A mechano-biological model to predict the role of implant surfaces in the periprosthetic healing

Gaëtan Guérin, Dominique Ambard, Pascal Swider

To cite this version:

Gaëtan Guérin, Dominique Ambard, Pascal Swider. A mechano-biological model to predict the role of implant surfaces in the periprosthetic healing. 16th Congress of the european society of biomechanics, Jul 2008, Lucerne, Switzerland. pp.Cd-Rom. hal-00582902

HAL Id: hal-00582902
https://hal.archives-ouvertes.fr/hal-00582902

Submitted on 7 May 2013
A MECHANO-BIOLOGICAL MODEL TO PREDICT THE ROLE OF IMPLANT SURFACES IN THE PERIPROSTHETIC HEALING

Gaëtan Guérin (1), Dominique Ambard (2), Pascal Swider (1)
1. Biomechanics Laboratory, France; 2. LMGC UMR5508, France

Introduction
Conditions influencing bone growth in the early post-operative period include the surgical technique, mechanical [Prendergast, 1997] and biochemical factors [Bailón-Plaza, 2001]. Low performances of implant fixation were generally associated with a low mineralization or a strong heterogeneous distribution of bony structure in the new-formed surrounding tissue and the physico-chemical properties of the implant surface might pay a significant role. We previously developed a mechanobiological model of healing coupling porous media mechanics to biomathematics [Ambard, 2006]. To go further, we hypothesized that such mathematical model could be completed to investigate the role of implant surface in cell proliferation, migration, and adhesion. The application concerned our stable canine implant [Vestermark, 2004].

Methods
The coupling of porous media mechanics and biomathematic allowed the diffusive-convective-reactive governing equations (1) to be derived:

\[L \frac{\partial \phi}{\partial t} + C \text{grad}(x) = D \Delta(x) + \Omega \]

Output measures were the structural (or mineralized fraction) \(\phi_s \), the fluid fraction \(\phi_f \), the growth factor concentration \(C_g \) (TGF-\(\beta \)) and the osteoblast concentration \(C_o \). Structural porosity, fluid flow and growth factors conditioned the cellular behavior (proliferation, chemotactic & haptotactic migrations, mineral fraction aposition). The cell adhesion influenced the motility through the cell diffusion coefficient \(D_o \) dependent upon the substrate (bone or implant). The growth factor retention into the initial gap was modelled by a local diffusion coefficient. The source of growth factors involved the osteoblast concentration \(C_o \), the growth factor concentration \(C_g \) to take into account the autocrine and paracrine modes of TGF-\(\beta \), and \(\alpha_g \) dependent upon the osteoblast localization (bone or implant). The model of cell proliferation was similar (equ. 3); \(N_0 \) being the proliferation threshold, \(C_o \) the initial growth factor concentration.

\[\Omega_g = \alpha_g (1 - \phi_f) \sigma C_o \frac{C_o}{g} \]

\[\Omega_o = \alpha_o (1 - \phi_f) \sigma C_o \frac{(1 - \phi_f) C_o}{g} \frac{(C_g - C_o)}{g} \]

The PMMA implant [Vestermark, 2004] was the reference and we compared with two other surface treatments: acid-etched and coarse grit blasted acid-etched with RGDS peptide. Material properties are given in Table 1 [Dee, 1999], [Rausch, 2007].

<table>
<thead>
<tr>
<th></th>
<th>Acid</th>
<th>C-RGDS</th>
<th>PMMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_g) (e(^{-7}) cell(^{2}/s)</td>
<td>5.22</td>
<td>10.1</td>
<td>2.82</td>
</tr>
<tr>
<td>(D_o) (e(^{-7}) mm(^2/s)</td>
<td>1.75</td>
<td>1.45</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Results
The implant healing showed a polar symmetry and we plotted in Figure 1 the radial distribution of mineralized fraction from the implant surface toward the surrounding bone after 4 weeks. We observed the influence of implant surface properties since mineralized fraction increased from 62% for the PMMA implant to 85% for the C-RGD surface.

Discussion
The TGF-\(\beta \) synthesis coefficient \(\alpha_g \) and cell diffusion coefficient \(D_o \) were two main parameters that allowed the mechanobiological role of the implant surface to be predicted in time and space. The decrease of cell diffusion \((D_o) \) and the increase of growth factor synthesis \((\alpha_g) \) improved the bone formation. We also noticed that it was decreasing for the highest value of the litterature, probably because of a too rapid accumulation of cells in the vicinity of the implant and an early haptotactic migration towards the surrounding bone where the porosity gradient stayed important.

References