eigennumber l = ℓ − ℓ0, where ℓ0 is the angular number of the

pumped mode. This notation is particularly interesting because

the pumped mode corresponds to l = 0, while the side modes

symmetrically expand as l = ±1, ± 2, ± 3, . . . , where “+”

and “−” stand, respectively, for higher and lower frequency

side modes. The integer l therefore becomes the only number

that enables us to identify unambiguously the cavity modes of

interest.

Unless otherwise specified, the parameters used in the

whole article are the following: the polar eigennumber of the

pumped mode is ℓ0 = 143 50, corresponding to λ0 = 1560.5

nm in vacuum; the refraction index is n0 = 1.43 at λ0, and the

calcium fluoride cavity has a radius a = 2.5 mm; the modal

volume of the pumped cavity has been calculated to be equal

to V0 = 6.6 × 10−12 m3; the value of the Kerr coefficient

is n2 = 3.2 × 10−20 m2/W; the cavity is critically coupled,

with a loaded quality factor Q0 = 3 × 109, corresponding to

a central modal bandwidth �ω0 ≃ 2π × 64 kHz; and last, the

polarization is TE.

A. System below threshold

Below threshold, the side modes are not excited so that

they simply obey A±l = 0, with l > 0. On the other hand, the

fundamental mode l = 0 is excited by the external pump, and

from Eq. (27), it can be deduced that the electric field in this

mode obeys

Ȧ0 = − 1
2
�ω0 A0 − ig0|A0|2A0 + 1

2
�ω0 F0 eiσ t , (35)

where

σ = �0 − ω0 (36)

is the detuning angular frequency between the pump frequency

and the cavity-mode resonance of the central mode. We can

remove the explicit time dependence in this equation by

introducing the variable transformation B0 = A0 exp[−iσ t]

obeying

Ḃ0 = − 1
2
�ω0B0 − iσB0 − ig0|B0|2B0 + 1

2
�ω0 F0. (37)

Let us now consider that the steady state amplitude of the

central mode is A0s . Using the relationships Ḃ0 = 0 and

|B0| = |A0|, we can deduce that the input and modal number

of photons are related by

|F0|2 =
[

1 +
4σ 2

�ω2
0

]

|A0s |2 +
8g0σ

�ω2
0

|A0s |4 +
4g2

0

�ω2
0

|A0s |6

(38)

in the steady state. This algebraic equation is bicubic so that for

a given input |F0|2, there may be one, two, or three solutions

for |A0s |2. This kind of cubic equation leads the well-known

hysteresis phenomenon, and in our case, it is worth recalling

that when there are three solutions, the intermediate one is

always unstable, therefore corresponding to a forbidden value.

It is essential here to identify these forbidden values because

experimentally, the controllable (free) parameter is the external

pump F0 and not the comb-generating internal field A0s .

Hence, from the nontrivial relationship between both, we need

to establish a stability chart evidencing the forbidden values

of the internal fields depending on the pumping. Such values

appear in fact when the cubic dependence in Eq. (38) has local

extrema, that is, when there are values of A0s for which the

function

C =
∂[|F0|2]

∂[|A0s |2]
(39)

is null; the forbidden values simply lie in between. This partial

derivative function is a biquadratic function, and the hysteresis

boundary exists wherever the related discriminant

�hyst = 64
g2

0

�ω4
0

[

σ 2 −
3

4
�ω2

0

]

(40)
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is positive. In other words, stable values for the pump are those

for which the condition C > 0 is fulfilled, explicitly leading to

|A0s |2 /∈ [B−,B+], (41)

with the boundaries

B± =
1

g0

[

−
2σ

3
±

1

3

√

σ 2 −
3

4
�ω2

0

]

. (42)

The detuning condition for the existence of these boundaries

is

σ < −
√

3

2
�ω0 = σhyst. (43)

When σ > σhyst, there is no hysteresis, and the central mode is

stable regardless of its amplitude (C is always positive in this

case). This threshold detuning σhyst below which forbidden

values for A0s may arise is in fact significantly large, as it

is even outside the limits ±�ω0/2 delimiting the bandwidth

of the pumped mode. It therefore appears that as long as the

detuning is reasonable (e.g., within the bandwidth of the central

mode), any value of the external field F0 only corresponds to

one value of the internal field A0s . Moreover, any value A0s

can theoretically be reached and actually observed. For larger

detunings below the resonance frequency ω0, hysteresis arises,

and there are forbidden gaps for the internal modal amplitude.

Figure 4 shows how the stationary powerA0s in the pumped

mode varies when the laser power increases. In Fig. 4(a), the

laser frequency is within the bandwidth of the central mode,

and the modal power increases monotonously with the pump.

We still have the same behavior even when the laser frequency

FIG. 4. Power |A0s |2 in the pumped mode as a function of the

injected power |F0|2, according to Eq. (38). Both variables are

normalized in units of |A0|2th. The various figures correspond to

different laser detuning frequencies σ . These amplitude variations

are valid as long as no comb is generated in the system. (a) σ = 0;

(b) σ = −0.5 �ω0; (c) σ = −0.86 �ω0; (d) σ = −1.2 �ω0.

is detuned to the edge of the bandwidth [in Fig. 4(b)]. However,

when the laser frequency is detuned to σhyst ≃ −0.86 �ω0,

hysteresis arises. If the detuning is further increased leftward,

there is a multivalued range where a single external pump

power can lead to three possible different amplitudes for

the central mode, as can be seen in Fig. 4(d). The intermediate

solution is always unstable and can never be observed, while

the other two are indeed stable: They can potentially generate

a comb.

The central-mode amplitude A0s can also be viewed as

the zeroth-order comb. In fact, this single-peaked comb

is effectively observed when no side mode is excited, as,

for example, below the comb-generation threshold (|A0|2 =
|A0s |2); however, it becomes virtual above threshold when the

central mode is depleted through FWM (|A0|2 < |A0s |2). As

we will further see, the concept of a zeroth-order comb is

useful above threshold at the time to evaluate the efficiency

of comb generation because the excess power |A0s |2 − |A0|2
corresponds to the number of photons originating from the

pump. They are distributed among the various side modes

through four-wave mixing. Hence computing the zeroth-

order comb provides a fast and accurate estimation of the

number of photons available for the side modes and thus an

estimation of their respective powers. The phenomenology

below threshold being understood, we can now study the

threshold conditions leading to comb generation whenever the

central mode oscillation is stable.

B. System at threshold

For finding the threshold leading to oscillation for a given

pair of side modes A±l = 0, a well-known technique is to in-

vestigate the linear stability of the trivial equilibrium A±l = 0.

This equilibrium is perturbed with δA±l , and the threshold is

defined by the set of parameters separating the values for which

the perturbation decays to 0 (the trivial equilibrium is stable) of

those where the perturbation diverges to infinity (onset of side

mode oscillations). In this stability analysis, no other modes

than the specific pair δA±l are oscillating.

From Eq. (27), it can be shown that A0 still obeys Eq. (35),

and then it still represents the so-called zeroth-order comb. On

the other hand, the side mode perturbations obey

δȦ±l = − 1
2
�ω±l δA±l − ig0�

0,∓l,0
±l A2

0 δA∗
∓le

i̟±l t

− ig0

[

�
±l,0,0
±l +�

0,0,±l
±l

]

|A0|2 δA±l, (44)

where

̟l = 2ω0 − ωl − ω−l = ̟−l (45)

is the modal detuning. This important parameter can also be

viewed in this context as an overall (or cavity) dispersion

parameter, simultaneously accounting for both geometrical

and material dispersion. Note that the intermodal coupling

coefficients �
0,−l,0
l , �l00

l , and �00l
l converge to 1 as l → 0.

Once again, explicit time dependence should be removed:

If we introduce the variables B0 = A0 exp[−iσ t] and δB±l =
δA±l exp[−i(σ + 1

2
̟±l)t], Eq. (44) can be explicitly rewritten
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as
[

δḂl

δḂ∗
−l

]

=
[

Ml Rl

R∗
−l M∗

−l

] [

δBl

δB∗
−l

]

, (46)

with

Ml = − 1
2
�ωl − iσ − 1

2
i̟l − ig0

[

�l00
l + �00l

l

]

|B0|2
(47)

Rl = −ig0�
0,−l,0
l B2

0.

When the central mode reaches the steady state B0s , side

modes are created when at least one of the eigenvalues λ

obeying the secular equation
∣

∣

∣

∣

Ml − λ Rl

R∗
−l M∗

−l − λ

∣

∣

∣

∣

= 0 (48)

has a positive real part, which occurs concretely when

Re{[Ml + M∗
−l] +

√

[Ml − M∗
−l]

2 + 4RlR
∗
−l} > 0. (49)

The preceding equation is the rigorous stability condition

required for a side mode to appear at the exclusion of any other

one. For practical purposes, we will consider some simplifying

assumptions in order to move forward with this analysis. In

particular, if we suppose that the first modes to reach threshold

are relatively near the pump, some simplifications can be

introduced. We can in this case consider that the intermodal

coupling coefficients �αβµ
η are equal to 1 as close-by modes are

almost perfectly overlapped; the confinement factors are also

considered as identical and can be equated to 1 in first approx-

imation. Along the same line, according to Eq. (28), the modal

linewidth can also be considered as degenerated with �ω0.

Provided that the argument of the square root in Eq. (49) is

positive (if it is negative, the inequality is automatically false),

the stability condition for a side mode pair ±l can be rewritten

as S(l) < 0, with

S(l) = 12[g0|A0s |2]2 + 8[2σ + ̟l][g0|A0s |2]

+ [2σ + ̟l]
2 + �ω2

0. (50)

This stability condition may provide qualitatively different

behaviors depending on whether dispersion is taken into

account through ̟l . In order to gain a simpler understanding of

the threshold phenomenology, we will first neglect dispersion

to calculate the threshold power for comb generation.

C. Neglecting cavity dispersion

Within this approximation, we set ̟l = 0, and the stability

condition of Eq. (50) no longer depends on l so that all

the modes near the pump (where the modal gains, volumes,

confinement factors, etc., are nearly degenerate) become

stable or turn unstable simultaneously. Note that the analysis

performed in this section is also valid when geometrical and

material dispersion cancel each other without being negligible

themselves since in that case, we still have ̟l = 0.

Equation (50) is quadratic in g0|A0s |2: It is therefore a

bottom-down parabola that may or may not intersect the

abscissa axis, depending on the various parameters. If it does

not, the pair of side modes ±l stays in the trivial equilibrium

and is not excited by the pump; if it does, these side modes

±l oscillate for the parameter range for which the parabola is

below the abscissa axis.

The zeros of Eq. (50) constitute a boundary curve that can

be formally expressed as

B̃± =
1

g0

[

−
2σ

3
±

1

3

√

σ 2 −
3

4
�ω2

0

]

, (51)

corresponding, respectively, to the upper (+) and lower

(−) power boundary values leading to comb generation.

The stability condition S > 0 for comb generation therefore

translates explicitly into

|A0s |2 ∈ [B̃−,B̃+]. (52)

For these power boundaries to be real and positive, the

discriminant associated with the quadratic equation should be

positive, and the detuning σ should be negative. In particular,

since the absolute threshold corresponds to the parabola

touching the abscissa axis, the quadratic equation should have

a null discriminant, thereby leading to the following threshold

value for the detuning:

σcr = −
√

3

2
�ω0 . (53)

The value

|A0|2cr =
1

√
3

�ω0

g0

(54)

therefore corresponds to the critical number of photons in the

pumped mode leading to comb generation when the detuning

frequency σ is varied.

The range of values leading to solutions lying between the

zeros defined in Eq. (51) leads to sustained comb generation.

Geometrically, it corresponds to the parabola intersecting the

abscissa axis: Stable comb generation occurs for parameters

lying within the closed surface delimited by the parabola and

the axis. Algebraically, comb generation corresponds to the

situation in which the aforementioned discriminant is strictly

positive, therefore leading to the phase-detuning condition

σ < σcr . (55)

The detuning therefore has to be very large (outside the

bandwidth) to trigger comb generation.

Further analysis shows that the absolute minimum power

leading to comb generation can be obtained through the equa-

tion ∂B̃−/∂σ = 0, which yields the detuning and the power

for which the lower boundary branch reaches a minimum. The

optimum detuning is found to be

σopt = −�ω0 (56)

and leads to the following threshold power for comb genera-

tion:

|A0|2th =
1

2

�ω0

g0

=
1

2 h̄ω0

n2
0

n2c

V0

Q0

. (57)

It can therefore be deduced that |A0|2cr = [2/
√

3] |A0|2th,

meaning that the critical power as the laser frequency σ is

detuned is nearly 15% higher than the absolute threshold value.

We will consider the threshold power |A0|2th as a normalization

parameter throughout this article.
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FIG. 5. Stability chart for the pumped mode and for the combs

as a function of the laser detuning σ and the stationary pumped

mode power |A0s |2 in the zero-dispersion case. The shaded area

corresponds to unstable values of |A0s |2 [values destabilized by

hysteresis, as explained in Fig. 4(c)] defined by Eq. (41). On the

other hand, the hatched area corresponds to values of the pumped

mode leading to stable comb generation, according to Eq. (52). Hence

comb generation is only possible wherever the hatched area does not

overlap the shaded area. Since both areas are perfectly overlapped,

comb generation is impossible in the zero-dispersion case.

Surprisingly, we find that σcr = σhyst; that is, detuning

needed for comb generation is also the minimal detun-

ing for which A0s is unstable. Moreover, the boundaries

defined by Eqs. (51) and (42) are identical because we have

B̃± ≡ B±; therefore the stability area for the side modes

perfectly overlaps the instability area for A0s , as it can be seen

in Fig. 5. In other words, the simultaneous fulfillment of both

Eqs. (41) and (52) is impossible as the side modes are supposed

to become stable exactly when the fundamental mode that is

exciting them loses its stability. Therefore this analysis shows

that in a medium without dispersion (or equivalently, in a

medium where geometrical and material dispersions perfectly

cancel each other), frequency comb-generation cannot arise.

This result is highly nonintuitive as the zero-dispersion limit

is sometimes presented as the ideal situation that would allow

for virtually unlimited wide-span comb generation. However,

it is important to note that the degeneracy between these two

areas can eventually be lifted by other phenomena that have

not been considered in our analysis, such as thermal effects,

or eventually, some spatiotemporal effects that have not been

taken into account in our modal expansion model.

We will show in the next section that material and

geometrical dispersion are not detrimental to WGM comb

generation. In fact, they are necessary to permit the existence

of stable combs. They can also limit their frequency span.

The existence of dispersion will explain why the first pair of

side modes to reach the oscillation threshold is not necessarily

the one adjacent to the pump and also why it is possible to

generate combs with multiple-FSR spacing, as it has been

reported in the literature [6,7].

VII. EFFECT OF MATERIAL AND GEOMETRICAL

DISPERSION

In this section, we analyze the effect of dispersion on the

threshold and stability of optical combs. Here the dispersion

term ̟l becomes relevant in Eq. (50).

Equation (50) is still a bottom-down parabola, but now

its coefficients depend on the mode order l. Following the

same reasoning as in the preceding subsection, it is found that

the upper and lower power bounds leading to ±l side mode

oscillation are

B±(l) =
1

g0

[

−
2σl

3
±

1

3

√

σ 2
l −

3

4
�ω2

0

]

, (58)

with

σl = σ +
1

2
̟l < σcr = −

√
3

2
�ω0. (59)

It is found that the threshold power for comb generation can be

obtained through ∂B−(l)/∂σl = 0 and yields the same value as

in Eq. (57), that is, it is the same as when there is no dispersion.

It is also the same for all the modes near the pump. However,

there is an essential difference as far as critical and optimal

phase detunings for each pair ±l are concerned: The formulas

are the same as in Eqs. (55) and (56), except that σ has to be

replaced by σl .

Understanding how dispersion affects comb generation

requires an explicit formulation of the dispersion parameter

̟l as a function of the side mode orders l. We will discuss this

in the next section.

A. Explicit determination of material and geometrical

dispersion

In order to evaluate the dispersion parameter ̟l , it is useful

to Taylor-expand Eq. (14) at up to order l2 following

ωl = ω0 +
c

n(ωl) a
l + δωl, (60)

with

δωl ≃ 2− 1
3 ℓ

− 2
3

0 ξ1

c

n0a

[

l −
1

9ℓ0

l2

]

. (61)

The parameter ̟l can be decomposed into geometrical and

material dispersion following

̟l = ̟l|n=n0
+ ̟l|δωl=0

≡ ̟geo,l + ̟mat,l . (62)

From the definition of Eqs. (45) and (60), the geometrical

dispersion can be straightforwardly obtained as

̟geo,l ≃

[

ξ1

2
2
3

9

c

n0a
ℓ

− 5
3

0

]

l2. (63)

It appears that geometrical dispersion increases quadratically

with the reduced mode order. Since l is a measure of

the spectral distance, this term indicates that geometrical

dispersion for a symmetric pair of side modes is exclusively

of second order. A deviation from this law is to be expected

for waveguides that are not exactly spherical. However, this

geometrical dispersion is still generally normal.

As far as material dispersion is concerned, the first step is

to Taylor-expand the modal wave number at up to the second

order following

ωl

c
n(ωl) =

ω0

c
n0 + β ′

ω0
[ωl − ω0] +

1

2
β ′′

ω0
[ωl − ω0]2, (64)
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where

β ′
ω0

=
1

c

[

n0 + ω0n
′
ω0

]

β ′′
ω0

=
1

c

[

2n′
ω0

+ ω0n
′′
ω0

]

(65)

are, respectively, the inverse group velocity and the group

velocity dispersion in the medium. These parameters can be

computed for any frequency using the Sellmeier expansion

[27,28]. From Eq. (60), we have [ωln(ωl) − ω0n0]/c ≃ l/a,

and therefore the physical solution of Eq. (64) can be shown

to depend on material dispersion according to

ωl = ω0 +
1

β ′′
ω0

[

−β ′
ω0

+
√

β ′2
ω0

+ 2β ′′
ω0

l

a

]

. (66)

Hence combining Eqs. (60) and (66) yields the following

expression for material dispersion:

̟mat,l ≃
β ′′

ω0

a2β ′3
ω0

l2. (67)

Finally, we find that the overall dispersion varies quadrati-

cally with the mode order following

̟l = −ζ l2, (68)

with

ζ = −[̟geo,1 + ̟mat,1]

≃ −0.41

[

c

n0a

]
8
3

ω
− 5

3

0 −
2n′

ω0
+ ω0n

′′
ω0

n0

[

c

n0a

]2

. (69)

This real coefficient ζ determines the cavity (overall) dis-

persion behavior for the side modes, and it can be either

positive or negative, corresponding, respectively, to anomalous

or normal dispersion. It depends on the pumping frequency

ω0; on the optical properties of the bulk resonator through

through n0, n′
ω0

, and n′′
ω0

; and on its characteristic size a.

It can therefore be viewed as a constant parameter of the

pumped resonator, fixed for a given resonator and pumping

frequency.

We emphasize that one can use the Sellmeier expansion

to determine the refractive index and its derivatives and

then the parameter ζ using Eq. (69). However, earlier works

have indicated that there is sometimes a discrepancy between

theoretical and experimental data (see, e.g., Ref. [29]). The fact

that n′′
ω0

changes its sign near 1550 nm for calcium fluoride,

moreover, gives critical importance to third- and fourth-order

dispersion. This may dramatically increase the aforementioned

discrepancy. It is speculated that the discrepancy between

dispersion values derived from Sellmeier expansion and those

obtained for experiments in WGM resonators may originate

from variations of the dispersion properties of the material

according to fabrication processes or dependence of dispersion

with light power, either directly (if irradiance changes the

refraction index) or indirectly (through thermal lensing). The

Sellmeier expansion can therefore only approximate the real

value of ζ .

The main conclusion of the preceding analysis is that an

optical-frequency comb is generated when both the conditions

C > 0 for the central mode and S(l) < 0 for at least one side

mode pair are fulfilled simultaneously. Explicitly, this double

condition can be rewritten as

Stability for l = 0 : |A0s |2 /∈ [B−(0),B+(0)],
(70)

Stability for l �= 0 : |A0s |2 ∈ [B−(l),B+(l)],

where the stability boundaries B±(l) are defined in Eq. (58).

Different phenomenologies are to be expected according to the

sign and amplitude of ζ , as hereinafter discussed.

B. Case ζ < 0 (normal cavity dispersion)

The critical detuning condition of Eq. (59) leads to the

stability conditions

σ < σcr ,
(71)

|l| � lmax(σ ) =
√

(2/ζ )[σ − σcr ].

Hence, in this case, very strong detunings are needed

for comb generation (because σcr is negative), in any case

outside the bandwidth of the fundamental mode. Moreover,

there is a maximal side mode order beyond which direct

comb generation from the pump is impossible. This case is

represented in Fig. 6(a), where it can be seen that according to

Eq. (58), the hatched area standing for stable comb generation

moves leftward, thereby lifting the degeneracy with the area

of unstable central mode. Note that in practice, the numerical

value of lmax has to be rounded to the lower integer value.

However, comb generation in this case is still very unlikely

for two reasons. The first one is that, as it can be seen in

Fig. 6(a), generating a comb with normal dispersion would

FIG. 6. Stability diagram for comb generation for the side modes

l = ±10. The shaded region still represents forbidden (unstable)

values of the pumped mode, while the hatched areas correspond to

those where a stable pump can effectively generate the comb. Stable

comb generation effectively occurs in the hatched and nonshaded

areas. Note that the shaded area does not change, but the hatched does.

(a) Normal cavity dispersion ζ = −2π × 400 Hz. (b) Anomalous

cavity dispersion ζ = 2π × 400 Hz.
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require us to detune the laser very far away from the modal

bandwidth, and independently of the side mode pair ±l, the

detuning would in any case be stronger than σcr , which is

yet significantly out of the bandwidth. Pumping the cavity

with such a strongly detuned laser input is not experimentally

realistic and can hardly be implemented. The second reason is

that even if this could be done, Fig. 6(a) also shows that the

stable comb generation area is below the instability range so

that it is the lowest amplitude solution of the hysteresis area

that should be excited. Unfortunately, this solution is too close

to the instability area and is therefore only weakly stable. The

system will preferably jump to the highest amplitude solution,

which is far from from the instability zone and much more

stable. Hence the low-amplitude solution needed for comb

generation is not likely to be effectively sustained. Therefore

the case of normal dispersion is not interesting for comb

generation, and it will not be considered further in this article.

C. Case ζ > 0 (anomalous cavity dispersion)

Here the critical detuning condition of Eq. (59) gives

σ > σcr ,
(72)

|l| � lmin(σ ) =
√

(2/ζ )[σ − σcr ].

The numerical value of lmin has to be rounded to the higher

integer value. The preceding equation indicates that there is a

minimal side mode order below which direct comb generation

from the pump is impossible. On the other hand, the hatched

area standing for stable comb generation moves rightward

in Fig. 6(b), according to Eq. (58). Hence, in the case of

anomalous dispersion, this area can also be quite far away from

the hysteresis zone, meaning that central mode power may

be unconditionally stable and thus experimentally observable.

Therefore anomalous dispersion can lead to comb generation.

This phenomenology can be related to the so-called dispersive

bistability analyzed in Ref. [30].

Figure 7 shows that for some side mode pairs, this

dispersion-induced shift may be significant enough to allow

for stable comb generation when the laser detuning σ is within

the cavity-mode bandwidth (where there is no hysteresis;

increasing the laser power in this area corresponds to increas-

ing |A0s |2; see Fig. 4). For example, the pair l = ±30 appears

to have a wider stability area than the pair l = ±20. For a fixed

detuning within the bandwidth, the corresponding threshold

power is higher. If the laser power is slowly swept upward,

the pair ±20 will oscillate before the pair ±30. Figure 7 also

shows that increasing the laser input power too much leads to

instability in both cases. For example, if the central mode is

10 times above threshold and the laser is perfectly resonant

(σ = 0), none of these two pairs will oscillate. This is a quite

counterintuitive conclusion as one would think that increasing

the pump power should progressively excite more modes and

enhance their stability but not quench them.

The preceding analysis illustrates that the stability behavior

of the combs is nontrivial. Not all the side modes become stable

or unstable simultaneously. We will show in the next section

that this modal discrimination in terms of stability explains the

phenomenon of comb versatility.

FIG. 7. Stability diagram of various pairs of side modes in the

anomalous dispersion regime, with ζ = 2π × 400 Hz. Hatched and

shaded areas have the same meaning as in Fig. 6, and this figure can

be interpreted as a follow-up of Fig. 6(b) when the side mode order

increases: (a) l = ±20; (b) l = ±30.

D. Comb versatility for anomalous dispersion

The stability diagrams of Figs. 6 and 7 were plotted in the

plane σ -|A0s |2 for given side mode pairs (l = ±10, ±20, and

±30). They were useful in order to show how dispersion lifts

the degeneracy between the stable area for comb generation

and the unstable area for the central-mode power. It is also

insightful to plot the stability diagram in the plane l-|A0s |2 for

a fixed value of the laser detuning σ . The interest here is that

we can see the modes that could be directly excited by the

pump (once the laser frequency has been set).

Figure 8 displays an example of such a stability diagram,

where the laser input is resonant with the central mode

(σ = 0). The solid curves are plotted according to Eq. (58)

when l is varied. It can be seen that for these parameters, no

mode of order |l| < lmin = 17 can be excited (value rounded

upward from the exact lmin = 16.65), as expressed in Eq. (72).

However, the pair |l| = lmin is not the first to be excited

when the power is increased. The oscillating modes |l| = lth
at threshold are obtained as the solution of the equation

∂B−(l)/∂l = 0 and are found to correspond to σl = σopt,

yielding

|l| = lth(σ ) =
√

(2/ζ )[σ − σopt]. (73)

The preceding value has to be rounded to the nearest integer,

and in our case, we obtain lth = 18 (rounded from 17.89).

The stability diagram of Fig. 8 also indicates that only

symmetrical bands of modes can be excited, far away from

the central mode. For example, if the central mode is pumped

twice above threshold [|A0s |2 = 2|A0|2th], then only the modes

such that 19 < |l| < 30 can be excited by the pump. This is

precisely the mechanism that explains earlier results where
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FIG. 8. An example of a stability diagram for comb generation

as a function of eigenmode order l and power |A0s |2 in the central

mode. The dispersion parameter is set to ζ = 2π × 400 Hz and the

laser detuning to σ = 0. The hatched area corresponds to stable

comb generation, and the shaded areas are only there to emphasize

the intervals hereinafter discussed. If the central mode is pumped

twice above threshold, only the modes fulfilling 19 < |l| < 30 can be

excited. No mode of order |l| < lmin = 17 can be excited here through

degenerate FWM.

combs with multiple FSR spacing were observed: It is the

consequence of the fact that the modes adjacent to the pump are

not directly excited by the pump, while some spectrally distant

modes in a narrow frequency range experience parametric

gain. Conversely, if we want to know what power in the central

mode is required to excite the modes l = ±40, the figure shows

that the answer is between 3.2 and 10 times the threshold (this

indicates that a given pair of modes is not excited for any value

of the pump).

Figure 9 shows how the stability areas are shifted when the

laser frequency is detuned from one edge of the bandwidth

to the other, passing through the resonance frequency. Equa-

tion (72) indicates that the minimum mode lmin under which no

mode can be excited by the pump increases with the detuning

frequency σ . Hence, for a fixed pump power, detuning the

laser frequency positively would shift the stability bands for

|l| toward infinity.

FIG. 9. Various stability diagrams for comb generation as a

function of eigenmode order l and power |A0s |2 in the central mode,

as the laser detuning σ is varied. The dispersion parameter is still set

to ζ = 2π × 400 Hz, and the curve corresponding to σ = 0 is exactly

the same as the one in Fig. 8. The hatchings have been omitted in this

figure in order to improve its clarity.

These stability diagrams are consistent with the experi-

mental observations of comb versatility in WGMs reported so

far. In particular, the FSR order of the comb was monitored

in Ref. [6] through laser frequency detuning. This method

corresponds to shifting the stability diagram, as shown in

Fig. 9. On the other hand, tuning the comb FSR order through

the pump power and/or the coupling conditions (i.e., �ω0) is

the method that was used in Ref. [7]. It corresponds to the

stability diagram of Fig. 8.

E. Notion of primary comb

We have just shown that comb generation in WGMs

is a cascading process. When the cavity is pumped above

threshold, the first modes to oscillate are directly excited by

the pump. We refer to these modes as the first-order comb, or

the primary comb (see Fig. 8). The primary comb is therefore

constituted with the oscillating side modes whose amplitudes

are exclusively due to the pump, while their phases may be

affected by other side modes (which are themselves exclusively

pump induced). In other words, all the photons that are in the

side modes ±l originate from the pump through the photonic

interaction 2 h̄ω0 → h̄ωl + h̄ω−l , while the pump is depleted

accordingly but also receives back some photons through

h̄ωl + h̄ω−l → 2 h̄ω0. The pump and the modes of the primary

comb will subsequently interact to excite new modes, thereby

creating the secondary comb. The process follows on until a

steady state is reached. The overall comb is therefore made of

the primary and all the subsequent higher order combs.

It is important to note that from an experimental point of

view, the power increase is performed through the external field

power |F0|2. However, from a physical perspective, the most

relevant parameter for comb generation is the power inside the

central mode, which corresponds to |A0s |2 [obeying Eq. (35)].

This is due to the fact that all the stability charts have been

established relative to |A0s |2. Moreover, this control variable

is particularly suitable because as emphasized earlier, the

difference |A0s |2 − |A0|2th gives a good approximation of the

number of photons that are available to the various side modes.

When |A0s |2 is given, it is easy to determine the corresponding

|F0|2 through Eq. (38); for example, if |A0s |2 = x in units of

threshold power, then |F0|2 = x3 + x in the same units for σ =
0. Hence pumping the cavity just above threshold (|A0s |2 =
1.01) requires |F0|2 = 2.04, but reaching |A0s |2 = 3 requires

15 times more power from the external pump, as |F0|2 = 30.

VIII. COMB DYNAMICS

The dynamics of the comb is numerically investigated

by simulating the rate equations (27). The nonlinear terms

induced by FWM effectively affect the modal dynamics only

when they are resonant, that is, when the detuning frequencies

̟αβµη are smaller than the bandwidth �ωη. The resonant terms

are those fulfilling both the conservation of energy and angular

momentum. Therefore the relevant terms of the FWM sum in

the equation for Aη are exclusively those involving modes α,

β, and µ fulfilling lα − lβ + lµ = lη.

We have shown in Fig. 3 that modes of 1000 free

spectral ranges apart are still very well overlapped. Since

we are only considering 201 modes, the modes are spatially
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quasidegenerated. We set �αβµ
η = 1 for the sake of simplicity

as well as �ωη ≡ �ω0. On the other hand, we find from

Eqs. (60), (61), and (66) that the intermodal detuning can be

explicitly expressed as a function of dispersion and side mode

order following

̟αβµη = 1
2
ζ
[

l2
α − l2

β + l2
µ − l2

η

]

. (74)

Hence the dispersion phenomena in the cavity are still

governed by the single parameter ζ . This quadratic expression

of the intermodal detuning is still valid as long as the span of the

comb is restricted to a spectral range where the cavity disper-

sion is well approximated with only a second-order expansion.

The rate equations (27) have been numerically simulated

using a fourth-order Runge-Kutta algorithm. A total of 201

modes are considered simultaneously (−100 � l � 100), and

it corresponds to a wavelength span of ∼20 nm. The initial

conditions are the vacuum fluctuations: They are randomly

distributed with 〈Al(0)〉 = 0 and 〈|Al(0)|2〉 = 1/2, where 〈·〉
stands for the ensemble average over l. For each comb, we

simulated the multimode dynamics for a total duration of T =
2 ms, where the steady state is reached. The combs displayed

here are histograms of the modal power power plotted as a

function of the eigenmode order. The corresponding figures

can be viewed as fast-scale Fourier spectra.

A. Spectrum of the comb for various pump powers

Figure 10(a) displays the full comb just above threshold,

when the cavity is pumped only 1% above threshold. We can

observe that the pump only generates a single side mode pair,

whose order is lth = ±18, as theoretically predicted in Eq. (73).

When the pump power is increased in Fig. 10(b), the primary

comb is still constituted with only one mode pair (l = ±19),

which is taking all the energy available from the pump through

FIG. 10. (Color online) Evolution of the full comb as the pump

power in the central mode is increased. The displayed combs

correspond to spectrum snapshots at t = 2 ms. The parameters are

ζ = 2π × 400 Hz and σ = 0. The |A0s |2 is expressed in units of the

threshold power |A0|2th.

multimode competition [31,32]. The interaction between the

pump and this oscillating side mode generates new modes that

are spectrally located at integer multiples of the primary comb

(|l| = 19,38,57, etc.). In this case, the secondary and higher

order combs are harmonic relative to the primary comb. These

spectra do in fact correspond to combs with multiple FSR

spacing, as experimentally observed in Refs. [6,7]. It is also

interesting to note that this harmonic excitation of side modes

somehow corresponds to the bichromatic pumping scheme

investigated in Ref. [33], and it was shown to be a thresholdless

process. The pump power is further increased in Fig. 10(c);

we can observe that a subharmonic higher order comb arises,

owing to the emergence of stability bands around half-integer

multiples of the primary comb (l ∼ 11,22,33, etc.). The full

comb is more complex, and virtually all the modes around the

pump at up to |l| ∼ 100 are excited. The strong influence

of the subharmonic higher order comb induces a spectral

modulation that has also been observed experimentally in

Refs. [6,7]. Such spectrally modulated combs have also been

experimentally observed in Ref. [19], in excellent agreement

with theory. Further increase of the pump, as in Fig. 10(d),

leads to a stronger interaction between the various WGMs. It

is noteworthy that in these spectra, the number of photons in

the central mode drops to |A0|2th (or 0 dB), meaning that all the

energy above threshold is distributed among the side modes.

These combs can be viewed as energetically optimal. One can

also observe that as the pump increases, the oscillating modes

of the primary comb globally have a larger order value |l| as

the pumping power is increased. This feature is in perfect

agreement with the theoretical analysis since the stability

diagram of Fig. 8 explains that the stability bands should move

away from the central mode as the input power increases.

B. Transient spectral dynamics of the comb

Investigating the transient dynamics of the combs for a fixed

pump power shows how the photons are cascading from the

central mode to its neighbors. Understanding this sequence is

therefore essential to engineer comb spectra.

Figure 11 displays some snapshot spectra at various

instants. At 5 µs [Fig. 11(a)], the photons from the outside have

already filled the central mode. Then, in agreement with our

theoretical analysis, it appears that the first modes to be excited

belong to the primary comb, as can be seen in Fig. 11(b). One

can notice that the modes are excited in a symmetrical manner

relative to the pump, thereby indicating that they have been

populated through degenerated FWM. At 60 µs, the spectrum

of Fig. 11(c) shows that the central mode interacts with the pri-

mary comb to excite an harmonic higher order comb. At 200 µs

[Fig. 11(d)], a subharmonic higherorder comb emerges and

populates the modes that are at middistance from the already

existing pattern. Finally, the comb converges toward its steady

state [Fig. 11(e)], where almost all the modes are strongly

excited, even though a weak spectral modulation is still

apparent: This regime is dominated by nondegenerated FWM.

C. Spectrotemporal representation of the comb dynamics

It is interesting to monitor the spectrotemporal dynamics

of the comb, that is, how the spectrum evolves with time.
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FIG. 11. (Color online) Transient dynamics of the comb when

the cavity is pumped with |A0s |2 = 1.8 |A0|2th. The parameters are

ζ = 2π × 400 Hz and σ = 0.

Figure 12 presents two spectrotemporal diagrams, corre-

sponding to two different pump powers. In Fig. 12(a), the

central is pumped 1.2 times above threshold. The steady state

FIG. 12. (Color online) Spectrotemporal behavior of the full

comb with ζ = 2π × 400 Hz and σ = 0. (a) |A0s |2 = 1.2 |A0|2th, the

spectral components converge toward constant values; (b) |A0s |2 =
1.8 |A0|2th, the spectrum is chaotic in the time domain. Note that

snapshots at t = 2 ms would correspond to Figs. 10(b) and 10(c),

respectively.

is stationary, and the oscillating spectral component has a

constant amplitude. On the other hand, the central is pumped

1.8 times above threshold in Fig. 12(b), and in this case, it

can be seen that the comb becomes nonstationary. In fact, this

comb is chaotic with a maximal Lyapunov exponent λ̃ ∼ 7 ×
104 s−1 (in other words, the temporal dynamics is not

predictable beyond λ̃−1 ∼ 14 µs). The possibility of a chaotic

comb dynamics should be taken into account in future applica-

tions because the time-dependent amplitude dynamics of the

Kerr modes induces parasite modulation spectral components.

D. Computational complexity

A key point in modeling the WGM dynamics is computation

time. This aspect gains more importance when the comb is

required to span more than one octave [1–3], with several

thousands of oscillating modes. Let us consider a comb

containing 2L + 1 modes, with −L � l � L. It can be

demonstrated by recurrence that for any given mode η = l,

the number of resonant four-wave mixing contributions of the

kind �αβµ
η AαA

∗
βAµei̟αβµη t is exactly

ℵ(l,L) = 3L2 + 3L − l2 + 1. (75)

This number is in fact considerable for wide-span combs: In

Figs. 10 and 12, for example, the central mode is affected by

ℵ(0,100) = 30301 four-wave mixing terms while the extreme

modes still receive ℵ(±100,100) = 20301 contributions. The

computation time Th of each time step is proportional to the

sum of the all FWM contributions to all the modes so that

Th ∝
l=L
∑

l=−L

ℵ(l,L) ≃
∫ L

−L

ℵ(l,L) dl ≃
16

3
L3 + O(L2). (76)

In other words, the computation time increases in a cubic

power fashion with the number of modes. Hence, since

simulating a comb with 200 modes requires a few days with a

laptop computer, the simulation of an octave-spanning comb

with 10 000 modes is simply not affordable (computation

time is about 503 times longer). However, it is known that

polynomial algorithms are particularly suited for supercom-

puting with parallel task distribution. Hence supercomputation

can drastically reduce the simulation time and allow for

the simulation of these octave-spanning combs. This perspec-

tive is particularly interesting because it would enable us to test

the dispersion compensation schemes that can potentially push

the comb limits to these extremes. It should be emphasized that

the computational problem in octave-spanning combs relies

exclusively on the number of modes to be simulated: For

smaller cavities, the FSR is larger and the number of modes

needed to span over one octave is reduced accordingly. For

example, a cavity whose diameter is a few tens of micrometers

can generate an octave-spanning comb with only few hundreds

of modes, whose dynamics can efficiently be simulated with a

laptop computer.

IX. EXPANDING THE SPAN OF THE COMB

As mentioned in the introduction, reaching the comb

span beyond one octave allows for the autoreferencing link

between optical frequencies and gigahertz microwaves, with
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metrological precision. It is therefore a key objective in comb

generation. The model enables us to deduct some interesting

pathways that may favor or limit the spectral extension of the

comb. For a specific case, we consider the case of a comb

spanning from 1000 to 2000 nm, with a central wavelength at

1550 nm, and we try to anticipate the mechanisms that may

limit this span according to the model.

A term that seemingly plays an important role is the modal

confinement factor Ŵη, measuring the geometrical portion of

the mode that is within the sphere. It should be noted that

though all the WGMs have the same radial order n = 1, they

have different angular orders ℓ and therefore different radial

profiles, according to Eq. (11). Since the WGMs are strongly

confined, this factor is very close to 1. Moreover, modes with

close order ℓ, also have quasiequal confinement factors; how-

ever, this is not the case for modes that are spectrally far away.

The modal linewidth �ωη linearly depends on its central

frequency ωη, meaning roughly that the bandwidth of the

comb peak at 1000 nm is double the one at 2000 nm for the

same Q. Moreover, we also find that the modal linewidth is

proportional to the absorption na(ωη), which also depends

on the frequency. In a 1000 nm window, the absorption

(or equivalently, the transparency) of the bulk medium

may vary significantly. For example, absorption typically

varies from 2 × 10−5 cm−1 at 1060 nm to 10−3 cm−1 at

2700 nm for CaF2 [34]. Then, absorption is expected to be

stronger at 2000 nm than at 1000 nm in the comb, somehow

counterbalancing the bandwidth disequilibrium emphasized

earlier. The proportionality of �ωη with the confinement

factor Ŵη adds a third degree of freedom to this issue.

The ideal resonance condition for FWM, ̟αβµη = 0, is not

fulfilled because of geometrical and material dispersion [35].

Generally, in the literature, this is considered to be the main

mechanism leading to a limited span for the comb. We have

shown in this article that anomalous dispersion is needed for

comb generation. However, strong dispersion leads to very

unequidistant mode distribution, which is incompatible to the

energy and momentum conservation requirement of four-wave

mixing. Hence an optimal trade-off has to be defined in order

to fulfill both constraints. Moreover, the dispersion behavior of

the bulk material over an octave is very complex, in particular

nonmonotonous, so that it is difficult to anticipate its influence

on a general basis.

The FWM coupling also depends on the geometrical

overlap of the modes through the factor �αβµ
η . The modes of a

narrow-span comb (close-by values of ℓ) have approximately

the same geometrical coupling. Modes that are far away are

relatively poorly coupled as their geometrical overlap is not

optimal (see Fig. 3). For example, the pumped WGM is

geometrically strongly coupled to its adjacent modes but less

efficiently coupled to the extreme modes at 1000 nm than at

2000 nm. This is another feature that should be considered

while analyzing the span-limiting mechanisms in optical-

frequency combs. Another important point is that this coupling

factor is explicitly frequency dependent because of our

normalization in terms of number of photons. This explicit de-

pendence indicates that beyond the spatial overlap, our modal

coupling factor also depends on the energy of the photons.

An important issue for octave-spanning combs is the

number of oscillating modes. Effectively, an octave with THz

spacing requires only a few hundred modes, while a comb with

gigahertz spacing would require more than 10 000. Coupling

into the cavity the large amount of photons needed to populate

all these modes is a challenge per se. For each cavity, there

are physical factors limiting the input pumping power and

thus the available number of photons to be transfered to the

various side modes. This sets an upper limit to the number of

modes that can be excited above a given level and impedes the

generation of arbitrarily wide combs with arbitrarily narrow

FSR spacings.

X. CONCLUSION

We have established a general framework for the study

of optical-frequency combs generated with monolithic res-

onators. Starting with a wave equation, we have constructed on

a semiclassical basis a set of coupled time-domain differential

equations ruling the dynamics of the electric field for each

cavity mode. We have provided formulas for the threshold

number of photons needed for comb generation as well a

method to predict the first side modes that will be excited

by the pump. Our analysis has shown that even though strong

dispersion is naturally detrimental to comb generation, weak

anomalous dispersion is needed in order to lift the degeneracy

between the unstable hysteresis area for the central mode and

the stable area for side mode excitation in the parametric space.

The theoretical analysis has demonstrated that the cascad-

ing mechanism leading to a wide-span comb is complex,

as the pump preferably excites a limited set of modes (the

primary comb) and then utilizes them as relays to excite the

remaining side modes through a thresholdless bichromatic

pumping process. It was shown that multiple FSR spacing

and spectral comb modulation are a consequence of this

sequential excitation scenario originating from the interplay

between anomalous dispersion and Kerr nonlinearity. Optical-

frequency comb generation in this context presents strong

similarities with modulational instability and supercontinuum

generation [36].

Beyond the study of optical-frequency combs, this modal

approach could be useful to investigate other nonlinear

phenomena in these WGM resonators such as erbium-doped

lasers [37–41], Raman lasers [42,43], and Brillouin lasers [44].

More generally, this work is integrated to the perspective of

nonlinear phenomena in optical cavities and waveguides, and

it is a fruitful paradigm for crystalline or silicon photonics

[45–47]. It is noteworthy that a quantification of this model

would also enable the exploration of many interesting quantum

electrodynamic effects [48,49].

Though it is very insightful and instructive, our modal

approach can still be improved. Particular attention should be

paid to this issue of thermal effects, even though it may appear

at first sight to be a technical issue. For example, our model

relies on the so-called cold-cavity mode expansion, where we

assume that the refraction index is temperature independent.

However, as shown in Fig. 2, the energy of WGMs is confined

in a very narrow torus inside the cavity, and this high density

of energy leads to a temperature-induced local change in the

refraction index, sometimes referred to as thermal lensing.

This thermal lensing induces a temperature-dependent shift in

the eigenmode distribution, linewidths, and spatial extension.

033801-16



MODAL EXPANSION APPROACH TO OPTICAL- . . . PHYSICAL REVIEW A 82, 033801 (2010)

Moreover, it interacts in a very complex way with the modal

dynamics of the system [50]. Further investigations including

the temperature variable in our equations are needed in order

to know if thermal lensing plays a positive or a negative role as

far as the spectral extension of the comb is concerned. Along

the same line, the WGMs also experience Kerr lensing as the

optical power also modifies locally the refraction index and

thereby the various physical properties of the WGMs (mainly

spectrum, modal linewidths, and spatial extensions).

We also know that generally, waveguides are not spherical

(the principal and curvature radii are different). Hence the

spherical eigenmodes ϒη(r) are no longer (nearly) orthogonal,

and spurious coupling terms between all modes should be

taken into account in our equations after Hermitian projection.

While studying ultrawide combs, it may also be possible

that the modal frequencies ωη should be replaced by the

instantaneous frequencies ωη − iĖη/Eη and that the second

derivative terms Ëη may be no longer negligible.

A straightforward step after our completely deterministic

study is to include the effect of noise. The study of stochastic

equations within the frame of Langevin equations would be

an interesting tool to investigate the optical phase diffusion

of each mode but also the phase noise of the microwaves

that can be extracted from these combs. Another issue that

would deserve attention is the temporal output of the system:

Effectively, the generation of a periodic train of pulses

is expected, but the various comb configurations (spectral

modulation, multiple FSR spacing, etc.) could induce a

wide variety of output wave forms that may be particularly

interesting from the perspective of optical pulse synthesis.

Various configurations with multipolarized or polychromatic

pumping schemes [33] can also be investigated with this modal

approach, and we anticipate that interesting phenomena may

arise from these degrees of freedom. This system is also very

interesting as it enables us to understand the nonlinear dy-

namics of high-dimensional systems coupled through a single

reservoir of energy. Finally, the most important prospective

efforts will be devoted to the achievement of an ultrawide comb

spanning beyond one octave, with the smallest FSR spacing

possible.
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